EP0205359B1 - Optoelektronischer Zweirichtungsbauteil, der einen optischen Koppler bildet - Google Patents

Optoelektronischer Zweirichtungsbauteil, der einen optischen Koppler bildet Download PDF

Info

Publication number
EP0205359B1
EP0205359B1 EP86400908A EP86400908A EP0205359B1 EP 0205359 B1 EP0205359 B1 EP 0205359B1 EP 86400908 A EP86400908 A EP 86400908A EP 86400908 A EP86400908 A EP 86400908A EP 0205359 B1 EP0205359 B1 EP 0205359B1
Authority
EP
European Patent Office
Prior art keywords
del
semi
casing
opto
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86400908A
Other languages
English (en)
French (fr)
Other versions
EP0205359A1 (de
Inventor
Jacques Simon
Philippe Morel
Jean-François Carpentier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0205359A1 publication Critical patent/EP0205359A1/de
Application granted granted Critical
Publication of EP0205359B1 publication Critical patent/EP0205359B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device

Definitions

  • the present invention relates to an optoelectronic component, used in fiber optic data transmission systems.
  • This optoelectronic component is a coupler which comprises at least one light-emitting diode and one photodiode: all of these two diodes are integrated in a standardized encapsulation box for transistors.
  • the invention applies more particularly to bidirectional links on a single optical fiber called monofiber.
  • the single optical fiber transmits, in a direction that will be called the outward direction, the light emitted by a light-emitting diode, called LED, placed at a first end of the fiber, and received by a photodiode. placed at a second end of the fiber.
  • the light emitted by a second LED placed at the second end of the fiber, is received by a second photodiode, placed at the first end of the fiber.
  • the couplers consist of a box whose faces support optical connectors. There is at least one connector for the optical fiber, a connector for the LED in its micro-box and a connector for the photodiode in its micro-box. Inside the coupler housing, simple means couple the LED to the optical fiber and the photodiode to the optical fiber.
  • the main drawback of these couplers, which are also simple, is their size; furthermore, due to the very small dimensions of the optical fibers used in bidirectional systems (50-100 ⁇ m), these couplers require high machining precision at each connection by connectors.
  • the optoelectronic component according to the invention has a much smaller volume than the known couplers, and it can easily be aligned on the optical axis of the optical fiber. It comprises at least one LED and a photodiode, and at least one semitransparent mirror, the assembly being integrated in a standard transistor encapsulation box, provided with a microlens on the flat face of its cover.
  • the LED and the photodiode are mounted side by side, on an insulating base, the LED being in the optical axis of the microlens, and itself provided with an optical microbead, in order to concentrate its light radiation on the microlens.
  • the photodiode receives the light radiation entering the housing, or part of the light radiation emitted by the LED, by means of a place of mirrors positioned inside the housing cover: there is at least one semitransparent mirror which is held in position by a part of which a machined face opposite the photodiode takes the function of a mirror.
  • the photo detection diode is used not to receive light radiation coming from outside the optoelectronic component, but to control and regulate the light emitted by the light emitting diode, which causes a modification of the means of reflection.
  • two reception diodes one detects an external radiation, the other the radiation emitted by the light-emitting diode.
  • Figure 1 shows the block diagram of a bidirectional link by optical fiber, according to the known art and its presentation will better understand the advantage of the optoelectronic component according to the invention.
  • a bidirectional link by optical fiber comprises an optical fiber 1, at a first end of which there is a light-emitting diode LED, shown diagrammatically at 2 by the representation of its semiconductor chip. This LED emits light radiation, concentrated by a microlens and which propagates along the optical fiber according to the arrows shown in solid line. At the other end of the optical fiber 1 is a photodiode detector 3, which captures the light emitted by the LED.
  • this link is bidirectional implies that at this same second end of the optical fiber 1 is also a second LED 4 whose light radiation, concentrated by a microlens, crosses the same optical fiber 1, according to a diagrammatic path by arrows in broken lines: the light radiation from LED 4 is collected at the first end of the optical fiber by a photodiode 5. Since at each end of the optical fiber 1 there is both an emitting LED 2 or 4 and a detector photodiode 3 or 5, it is necessary to partially deflect the light rays so that the two LEDs 2 and 4 and the two photodiodes 3 and 5 are, respectively, coupled to the optical fiber.
