EP0221897A1 - Ionenimplantierung mittels alkali- oder erdalkalitetrafluorboraten als borionlieferant - Google Patents
Ionenimplantierung mittels alkali- oder erdalkalitetrafluorboraten als borionlieferantInfo
- Publication number
- EP0221897A1 EP0221897A1 EP19850902841 EP85902841A EP0221897A1 EP 0221897 A1 EP0221897 A1 EP 0221897A1 EP 19850902841 EP19850902841 EP 19850902841 EP 85902841 A EP85902841 A EP 85902841A EP 0221897 A1 EP0221897 A1 EP 0221897A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- charge
- tetrafluoroborate
- consists essentially
- metal
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/20—Doping by irradiation with electromagnetic waves or by particle radiation
- C30B31/22—Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
Definitions
- Field ol th& Invention This invention relates to ion implantation generally and more specifically relates to the manufacture of semiconductor devices using ion implant techniques.
- Ion implantation is a well-known and widely used process for injecting atoms into a solid material to selecteddepths and concentrations in selectedareas.
- Ion implant accelerators are similar to isotope separatorsbut typically have an added acceleration stage and field controls for precisely locating the beam of ions and controlling the energy and flux of the beam of ions to cause the desired penetration and concentration.
- Atoms of the selected chemical element to be ionized are ionized by collisions with electrons in an electrical discharge in a gas at lowpressure andpass through an orifice into a high- vacuum region where they are accelerated by an electric field to a an intermediate energy, typically from 10 to 30 ke V, where they are analyzed by amagnetic fieldbased upon the e/m ratio, i.e. the ratio of electronic charge over mass.
- the selected ion beam passes through an analyzer slit, and the ions are accelerated to the desired energy, and the beam passes through a refocussing field, typically a guadrupole lens, is deflected by a scanner system, and collimated by a defined aperture and allowed to strike the target.
- This invention relates to the use of a particular class of chemicals as ion source materials and, consequently, to a modified method; i.e. a method which is modified in that it utilizes a novel source of ions.
- Ions are introduced into the ion implant equipment periodically. This generally requires cooling the implant equipment down, opening the high vacuum to at least some atmospheric exposure, introducing the new charge of ion source material into a receptacle, closing up the equipment, pumping the ion implant and accelerator chambers down to a high vacuum, and placing the equipment into operation again. This procedure is necessarily very expensive in terms of lost production and wasted time in a very expensive piece of equipment.
- Ion implant devices not infrequently cost over one million dollars and it is necessary to maximize production time to recoup the investment in saleable product.
- Source Vaporizers of the type under consideration are sold by various manufacturers, one of which is described as a Nova NV-10 (TM) Series Source Vaporizer. This, however, is merely exemplary and other source vaporizers are well-known to those skilled in the art.
- ion implantation has been a chief step in the industrial processing of semiconductor devices; in particular, large-scale integrated circuits; see, for example, ION IMPLANTATION IN SEMICONDUCTORS, Sartwell, et al., editors. Plenum Press, New York (1977). It iswithin this art that the present invention lies and to which it is an improvement.
- the present invention is an improvement in the ion implantation process described above, the improvement comprising introducing as the ion source material a metal haloborate compound.
- the compounds used in the method and manufacture of this invention comprise:
- M(BX 4 ) n whereinM is an alkali or alkaline earthmetal, B is boron, X is fluorine, chlorine or iodine, and n is the ionic valence of M.
- the most preferred of the compounds is LiBF4 » lithium fluoborate.
- fluoborates are preferred but other haloborates may, for most applications, be considered equivalent though not possessing all the advangates of the fluorine species.
- the preferred compounds are lithium, sodium, magnesium. potassium, calcium and zinc tetrafluoroborates.
- Mono-, di-, and tri-valent metal tetrahaloborates which vaporize invacuumat temperatures of from about 100°C. to 500°C. and which are available or can be manufactured in highly pure form may be considered equivalents.
