EP0204611A2 - Entlüftungsvorrichtung für Räume und Zugerzeuger für Schornsteine - Google Patents

Entlüftungsvorrichtung für Räume und Zugerzeuger für Schornsteine Download PDF

Info

Publication number
EP0204611A2
EP0204611A2 EP86401107A EP86401107A EP0204611A2 EP 0204611 A2 EP0204611 A2 EP 0204611A2 EP 86401107 A EP86401107 A EP 86401107A EP 86401107 A EP86401107 A EP 86401107A EP 0204611 A2 EP0204611 A2 EP 0204611A2
Authority
EP
European Patent Office
Prior art keywords
turbine
duct
flange
blades
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86401107A
Other languages
English (en)
French (fr)
Other versions
EP0204611B1 (de
EP0204611A3 (en
Inventor
Michel Henri Zaniewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Assunzione O Variazione Mandato d'agostini Organiz
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8508697A external-priority patent/FR2587458B2/fr
Application filed by Individual filed Critical Individual
Priority to AT86401107T priority Critical patent/ATE52607T1/de
Publication of EP0204611A2 publication Critical patent/EP0204611A2/de
Publication of EP0204611A3 publication Critical patent/EP0204611A3/fr
Application granted granted Critical
Publication of EP0204611B1 publication Critical patent/EP0204611B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L17/00Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues
    • F23L17/005Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F2007/001Ventilation with exhausting air ducts
    • F24F2007/002Junction box, e.g. for ducts from kitchen, toilet or bathroom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F2013/1493Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre using an elastic membrane