  • mirrors 6 and 7 each placed at one end of the optical fiber: these mirrors are semitransparent which means that part of the radiation emitted by the LED 2 passes through the mirror 7 and strikes the LED 4, and reciprocally a part of the radiation emitted by the LED 4 crosses the mirror 6 and strikes the LED 2, while the corresponding radiations are reflected by the surfaces of the semi-transparent mirrors 6 and 7, and strike the photodiodes 3 and 5.
  • FIG. 1 This diagram of FIG. 1 is, as has been specified, a block diagram, because in fact the couplers between LED and photodiode are produced in a different way.
  • FIG. 2 represents the very simplified diagram of an optical coupler according to the known art.
  • This first type of coupler comprises a box 8, the shape of which is arbitrary provided that three connectors 9, 10 and 11 can be attached to it, at the top of a triangle.
  • An optical fiber 12, which corresponds to the fiber 1 of FIG. 1, is connected to this coupler by means of a connector 9.
  • An LED is connected to this coupler by means of a connector 10 of which only the base is shown , the LED itself being mounted in a micro-housing.
  • a photodiode is connected to the coupler by means of a second base 11, which for the same reasons is represented only by its threaded base.
  • the coupling of the light radiation between the optical fiber 12 on the one hand, the LED and the photodiode on the other hand is done by means of two optical fibers 13 and 14, located inside the housing 8 of the coupler which protects them .
  • FIG. 3 represents another type of coupler according to known art.
  • This is in the form of a box 16, which comprises on four faces, preferably arranged in a square or a rectangle, four connectors 9, 10, 11 and 17.
  • the first connector 9 is fixed, as in FIG. 2, one end of the optical fiber 12.
  • the second connector 10 supports the light-emitting diode 2 which emits light radiation in the direction of the optical fiber 12: consequently the connector 10 is located in the optical axis of the fiber 12, and on a wall of the housing 16 parallel to the wall which supports the connector 9.
  • the connector 11 supports the photodiode 5 and is located on a wall parallel to the optical axis of the fiber 12: the return of light radiation to the photodiode 5 is done by means of a semitransparent mirror 6, positioned at 45 ° relative to the path of the light radiation between the photodiode 2 and the optical fiber 12.
  • a second photodiode 18, supported by a connector 17 can be mounted opposite -vis the p first photodiode 5.
  • This second photodiode 18 receives, by means of the same semitransparent mirror 6, part of the light emitted by the LED 2 and thus serves to regulate the emission power of the LED.
  • Lenses are generally used to ensure better coupling and to obtain parallel beams at the level of the mirror.
  • a box 16 ' At the other end of the optical fiber 12 is a box 16 ', which is quite comparable to the box 16: it also has connectors to be able to couple together the optical fiber 12, a second LED and one or two photodiodes .
  • the occupied volume is an important element.
  • bidirectional optical links are used if the loss of optical power generated in the couplers can be compensated by a higher emission power of the light-emitting diodes. centes.
  • This disadvantage is compensated for by the fact that in extremely complex systems, such as telephone exchanges for example, a single optical fiber allows data communication in both directions and there is therefore a considerable gain in bulk in the case of high density multi-fiber cables. This gain in size at the multifiber cable would be lost if at the end of each optical fiber the coupler is an object itself bulky.
  • the volume in which the optoelectronic component according to the invention is produced is that of a standardized metal transistor housing, of the T018 or T046 type, that is to say of external diameter equal to 5.4 mm.
  • FIG. 4 represents a sectional view of an optoelectronic component according to the invention, this view being simplified so as to facilitate reading.
  • This optoelectronic component comprises a light emitting diode for transmission and a photodiode for reception.
  • the optoelectronic component of FIG. 4 is mounted in a standardized transistor case, of the T018 type.
  • This case comprises a base 19 and a cover 20, the base 19 itself comprising at least one metal ring so that it can be welded to the cover 20.
  • Base 19 supports a plurality of external access connections 22 and 23, but there are at least two, one for each diode.
  • These external access connections 22 and 23 which are in the form of metal wires, are held in place by a part 24 which is either made of glass or of metal, integral with the base 19: in this case the passages of the connections 22 and 23 are isolated by glass beads.
  • the ground connection can be taken directly on the box.
  • the light-emitting diode pad 2 and the photodiode pad 5 are mounted, by suitable means of welding or bonding, side by side on an insulating base 25, which is for example made of Beryllium oxide. These two pads are mounted in such a way that the light-emitting diode pad 2 is located in the optical axis of the microlens 21 carried by the housing cover and in alignment with the optical fiber 12.