- ammonium tetrahaloborate may be considered to be equivalent for limited applications, though the vapor pressure of this compound is too high for commonly used applications.
- the invention may be described as the improved method which comprises the steps of (a) evaporating a metal tetra- fluoroborate which evaporates under a vacuum of from approximately 10 ⁇ 3 to 10"5 torr in the temperature range of from approximately 100°C. to 500°C. at a rate sufficient to form an effective ion implant beam in an ion implant instrument; (b) ionizing boron; (c) accelerating the boron ions; (d) electromagnetically selecting the boron ions to be implanted in the target; and (e) accelerating and directing a beam of the selected ions to a predetermined point or location on the target.
- the article of manufacture of this invention comprises a charge of tetrahaloflouroborate configured and dimensioned to be recieved in an ion source vaporizer securedtomeans for inserting the charge into an ion source vaporizer of an ion implant device.
- the invention thus, in an exemplary form, comprises, in combination, a charge of metal tetrahaloborate, preferrably lithium tetrafluoro- borate, charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument, and enclosure means for enclosing at least aportion of the charge forming means and for positioning the charge forming means in the well of a source vaporizer.
- a charge of metal tetrahaloborate preferrably lithium tetrafluoro- borate
- charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument
- enclosure means for enclosing at least aportion of the charge forming means and for positioning the charge forming means in the well of a source vaporizer.
- FIG. 1 is a perspective, exploded view of a preferred form of the article of manufacture of this invention, a charge for introduction into a source vaporizer of an ion implant instrument, showing a portion of the source vaporizer.
- Figure 2 is a side view, enlarged and partially cut away, showing partially in cross-section the article of manufacture of this invention.
- Figure 3 is a partial side view of an alternative embodiment of the manufacture of this inventionwherein the charge container includes a breakseal.
- Figure 4 is another alternative embodiment of the manufacture of the present invention.
- the invention comprises, in the form of an article of manufacture, comprises apparatus for providing ion source material to the source vaporizer of ion implant equipment, an exemplary source vaporizer being depicted at 10 in Figure 1 comprising a body of well-known configuration and a well 12 which is configured, designed and adapted to receive a charge of the ion sourcematerial.
- Thewell 12 is about 22 mm in depth and 16 mm in diameter and generally cylindrical in configuration.
- the article of manufacture 20 shown in Figure 1 is one feature of the present invention, providing means for providing ion source material into the source vaporizer.
- the assembly 20 comprises a charge forming device 22 which holds the charge 24 of ion source material in its desired configuration and protects it from contamination.
- the charge forming device 22 is preferrably formed of quartz, although for certain low temperature applications it may be formed of inert polymer or borosilicate glass.
- the charge forming device 22 is, in the embodiment of Figure 1, an open top right cylindrical vessel being so configured and dimensioned as to be loosely received in the well of the vaporizer.
- the charge forming device is received in an enclosure 26 which comprises a generally cylindrical receiving body having an opening 28 which includes a sealing ring which fits very snuggly around and seals against the outer cylindrical walls of the charge forming device 22, permitting the charge forming device 22, upon the application of force, to move recipically in the enclosure 26 with the walls thereof in sealing relationship therewith.
- the enclosure 26 is generally in the form of a hollow cylinder formed of suitable inert polymer, preferrably a fluorocarbon or fluorochlorocarbonpolymer, such as Teflon (TM) for example, which is self-lubricating and forms an excellent seal with quartz, glass or metal.
- TM Teflon
- One end of the cylinder of the enclosure 26 comprises an end cap 30 which has a passage 32 therethrough slidably receiving the shaft 34 which, in turn, is part of a plunger or piston, the distal portion being generally discoid in configuration, as shown at 36, and forming a seal against the interior walls of the enclosure 26.
- the enclosure assembly 26-36 may, then, be described as a piston and cylinder arrangement in which the cylinder is formed by the enclosure 26 and the piston is formed by the shaft or plunger 34 and discoid piston 36.
- An "0" ring 38 in a groove in theplunger forms a stop against excessive travel of the piston.