  • a microbead which is made either of glass, or of corundum, or of plastic, or with the semiconductor material constituting the LED chip itself, is bonded to the emissive surface of the light-emitting diode pad 2: this microbead 26 acts as a microlens to concentrate the light radiation emitted by the light-emitting diode - which emits at a fairly large angle - in the direction of microlens 21, so as to recover the maximum light energy from the LED and improve efficiency.
  • the pad 2 of the LED is located on the optical axis of the system, the pad 5 of the photodiode is therefore located outside this axis. So that the light radiation emitted by the other LED, located at the other end of the optical fiber 12, reaches the photodiode 5, two mirrors 27 and 28 are arranged inside the housing of this optoelectronic component.
  • the mirror 27 is a semitransparent mirror, constituted by a glass or fine quartz blade interposed between the ball 26 and the microlens 21. According to the well-known laws of optics, this mirror is inclined at 45 ° relative to the axis optical.
  • a second mirror 28 also inclined at 45 ° relative to the optical axis, faces the first mirror 27 so that light radiation exiting from the optical fiber 12 is reflected for the first time on the semitransparent mirror 27 then a second time on the mirror 28 before striking the patch of the photodiode 5.
  • the pads are welded to the base 25 by known methods, and they are connected with the external connections 22 and 23 by any reliable means known to those skilled in the art. art, such as for example metallic wires or metallic ribbons.
  • the diameter of the microbead 26 can be between 200 and 700 microns.
  • the distance between the microbead 26 and the microlens 21 is approximately 1.5 mm, and it makes it possible to place a mirror 27 of thickness approximately 0.1 mm.
  • the focal distance of the microlens 21 is of the order of a millimeter, and the front distance Z, which separates the microlens 21 from the end of the optical fiber 12, is between 0.5 and 1.5 mm.
  • the functioning of this optoelectronic component is the same as that shown in FIG. 1.
  • the LED 2 emits light radiation which is first collected and concentrated by the microbead 26, passes through - with a certain loss by reflection - the semitransparent mirror 27 before being focused by the microlens 21 on the core of the fiber 12.
  • the photodiode receives the optical signal coming from the fiber via the microlens 21, the semitransparent mirror 27 and the reflecting surface 28.
  • FIG. 5 represents the block diagram of a bidirectional link according to the known art, comprising a regulation of the light power emitted by an LED. If we consider the transmitter assembly located at one end of an optical fiber, it is possible to improve the efficiency of the bidirectional link by slaving the light radiation emitted by the LED 2 by a very simple and well-known regulation system.
  • a semi-reflective strip 6 is placed between the LED 2 and the optical fiber 1 and it reflects part of the light emitted by the LED towards a photodiode 18.
  • the signal from the photodiode 18 is integrated by an integrator 30, which attacks one of the two inputs of a differential amplifier 31.
  • the output of this amplifier itself controls the base of a transistor which supplies the current to LED 2. If, for any reason, temperature drift or aging, for example, LED 2 emits a light power which is not stable, the feedback loop makes it possible to correct and obtain a stable light power.
  • This type of optoelectronic component comprising a regulation of transmitted power can be produced according to the invention, as shown in FIG. 6.
  • the optoelectronic component according to the invention as represented in FIG. 6 has exactly the same constituents as that represented in FIG. 4. But in FIG. 4 the light radiation received by the photodiode 5 comes from the optical fiber 12, and consequently the two reflecting surfaces 27 and 28 are parallel to each other, so that a light ray coming from the optical fiber reaches the photodiode 5. In contrast, in FIG. 6 the two reflecting surfaces 27 and 28 are mounted orthogonally , and part of the light radiation emitted by the patch 2 of the LED is reflected on the semi-transparent mirror 27 then reflected on the reflecting surface 28 and thus received by the photodiode 5, which makes it possible to regulate the power emitted by the LED 2. As in FIG. 4, the means for maintaining and positioning the two reflecting surfaces 27 and 28 will be developed later.
  • FIG. 7 represents a sectional view of an optoelectronic component according to the invention, but in an alternative embodiment of the optical system.
  • the photodiode 5 receives part of the light radiation emitted by the LED 2 by means of a single semi-reflective surface 27, which is mounted on the optical axis of the system, at an angle of about 30 ° , this angle being adjusted as a function of the position occupied by the photodiode 5 and its distance from the pad 2 of the LED.
  • This semitransparent mirror 27 is as in the cases of FIGS. 4 and 6 held in place by a mirror support which will now be detailed in the following figures.
  • Figure 8 is more detailed than Figure 4: it shows the same optoelectronic component for the emission and reception of light radiation. It highlights the mirror support, object of the invention, which makes it possible to easily transform a light-emitting diode into a transmission-reception coupler.
  • a mirror support 32 Inside the cover 20 of a transistor case, provided with a microlens 21, is adapted a mirror support 32, which has a cylindrical shape since the transistor cases of type T018 or T046 are cylindrical.
  • the part 32 enters the cover 20 as a piston penetrates inside a cylinder.
  • the outer contour of the support 32 is adapted to the inner contour of the cover 20 of the housing.
  • the part 32 which originally was therefore a cylinder, has been milled on each of these flat faces. On one side, milling has made it possible to clear a flat surface 33, inclined at 45 ° relative to the main optical axis of the system, that is to say also inclined at 45 ° relative to the flat face of origin of the part 32. On this flat face 33 is glued or fixed by any suitable means the semitransparent mirror 27.
  • the second planar face of the mirror support 32 has undergone a second milling which leaves at least one planar face 34 inclined at 45 ° relative to the optical axis of the system, that is to say also inclined at 45 ° with respect to to the second flat face of the part 32.
  • the two milling intersect, so that they create in the center of the support 32 a hole, along the optical axis of the device, letting the light rays pass.
  • this surface 34 inclined at 45 ° is treated and polished so as to constitute a reflecting surface of good optical quality.
  • first face 33 and the second face 34 both inclined at 45 ° relative to the optical axis of the system, face each other so that a light ray coming from the optical fiber and passing through the microlens 21 is reflected a first time on the mirror 27, glued to the face 33, then a second time on the reflecting surface 34, which thus constitutes the mirror 28, before striking the photodiode 5.
  • FIG. 9 constitutes a more complete case of an optoelectronic component according to the invention, since this component comprises an emission LED 2, a reception photodiode 5 and a regulation photodiode 18 of the power emitted by the LED 2.
  • the three diode pads are mounted side by side on an insulating block 25, in the same way as previously two diode pads were mounted on this insulating pad 25.
  • the number of external connections such as 22 and 23 is adapted to the number of diode pads.
  • the return of the light coming from the optical fiber towards the photodiode 5 takes place as previously by means of a semitransparent mirror 27 and of a reflecting surface 28.
  • the control and regulation of the power emitted by the LED 2 by means of a photodiode 18 is done as was exposed in FIG. 6 by means of a first reflection on the semitransparent mirror 27 and a second reflection on the mirror 29 constituted by a reflecting part 35 of the part 33 mirror support.
  • the reflection of a ray coming from the LED 2 towards the photodiode 18 and the reflection of a light ray coming from the optical fiber towards the photodiode 5 are symmetrically : consequently the reflecting surfaces 34 and 35 in the part 33 mirror support face each other and their generatrices are parallel to each other.
  • FIGS. 10, 11 and 12 show in a very simplified manner the various means for holding the mirror support 33 in place inside the housing cover 20.
  • a first way of fixing the optical mirror system inside a cover 20 of a transistor case consists in crimping the support 33 by deformation of the cover 36: this crimping process is well known, the metal constituting a cover 20 thus that the metal constituting the mirror support 33 are flexible enough that it is possible to print deformations therein such as 36 with a metal tip.
  • a second method for positioning the optical system inside the cover 20 of the transistor housing consists in maintaining the mirror support 33 at a predetermined distance from the base 19 by means of a washer 37, and in exerting a force, which pushes the support 33 in the direction of the base 19, by means of a non-flat washer, forming a spring, placed at 38 between the flat surface of the cover 20 and the mirror support 33.
  • FIG. 12 Another possibility, represented in FIG. 12, consists quite simply in forcing the part 33 into the cover 20, or in sticking it in this cover and making sure of the distance which separates it from the base 19 by means a washer 37.
  • the mirror support 33 is made of metal, milled or stamped, or else is injected into a polymer whose surfaces 34 and 35 are made reflective by vacuum metallization.
  • the semitransparent mirror 27 is itself made up of a thin glass or quartz blade, of the order of 0.1 mm thick, and depending on the intended application for the optoelectronic component, that is to say according to the wavelength of the light radiation, the mirror 27 has a transmission coefficient which is determined by an appropriate surface treatment.
  • the optoelectronic component according to the invention is mainly used in high-density optical fiber links, such as data exchange links in data processing or in telephone systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Claims (10)