- the enclosure also includes, in apreferred form, a sealing flange 40 which, during shipping and storage, positions the charge forming device and enclosure inside a protective cylinder 42 and which maintains a seal with the walls of the cylinder 42 after the cylinder is opened.
- the manufacture may be contained in any number of protective envelopes, but in the preferred embodiment the entire assembly 20 is stored, shipped and handled before use in a glass or quartz cylindrical tube 42 which is hermetically sealed at both ends, enclosing the assembly 20 inside in inert atmosphere, and which includes a scribe mark 44 whichpermits the tube to be easily broken, allowing the upper portion 46, as shown, to be removed and permitting removal of the assembly 22.
- a protective ring 48 formed of a semi-rigid, self-lubricating polymer such as Ryton (TM) polysulfide is a desired but non-critical feature of the invention. This ring includes, preferrably, a projection which extends into the scribe 44 to assure a safe, clean break.
- a moisture andvapor impervious flexiblepackage 50 formed of a layer of Mylar (TM) polyterephthalate 52 and metal, such as vapor deposited aluminum 54, sealed in any convenient way as shown, simply as an example, at 56.
- TM Mylar
- Figure3 depicts ahighly desirable alternative of the assembly of the invention for forming and loading a charge of ion source material which is exceptionally sensitive to contamination or which is to be given ultimate purity protection.
- the charge forming device 122 is the same in all essential features as the device 22 except that it includes a quartz (or in some instances polymeric or borosilicate) seal 123 which hermetically seals the ion source material 124 in the charge shape and size.
- the enclosure 126 -130 is the same as described respecting enclosure 26-30 and the piston 134- 136 is the same as described respecting piston134-136, but has the added structure of a breakpoint 137 on the distal side of the piston 136 and may include an additional "0" ring stop 139 to prevent accidental movement of thepiston.
- the operation whichwill be described, is the same for this embodiment as for that of Figure 2 except that the first "O" ring 139 is removed and the breakpoint 137 contacts and
- TE SHEET breaks the breakseal 123 in the early stages of movement of the piston in the cylinder.
- FIG. 4 depicts another alternative embodiment.
- the charge forming device 222 includes a breakseal 223 and is the same as the device 122-123.
- the charge forming device is recived in a cylindrical enclosure portion 226which seals at 228, as describedwith respect to the opening 28 and 128 in the earlier described embodiments.
- Projections or keys 129 may be provided in this embodiment for engaging the thermal source evaporator 10 to prevent relative rotation therewith.
- the enclosure purtion includes threads on the outside and a cap 230 which includes an interior structure 232 for engaging the charge forming device and a breakpoint 233 for contacting and ruptureing the breakseal 223.
- a bottom or distal cap 240 which slips on or screws on to the enclosure portion 226, providing an extra measure of protection.
- the entire assembly may then be enclosed in a glass or quartz tube as described and in an envelope or, as depicted in Figure 4, simply enclosed in a vapor barrier envelope 250 sealed at 256, of the construction described relative to the package 50-56.
- An important feature of the invention is the inclusion as a component of the assembly 20, 120 or 220 of a metal tetrahaloborate charge, and one facet of the invention, a very important facet indeed, is in the improved ion implant method wherein the ion source is obtained by evaporation of the metal tetrahaloborate.
- i is customary to carry out the process of ion implantation by the general steps of (a) evaporating a source material; (b) ionizing at least one component of the source material; (c) accelerating the resulting ions; (d) electromagnetically selecting the ions to be implanted in the target; and (e) accelerating and directing a beam of the
- SUBSTITUTE SHEET selected ions to a predetermined point or location on the target.
- the improvement of this invention is in the first step of evaporating a source material and in a preliminary step of providing a source material.
- the ion implant instrument is very expensive, costing a million dollars or more typically, and down-time or non ⁇ productive time must, for economic soundness, be avoided and minimized to the greatest possible extent. Down time results whenever it is necessary to shut the instrument down to recharge it with ion source material.