1. Optoelektronisches bidirektionales Bauteil mit einer Elektrolumineszenzemissionsdiode und mindestens einer Photodetektordiode (5), wobei die Elektrolumineszenzdiode (2), DEL genannt, im Inneren eines Metallgehäuses vom Typ eines Transistorgehäuses montiert ist, dessen Grundplatte (19) einen Isolierblock (25) trägt, auf dem die DEL (2) befestigt ist und dessen Deckel (20) mitten auf der ebenen Fläche des Deckels (20) eine Mikrolinse (21) trägt, wobei die Mikrolinse (21) und die DEL (2) für das optoelektronische Bauteil eine optische Achse definieren, dadurch gekennzeichnet, daß im Inneren des Gehäuses (19+20) der DEL (2) zusammengefaßt sind:
- die mindestens eine Photodetektordiode (5), welche auf dem Isolierblock (25) neben der DEL (2) außerhalb der optischen Achse des Bauteils montiert ist,
- ein erstes Mittel zur Reflexion der erfaßten Lichtstrahlung, das aus einem halbtransparenten Spiegel (27) besteht, der zwischen der DEL (2) und der Mikrolinse (21) in der optischen Achse des Bauteils befestigt ist und gegen dieselbe geneigt ist, und
- ein zweites Mittel zur Reflexion des Lichtstrahls in Richtung auf die Photodetektordiode (5), die aus einer reflektierenden Oberfläche (28) besteht, deren Fläche parallel zur Fläche des halbtransparenten Spiegels (27) verläuft, wobei das Element (32), auf dem die reflektierende Oberfläche (28) ausgebildet ist, auch eine ebene Oberfläche (33) besitzt, auf der der halbtransparente Spiegel (27) liegt.
2. Optoelektronisches Bauteil mit einer Elektrolumineszenzemissionsdiode (2) und mindestens einer Photodetektordiode (18), wobei die Elektrolumineszenzdiode (2), DEL genannt, im Inneren eines Metallgehäuses vom Typ eines Transistorgehäuses montiert ist, dessen Grundplatte (19) einen Isolierblock (25) trägt, auf dem die DEL (2) befestigt ist und dessen Deckel (20) mitten auf der ebenen Fläche des Deckels (20) eine Mikrolinse (21) trägt, wobei die Mikrolinse (21) und die DEL (2) für das optoelektronische Bauteil eine optische Achse definieren, dadurch gekennzeichnet, daß im Inneren des Gehäuses (19+20) der DEL (2) zusammengefaßt sind:
- die mindestens eine Photodetektordiode (18), welche auf dem Isolierblock (25) neben der DEL (2) und außerhalb der optischen Achse des Bauteils montiert ist,
- ein erstes Mittel zur Reflexion der erfaßten Lichtstrahlung, das aus einem halbtransparenten Spiegel (27) besteht, der zwischen der DEL (2) und der Mikrolinse (21) in der optischen Achse des Bauteils sitzt und gegen dieselbe geneigt ist,
- ein zweites Mittel zur Reflexion des Lichtstrahls in Richtung auf die Photodetektordiode (18), das aus einer reflektierenden Oberfläche (29) besteht, wobei die beiden reflektierenden Oberflächen (27, 28) orthogonal zueinander angeordnet sind und das Element (32), an dem die reflektierende Oberfläche (29) ausgebildet ist, auch eine ebene Stützoberfläche (33) des halbtransparenten Spiegels (27) aufweist.
3. Optoelektronisches Bauteil mit einer Elektrolumineszenzemissionsdiode (2) und mindestens einer Photodetektordiode (18), wobei die Elektrolumineszenzdiode (2), DEL genannt, im Inneren eines Metallgehäuses vom Typ eines Transistorgehäuses montiert ist, dessen Grundplatte (19) einen Isolierblock (25) trägt, auf dem die DEL (2) befestigt ist und dessen Deckel (20) mitten auf der ebenen Fläche des Deckels (20) eine Mikrolinse (21) trägt, wobei die Mikrolinse (21) und die DEL (2) für das optoelektronische Bauteil eine optische Achse definieren, dadurch gekennzeichnet, daß im Inneren des Gehäuses (19+20) der DEL (2) zusammengefaßt sind:
- die Photodetektordiode (18), welche neben der DEL (2) außerhalb der optischen Achse des Bauteils montiert ist, und
- ein erstes Mittel zur Reflexion der erfaßten Lichtstrahlung, das aus einem halbtransparenten Spiegel (27) besteht, der zwischen der DEL (2) und der Mikrolinse (21) in der optischen Achse des Bauteils angebracht und gegen dieselbe geneigt ist, wobei die Photodiode (18) einen Teil der von der DEL über die halbreflektierende Oberfläche des Spiegels ausgesandten Lichtstrahlung empfängt und der Spiegel mit Hilfe eines im Inneren des Gehäuses angebrachten Halters arretiert sind.
4. Optoelektronisches Bauteil nach Anspruch 1, dadurch gekennzeichnet, daß es weiter im Inneren des Gehäuses (19+20) eine Vorrichtung zum Einstellen der von der DEL (2) emittierten Leuchtstärker enthält, die aufweist:
- eine zweite Einstellphotodiode (18), die auf einem Isolierblock (25) gegenüber der DEL (2) montiert ist,
- ein zweites Reflexionsmittel (29), welches die von der DEL (2) emittierte Lichtstrahlung, die teilweise auf den halbtransparenten Spiegel (27) reflektiert wird, auf die zweite Photodiode (18) wirft.
5. Optoelektronisches Bauteil nach einem beliebigen der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der halbtransparente Spiegel (27) aus einer Scheibe durchscheinenden Materials wie Glas oder Quarz besteht, deren Flächen so behandelt sind, daß sie einen geeigneten Durchlaßkoeffizienten für die Lichtstrahlung besitzen.
6. Optoelektronisches Bauteil nach Anspruch 1, dadurch gekennzeichnet, daß das Tragelement (32) des halbtransparenten Spiegels (27) aus einem Element besteht, dessen äußere Kontur der inneren Kontur des Deckels (20) des Gehäuses entspricht, wobei das Tragelement mittig mit einem Loch in der optischen Achse für den Durchtritt der Lichtstrahlung versehen ist und weiter auf der Seite gegenüber der Mikrolinse (21) eine gegen die optische Achse geneigte Fläche, auf der der halbtransparente Spiegel (27) befestigt ist, sowie auf der Seite gegenüber der DEL (2) mindestens eine Fläche (34) besitzt, deren Oberfläche poliert ist und die mindestens eine reflektierende Oberfläche (28) aufweist.
7. Optoelektronisches Bauteil nach Anspruch 6, dadurch gekennzeichnet, daß das Tragelement (32) des halbtransparenten Spiegels (27) am Deckel (20) des Gehäuses durch Einpressen und Kleben befestigt ist.
8. Optoelektronisches Bauteil nach Anspruch 6, dadurch gekennzeichnet, daß das Tragelement (32) des halbtransparenten Spiegels (27) am Deckel (20) des Gehäuses durch örtliche Verformung (36) des Deckels (20) befestigt ist.
9. Optoelektronisches Bauteil nach Anspruch 6, dadurch gekennzeichnet, daß das Tragelement (32) des halbtransparenten Spiegels (27) im Deckel (20) des Gehäuses mit Hilfe einer Manschette (37) positioniert ist, die auf der Grundplatte (19) des Gehäuses aufsitzt und durch eine elastische Unterlegscheibe (38) in Stellung gehalten wird.
10. Optoelektronisches Bauteil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß es einer optischen Faser (12) in einer bidirektionalen Monofaserverbindung zugeordnet ist.
EP86400908A 1985-05-10 1986-04-24 Optoelektronischer Zweirichtungsbauteil, der einen optischen Koppler bildet Expired EP0205359B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8507147A FR2581768B1 (fr) 1985-05-10 1985-05-10 Composant optoelectrique bidirectionnel formant coupleur optique
FR8507147 1985-05-10

Publications (2)

Publication Number Publication Date
EP0205359A1 EP0205359A1 (de) 1986-12-17
EP0205359B1 true EP0205359B1 (de) 1989-12-13

Family

ID=9319170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400908A Expired EP0205359B1 (de) 1985-05-10 1986-04-24 Optoelektronischer Zweirichtungsbauteil, der einen optischen Koppler bildet

Country Status (5)

Country Link
US (1) US4733094A (de)
EP (1) EP0205359B1 (de)
JP (1) JPS61260207A (de)
DE (1) DE3667549D1 (de)
FR (1) FR2581768B1 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600427B1 (fr) * 1986-06-20 1989-08-25 Deutsch Co Dispositif de connexion d'extremite pour fibre optique avec composants opto-electroniques et couplage optique
GB8712808D0 (en) * 1987-06-01 1987-07-08 Bt & D Technologies Ltd Optical transmitters
AU590482B2 (en) * 1987-06-01 1989-11-02 Bt&D Technologies Limited Optical transmitter wth output monitor
EP0308749A3 (de) * 1987-09-25 1990-07-11 Siemens Aktiengesellschaft Elektrooptische Baugruppe
US4854659A (en) * 1988-05-31 1989-08-08 Bt&D Technologies, Ltd. Optical devices
DE3834395A1 (de) * 1988-10-10 1990-04-12 Telefunken Electronic Gmbh Kopplungsvorrichtung einer optischen faser mit einer lichtemittierenden diode
US4919506A (en) * 1989-02-24 1990-04-24 General Electric Company Single mode optical fiber coupler
CA2019074C (en) * 1989-06-19 1993-06-01 Takayuki Masuko Photo-semiconductor module
FR2654840B1 (fr) * 1989-11-21 1992-01-31 Thomson Hybrides Tete optique integrable sur un circuit hybride.
EP0450560B1 (de) * 1990-04-03 1998-07-22 Sumitomo Electric Industries, Ltd. Optische Vorrichtung
US5966230A (en) * 1990-05-29 1999-10-12 Symbol Technologies, Inc. Integrated scanner on a common substrate
FR2669482B1 (fr) * 1990-11-19 1994-06-03 Peugeot Module emetteur-recepteur optique bi-directionnel a plusieurs voies et repeteur optique utilisant ce module.
US5140152A (en) * 1991-05-31 1992-08-18 The University Of Colorado Foundation, Inc. Full duplex optoelectronic device with integral emitter/detector pair
FR2682194B1 (fr) * 1991-10-08 1994-11-18 Thomson Csf Regle d'interconnexion optique.
DE4136893A1 (de) * 1991-11-09 1993-05-13 Ant Nachrichtentech Optische sende- und empfangsanordnung
US5319182A (en) * 1992-03-04 1994-06-07 Welch Allyn, Inc. Integrated solid state light emitting and detecting array and apparatus employing said array
US5299066A (en) * 1992-08-12 1994-03-29 Miles, Inc. Conical lens mount with snap-in lens clamp
JPH06224406A (ja) * 1993-01-27 1994-08-12 Mitsubishi Electric Corp 光集積回路
DE4435928A1 (de) * 1993-10-07 1995-04-20 Hitachi Ltd Optische Sende- und Empfangsbaugruppe und optisches Kommunikationssystem, welches diese verwendet
DE19601955C2 (de) * 1996-01-09 1997-12-11 Siemens Ag Optoelektronische Sendebaugruppe
US5761229A (en) * 1996-01-25 1998-06-02 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US5771254A (en) * 1996-01-25 1998-06-23 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US5809050A (en) * 1996-01-25 1998-09-15 Hewlett-Packard Company Integrated controlled intensity laser-based light source using diffraction, scattering and transmission
FR2744838B1 (fr) * 1996-02-13 1998-03-27 Schneider Electric Sa Detecteur photoelectrique a renvoi de faisceau
JPH1065218A (ja) * 1996-08-23 1998-03-06 Kdk Corp 光学系用led
DE19710571A1 (de) * 1997-03-14 1998-09-17 Merten Gmbh & Co Kg Geb Elektro-optische Sende- und Empfangseinrichtung
GB2327297A (en) * 1997-07-14 1999-01-20 Mitel Semiconductor Ab Lens cap
US6525386B1 (en) * 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
DE19947889C2 (de) 1999-10-05 2003-03-06 Infineon Technologies Ag Optoelektronisches, bidirektionales Sende- und Empfangsmodul in Leadframe-Technik