- the source vaporizer must be scraped out and a weighed or measured amount of ion source introducted into the well of the sourcevaporizer. Inmost instances, this requires that the source vaporizer be introduced into a clean-room or glovebox to prevent contamination of the reagents and spread of the reagents, some of which are extremely poisonous or otherwise hazardous. Those who have worked in a glove box will appreciate that this is a very time consuming and inconvenient operation.
- the instrument After the charge is loaded into the source vaporizer, the instrument, which operates at high vacuum and an ambient operating temperature of from about 100 to 300°C. must be pumped down and brought up to operating temperature, all of which consumes substantial periods of time.
- the instrument spectrographic and accelerating chamber operates, for example, at vacuums of as low as 10 ⁇ 5 torr.
- the introduction of a charge which requires extensive outgassing or which introduces volatile impurities can slow the start-up of the ion implant instrument signficantly.
- the instrument which operates at high vacuum and an ambient operating temperature of from about 100 to 300°C. must be pumped down and brought up to operating temperature, all of which consumes substantial periods of time.
- the instrument spectrographic and accelerating chamber operates, for example, at vacuums of as low as 10 ⁇ 5 torr.
- SUBSTITUTE SHEET is required to operate at high temperatures, e.g. above 300°C., additional time is required to bring the instrument to a stable operating temperature and additional pumping time may be required. it is, therefore, a highly sought after goal and a long feltneed in the industry to find a method which will reduce down-time, minimize start-up time, and extend run-time between recharging the ion source.
- Safety is also a very important consideration. It would be desirable to have an ion source which can be handled safely extreme or unusual precautions or undue risk andwhich, upon being used up, leaves either no residue or a non-toxic easily removed and safely handled residue.
- the improvedmethod comprises the steps of (a) evaporating a metal tetra- fluoroborate which evaporates under a vacuum of from approximately 10"" 3 to10" 5 torr in the temperature range of from approximately 100°C. to 400°C. at a rate sufficient to form an effective ion implant beam in an ion implant instrument; (b) ionizing boron; (c) accelerating the boron ions; (d) electromagnetically selecting the boron ions to be implanted in the target; and (e) accelerating and directing a beam of the selected ions to a predetermined point or location on the target.
- the article of manufacture is used in the following manner. First, once the source vaporizer is prepared to recieve a charge, the article 20, 120 or 220 is taken from its protective package(s) , depending upon the form of packaging used. The article is positioned as shown in Figure 1 with the source defining device 22 adjacent the well 12 in the source vaporizer, the distal end thereof is then inserted into the well and the article 20 is pressed ⁇ nuggly against the source vaporizer. In the case of the embodiments of Figures 1 and 2, the piston is pressed forcing the charge forming device and charge into the well and, in the case of the article 120, breaking the seal 123 thus opening the charge for use. The article 220 is handled basically in the same way, except that the lid 230 is turned to break the seal 223.
- the charge forming device contains the residual MF3 or M2F glass and is simply poured back into the container and disposed of according to regulations which may apply to the particular facility and material.
- the most advantageous and greatly preferred form of the inventive process includes evaporating lithium tetra ⁇ fluoroborate as the first step of the process, and this is selected as best exemplifying the process.
- metal tetrafluoroborates and in particular lithiumtetrafluoroborate decomposes and is ionized to form (i) a particularly and unexpectedlypure source of boron ions and (ii) a substantially inert glass.
- the reaction is described in two steps, as follows:
- the LiF is in the form of a glass which is easily and safely removed from the source vaporizer, fluorine gas is removed through the vacuum system is quantities which are not hazardous in the least, and a beamof boron ions, either 10 B or A1 B as selected, is implanted into the target. Because of low electrical charge over mass (e/m) ratio of lithium and fluorine the ion charge material has a long run-life, i.e. for a given weight, more boron ions are available than is the case with most ion source materials.
- the residue is a glass, being essentially inert and nonvolatile, it is easily and safely handled. Because the lithium tetrafluoroborate evaporates, under avaccuum of about 10 ⁇ 3 , at about 90° C. to 150°C. the warm-up and pump-down time for the instrument is minimal and stable operation is quickly restored after recharging the ion implant source vaporizer.
- Ahigh implant current ofB + ions isquickly and easily achieved.
- a current of 1-3 ma of 11 B + was repeatably obtained.
- BF3 is a relatively inert, safely handled material
- the extreme care and high risk of using such highly reactive and toxic gases as BF3 is avoided.
- SuchBF3 as is generated is in microgram amounts inside the instrument and is decomposed almost immediately, thus presenting no health or safety hazard.
- metal tetrahaloborates generally, except that with higher molecular weight halogens, e.g. chlorine and bromine, the run-life is lower because of the lower e/m ratio.
- sodiumand potassium analogs wouldhave a shorter run-life than lithium tetrafluoroborate.
- metal tetrahaloborates generally, principally the haloborate salts ofGroup I andGroup II metals and, preferrably alkali and alkaline earthmetals, although zinc tetrafluoroborate and other transition metal tetrahaloborate borates which evaporate in the desired range are also contemplated.
- the invention comprises, in combination, a charge of metal tetrahaloborate, preferrably lithium tetrafluoroborate, charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument, and enclosure means for enclosing at least a portion of the charge forming means and for positioning the charge formingmeans in thewell of a source vaporizer.
- a charge of metal tetrahaloborate preferrably lithium tetrafluoroborate
- charge forming means configuring the charge into a size and shape for being received in a source vaporizer of an ion implant instrument
- enclosure means for enclosing at least a portion of the charge forming means and for positioning the charge formingmeans in thewell of a source vaporizer.
- the invention has been described with reference to the semiconducter industry and in the manufacture of semiconductor materials, e.g. boron implanted into silicon, the invention is of general applicablity in, for example, forming corrosion or wear resistant surfaces on bearings, cutting tools, and the like.
- This invention finds its most direct and immediate application in the manufacture of semiconductor devices, cutting tools, bearings and other metal objects in which surface characteristics are modified by ion implantation.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1985/000932 WO1986006875A1 (en) | 1985-05-17 | 1985-05-17 | Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0221897A1 true EP0221897A1 (de) | 1987-05-20 |
Family
ID=22188685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19850902841 Withdrawn EP0221897A1 (de) | 1985-05-17 | 1985-05-17 | Ionenimplantierung mittels alkali- oder erdalkalitetrafluorboraten als borionlieferant |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0221897A1 (de) |
JP (1) | JPS62503064A (de) |
AU (1) | AU578707B2 (de) |
DK (1) | DK24487D0 (de) |
FI (1) | FI870181A0 (de) |
NO (1) | NO870194L (de) |
WO (1) | WO1986006875A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987006389A1 (en) * | 1986-04-09 | 1987-10-22 | J.C. Schumacher Company | Semiconductor dopant vaporizer |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3477887A (en) * | 1966-07-01 | 1969-11-11 | Motorola Inc | Gaseous diffusion method |
DE2222736A1 (de) * | 1972-05-09 | 1973-11-22 | Siemens Ag | Verfahren zur ionenimplantation |
DE2408829C2 (de) * | 1974-02-23 | 1984-03-22 | Ibm Deutschland Gmbh, 7000 Stuttgart | Bor-Ionenquell-Material und Verfahren zu seiner Herstellung |
US4074139A (en) * | 1976-12-27 | 1978-02-14 | Rca Corporation | Apparatus and method for maskless ion implantation |
FR2383702A1 (fr) * | 1977-03-18 | 1978-10-13 | Anvar | Perfectionnements aux procedes et dispositifs de dopage de materiaux semi-conducteurs |
FR2412939A1 (fr) * | 1977-12-23 | 1979-07-20 | Anvar | Implanteur d'ions a fort courant |