DE10003087A1 (de) * 2000-01-25 2001-09-13 Infineon Technologies Ag Anordnung für ein optoelektronisches Sende- und Empfangsmodul
US6873799B2 (en) * 2001-06-20 2005-03-29 Jds Uniphase Corporation Optical subassembly for optical communications
FR2836559B1 (fr) * 2002-02-28 2004-06-04 Schneider Electric Ind Sa Dispositif de couplage optique, sonde optique et dispositif de communication comportant un tel dispositif de couplage
US7061949B1 (en) 2002-08-16 2006-06-13 Jds Uniphase Corporation Methods, apparatus, and systems with semiconductor laser packaging for high modulation bandwidth
DE10256645A1 (de) * 2002-12-03 2004-06-17 Hella Kg Hueck & Co. Sensorvorrichtung
US7272323B2 (en) * 2002-12-04 2007-09-18 Omron Network Products, Llc Bi-directional electrical to optical converter module
JP3804834B2 (ja) * 2003-03-25 2006-08-02 住友電気工業株式会社 光送受信モジュール
US7165896B2 (en) * 2004-02-12 2007-01-23 Hymite A/S Light transmitting modules with optical power monitoring
US7306377B2 (en) * 2004-04-30 2007-12-11 Finisar Corporation Integrated optical sub-assembly having epoxy chip package
US7750356B2 (en) * 2005-05-04 2010-07-06 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Silicon optical package with 45 degree turning mirror
JP5068443B2 (ja) * 2005-10-20 2012-11-07 ルネサスエレクトロニクス株式会社 光結合装置
US7889993B2 (en) * 2007-08-17 2011-02-15 Avago Technologies Fiber Ip (Singapore) Pte. Ltd Optical transceiver module having a front facet reflector and methods for making and using a front facet reflector
EP2286293A1 (de) * 2008-04-30 2011-02-23 Telefonaktiebolaget LM Ericsson (publ) Einrichtung, system und verfahren für faseroptische netzwerke
TW200947895A (en) * 2008-05-08 2009-11-16 Truelight Corp Tri-wavelength bi-directional fiber communication system
JP5357231B2 (ja) * 2010-12-15 2013-12-04 三菱鉛筆株式会社 光コネクタ
US8582618B2 (en) 2011-01-18 2013-11-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Surface-emitting semiconductor laser device in which an edge-emitting laser is integrated with a diffractive or refractive lens on the semiconductor laser device
US8315287B1 (en) 2011-05-03 2012-11-20 Avago Technologies Fiber Ip (Singapore) Pte. Ltd Surface-emitting semiconductor laser device in which an edge-emitting laser is integrated with a diffractive lens, and a method for making the device
US8902425B2 (en) * 2012-04-08 2014-12-02 University Of Zagreb Temperature-stable incoherent light source
CN104345405B (zh) * 2013-08-08 2016-08-03 深圳市物联光通创新科技发展有限公司 塑料光纤通讯用光电转换芯片的封装结构
JP7121289B2 (ja) * 2019-02-05 2022-08-18 日本電信電話株式会社 波長選択型光受信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617932A (en) * 1969-06-16 1971-11-02 Bell Telephone Labor Inc Method for pulse-width-modulating semiconductor lasers
US4457582A (en) * 1977-12-23 1984-07-03 Elliott Brothers (London) Limited Fibre optic terminals for use with bidirectional optical fibres
DE2851646A1 (de) * 1978-11-29 1980-07-17 Siemens Ag Koppelelement zum auskoppeln eines lichtanteils aus einem optischen wellenleiter und wiedereinkoppeln desselben in einen abzweigenden optischen wellenleiter
US4423922A (en) * 1978-12-18 1984-01-03 The Boeing Company Directional coupler for optical communications system
JPS58190076A (ja) * 1982-04-30 1983-11-05 Fujitsu Ltd 半導体発光装置
JPS58202423A (ja) * 1982-05-20 1983-11-25 Fujitsu Ltd マルチ光カプラ
US4611884A (en) * 1982-11-24 1986-09-16 Magnetic Controls Company Bi-directional optical fiber coupler
DE3316236A1 (de) * 1983-02-22 1984-08-23 Aetna Telecommunications Laboratories, Westboro, Mass. Optischer koppler fuer faseroptische schaltungen
US4549782A (en) * 1983-06-06 1985-10-29 At&T Bell Laboratories Active optical fiber tap
US4611886A (en) * 1983-12-29 1986-09-16 At&T Bell Laboratories Integrated optical circuit package