JPS57174467A (en) * | 1981-04-20 | 1982-10-27 | Inoue Japax Res Inc | Ion working device |
JPS57182956A (en) * | 1981-05-07 | 1982-11-11 | Hitachi Ltd | Ion-implantation device |
US4385946A (en) * | 1981-06-19 | 1983-05-31 | Bell Telephone Laboratories, Incorporated | Rapid alteration of ion implant dopant species to create regions of opposite conductivity |
JPS60109260A (ja) * | 1983-11-15 | 1985-06-14 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | 補償された多結晶シリコン抵抗素子 |
-
1985
- 1985-05-17 AU AU44315/85A patent/AU578707B2/en not_active Ceased
- 1985-05-17 JP JP50250785A patent/JPS62503064A/ja active Pending
- 1985-05-17 WO PCT/US1985/000932 patent/WO1986006875A1/en not_active Application Discontinuation
- 1985-05-17 EP EP19850902841 patent/EP0221897A1/de not_active Withdrawn
-
1987
- 1987-01-16 DK DK024487A patent/DK24487D0/da not_active Application Discontinuation
- 1987-01-16 FI FI870181A patent/FI870181A0/fi not_active Application Discontinuation
- 1987-01-16 NO NO87870194A patent/NO870194L/no unknown
Non-Patent Citations (1)
Title |
---|
See references of WO8606875A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU578707B2 (en) | 1988-11-03 |
FI870181A0 (fi) | 1987-01-16 |
DK24487A (da) | 1987-01-16 |
DK24487D0 (da) | 1987-01-16 |
NO870194D0 (no) | 1987-01-16 |
AU4431585A (en) | 1986-12-04 |
WO1986006875A1 (en) | 1986-11-20 |
NO870194L (no) | 1987-03-10 |
JPS62503064A (ja) | 1987-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4851255A (en) | Ion implant using tetrafluoroborate | |
US4855604A (en) | Ion Beam implant system | |
US3933530A (en) | Method of radiation hardening and gettering semiconductor devices | |
Kaiser et al. | Electric Deflection of Molecular Beams of the Lanthanide Di‐and Trifluorides, ScF3 and YF3 | |
SE500657C2 (sv) | Metod och anordning för preparering av implantatytor med användning av gasurladdningsplasma | |
KR20080075015A (ko) | 증발 재료 증착 방법 | |
Clampitt | Advances in molten metal field ion sources | |
AU578707B2 (en) | Ion implant using alkali or alkaline earth metal tetrafluoroborate as boron ion source | |
US5861630A (en) | Method for generating a boron vapor | |
EP0098935A1 (de) | Ätzverfahren mit negativen Ionen | |
Wong et al. | Sputtering of large molecular ions by low energy particle impact | |
US4760263A (en) | Ion implant using tetrafluoroborate | |
US5059292A (en) | Single-chamber apparatus for in-situ generation of dangerous polyatomic gases and radicals from a source material contained within a porous foamed structure | |
Florin et al. | Gamma irradiation of hexafluorobenzene | |
Liebl et al. | Study of an iodine discharge in a duoplasmatron | |
Wilson et al. | Comparison of sources of boron, phosphorus, and arsenic ions | |
US5282903A (en) | High quality oxide films on substrates | |
Lehmann et al. | An isotope separator for small noble gas samples | |
Amick et al. | The Stabilization of Germanium Surfaces by Ethylation: II. Chemical Analysis | |
Dunbar et al. | Radiative and collisional association of mesitylene ion with parent neutral at 196 K | |
Armour | Ion implantation | |
JP3837566B2 (ja) | 冷却式高量子効率フォトカソード型電子線源への高量子効率物質の被覆方法 | |
Ohkoshi et al. | 8 New ion generation method of refractory materials with SF6 plasma | |
Gibson et al. | High temperature vaporization/decomposition of lanthanide and actinide fluorides.[CeF/sub 4/, AmF/sub 4/] | |
Martinez et al. | Reaction‐induced mass discrimination in XQQ instruments. Absolute cross‐sections for N+ SF6→ N2+ SF (x= 1–5) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19870202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19890601 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LAGENDIJK, ANDRE Inventor name: RIAHI, SHANTIA |