Also Published As

Publication number Publication date
DE3667549D1 (de) 1990-01-18
EP0205359A1 (de) 1986-12-17
FR2581768A1 (fr) 1986-11-14
FR2581768B1 (fr) 1987-09-04
US4733094A (en) 1988-03-22
JPS61260207A (ja) 1986-11-18

Similar Documents

Publication Publication Date Title
EP0205359B1 (de) Optoelektronischer Zweirichtungsbauteil, der einen optischen Koppler bildet
EP0825464B1 (de) Verfahren zur Herstellung und Montage von einem kollektiven optischen Kopplungselement am Ende eines Bündels von mehreren Monomodenfasern
KR950014912A (ko) 쌍방향 전송용 광모듈
EP0282766B1 (de) Aktives optisches Steckergehäuse
FR2748123A1 (fr) Ensemble optique pour coupler un guide de lumiere et procede pour sa fabrication
EP0429337B1 (de) Optischer Kopf integrierbar in einem hybriden Schaltkreis
EP0133394B1 (de) Infrarot-Lichtquelle mit einem Halbleiterlaser verbunden mit Mitteln zur Wahl der Betriebsart und Leistungssteuerung
FR2834565A1 (fr) Dispositif pour faire entrer des signaux optiques dans un guide d'ondes de lumiere et/ou pour les en faire sortir
FR2512620A2 (fr) Concentrateur-distributeur optique matriciel
FR2661513A3 (fr) Aiguillage optique a fibres.
JP3417200B2 (ja) 光送受信モジュ−ル
EP0559551A1 (de) Optischer Koppler mit hoher Übersprechdämpfung
EP0197842A1 (de) Miniaturoptischer Duplexer mit mechanischer Entkupplungsmöglichkeit in der optischen Verbindungsebene
EP0229557A1 (de) Verfahren zur gegenseitigen Positionierung einer optischen Faser und eines Halbleiterlasers und Positionierungsgerät zur Durchführung dieses Verfahrens
FR2860599A1 (fr) Dispositif de couplage optique d'une fibre monomode multi-coeurs, et procede de fabrication correspondant
EP0096615B1 (de) Optischer Schalter
EP0977327A1 (de) Freiraumlaser mit selbstjustierter Auskoppelfaser
EP1240693B1 (de) Hybride optische kopplungskomponente
US20040223761A1 (en) Bidirectional transmitting and receiving device
FR3105666A1 (fr) Module émetteur-récepteur optique
CA2284441A1 (fr) Composant monolithique electro-optique multi-sections
EP1225465B1 (de) Optische Vorrichtung
FR2798010A1 (fr) Composant electro-optique multi-sections
FR2876191A1 (fr) Procede et dispositif de couplage de composants optiques
JPH02230783A (ja) 半導体レーザ装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19870116

17Q First examination report despatched

Effective date: 19881215

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3667549

Country of ref document: DE

Date of ref document: 19900118

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930323

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930325

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930430

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950103

EUG Se: european patent has lapsed

Ref document number: 86400908.9

Effective date: 19941110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050424