Definitions

  • Such a device also had the advantage that the downward vertical air stream thus created by the ventilation member was used for cooling the drive motor of said member, thus protecting it from overheating which would have harms its longevity.
  • the present invention therefore aims, as a refinement of the cited invention, to create a mechanical ventilation member which increases this vortex phenomenon while maintaining the external venturi effect, without neglecting the static suction effect due to the passage of the wind at the level of the members which constitute the end of the ventilation or chimney draft duct.
  • a ventilation unit ensures the simultaneous ventilation of all the premises, the flow rate in each of them being regulated by lids controlling each circuit.
  • Such installations must operate 24 hours a day with no means of static ventilation and fouling of their turbine by the suction of vapors loaded with grease, even suppressing thermal draft.
  • the device which is the subject of the invention makes it possible to avoid these drawbacks.
  • the turbine which creates the downpour effect which makes it possible to obtain different levels of depression in the various associated sheaths can cooperate with static members of depression which allows the use of the wind to ensure a distribution of the energy necessary for the ventilation between electric energy and natural energy, automatic regulation accessories completing the distribution of ventilation between the different rooms.
  • the device object of the invention is constituted by the open centrifugal turbine formed by the flange 4 which supports on its underside several series of open gutter-shaped vanes , such as 10, 10a and 10b, the position of which relative to the spokes of the flange 4 which carries them depends essentially on the desired degree of depression.
  • Their perfectly radial position (fig. 2b) ensures, for the same number of turns of the turbine, and the same direction of rotation given by the arrow, a lower depression than that obtained by the position of FIG. 2a in which the convex face of each blade forms an acute angle with the tangent to the flange 4 at each of them, but greater than that obtained by the object position of FIG. 2c in which the convex face of each blade forms an obtuse angle with the tangent to the flange 4 at each of them, the rotation of said turbine always taking place in the direction of the convex face of said blades.
  • each blade taken in each of the series 10, 10a and 10b for example, is such that they overlap with each other according to the drawing in Figures 2.
  • the profile of the blade which has been created in order to produce the best efficiency in the direction of the desired depression, ie capable of creating the most intense downstream vortex movement at the level of the upper opening of the duct fitted with the system is a portion of hyperbola 21 which has an asymptotic angle open downstream in the direction of rotation of the turbine, one of the development planes of said asymptotic angle, less than 90 °, being rendered integral with the flange 4, the other plane 10 of the asymptote developing downward at the bottom of the flange 4 of the turbine and extending beyond it to develop at the same inclination to the top of the upper surface of said flange to form an inclined upper blade 20.
  • the vortex turbine 4a thus constituted (FIG. 3) being placed in the cylindrical casing situated at the lower hole of the tunnel 8 and rotating in the direction of the arrow (FIG. 2), that is to say in the direction of the convex face of the blades, and cooperating with the centrifugal turbine created by the upper blades 6 contained in the same casing at the base of the tunnel 8, it can be seen that the upstream flow sucked by said upper turbine is organized, thanks to the lower turbine (4a) in an intense, peripheral, vortex current which envelops the upper end of the duct 2 on which the said device is placed, creating inside it and along its axis a veritable upward, suction downpour.
  • This downpour induced inside the duct 2 by the external swirl flow generated by the turbine 4a is the result of the combined effects of the upper turbine 6 which creates an upstream flow oriented towards the base of the tunnel 8 parallel to its axis, at the periphery of the conduit thanks to the screen constituted by the flange 4 and the turbine 4a which, at the exit of the tunnel 8 gives this upstream flow a vortex effect always oriented downwards, parallel to the axis of the device and enveloping the duct 2 to the point of creating the desired tornado effect in its center.
  • the result obtained essentially depends on the distance which separates, in the same tunnel 8, the turbine 4a from the upper mouth of the lower duct 2, so that the length of the tunnel 8 (shown in dotted lines in FIG. 3) can be any, apart from the pressure drops, its extension above the turbine - (4a) may be necessary to ensure a constant suction of fresh fluid according to arrow 22 at the lower periphery of the dome 9 which covers the device, even when the device is used for the evacuation of fluid at high temperature.
  • the aerodynamic effects of the device are shown in FIG.
  • this bolster (1a) is constructed of cement, which allows its rapid fixing, without special tools, to the top of any ventilation or smoke duct constructed by masonry materials, by the simple interposition of 'a mortar binder.
  • the parallel curvilinear waves 27 which form the outer wall of this frustoconical miter (1a) ensure the inflection of the air veins which surround it when it is subjected to natural winds whose direction is not horizontal, which allows to obtain at the level of the upper mouth of the miter a practically constant venturi effect for winds whose direction deviates from approximately 30 ° on either side of the horizontal.
  • venturi effect thus produced at the level of the upper mouth of the miter (1 a) is further increased by the presence at this level of the portion of cylinder 3 which has at its upper part an external sharp edge according to FIG. 6.
  • This edge can also be constituted by a metal ring inserted in the mortar for manufacturing said miter (1 a), which can also be made entirely of metal.
  • the vacuum obtained in the concentric conduits 2 and 29 is such that the air flow which it causes makes it possible to simultaneously ventilate several rooms as well as extract the smoke from the heating installation which they comprise.
  • This possibility of thus constituting a central vacuum is further facilitated by the possibility which has just been described of varying the vacuum obtained in each of the conduits by the simple positioning of their mouth relative to the main turbine 4a.
  • the suction assembly constituted by the turbine 4a, driven by the motor 7 located inside the tunnel 8, and surmounting the concentric vertical conduits 2 and 29 provided with the bolster (1a), is located outside the building's roof.
  • the central duct 29 is placed in direct communication with the room which must benefit from the greatest ventilation flow, the kitchen for example, by the duct 30.
  • the heating installation at the level of which the vacuum must be lower than the previous one for avoid excess draft is connected by the sheath 31 with the peripheral duct 2 whose mouth is located at a level lower than that of the duct 29 relative to the turbine 4a, which subjects it to a lower vacuum.
  • This peripheral duct 2 can open into the hollow, generally spherical member 32 on the diametrically opposite wall which simultaneously opens the heating duct 31 as well as the ducts 33 and 34 which communicate with the sanitary rooms in which ventilation requires flow less than in the kitchen for example which remains directly connected to the central duct 29 which benefits from the highest depression.
  • the device is completed by the regulator 35 of known type installed on the duct 2 in order to prevent the depression created by simple venturi effect by the winds which sweep the miter 26 from creating an excess of depression in particular in the duct 31 of evacuation of burnt gases.
  • each of the secondary conduits 33 and 34 is provided on its route with the special regulator 36, which is the subject of FIGS. 7 and 8.
  • Said regulator is constituted by the generally rectangular box 37 inside which the frame 38 can be moved by rotation around its horizontal upper side 40. Sufficient sealing is provided over the entire periphery of the frame 38 inside the trunk 37 so as to ensure the passage of air only inside the frame 38 which is maintained in a position determined by the notches 39, the base of said frame traversing at the base the circular sector 61.
  • a flexible sheet 41 of fabrics for example, the surface of which is less than the total surface of the frame 38 but greater than the vacuum of this same frame.
  • such a device can be used with double effect.
  • the trunk 37 is internally provided with two frames 38 and 45 articulated around the same upper horizontal axis 40 and between which the flexible sheet 41 is hung.
  • the motor 7 located in the tunnel 8 receives the fresh outside air sucked in by the dorsal turbine 6. And the regulator 63 placed at the entrance of the tunnel 8 prevents excess draft which could be due to the conjunction of the depression created by the static elements with that generated by the dynamic elements of the system.
  • the chamber 50, the suction opening of which is formed by the opening 2 is therefore subjected to the vacuum which prevails at this point as a result of the same vortex effect previously described.
  • This chamber distributes the depression at the level of the conduits 33 and 34 through the common regulator 36, which convey the stale or humid air from the sanitary rooms, as well as the depression applied at the level of the conduit 31 which conveys the burnt gases from the heating of the apartment.
  • the ventilation is obtained most of the time by means of the only static elements of the system, constituted by the frustoconical miter (1a) cooperating with the ferrule 46 of FIG. 4 or with the plate 47 provided with a lower deflector of FIG. 5.
  • the device then being provided with a contact hygrostat the possible absence of wind can result in an increase in the humidity level in the evacuation pipe, which causes the automatic starting of the turbine in view of increasing the ventilation.
  • the starting of the turbine can also be obtained by means of a manual switch operated during the hours of use of the kitchen for example, as well as by a clock which ensures an operating program of the ventilation unit.
  • the turbine speed can vary either under the effect of a manual control or under the effect of an automatic control controlled by a hygrostat placed in line 29 which serves the kitchen, the ventilation of this room can be increased either manually or automatically during the hours of operation of this room, without, however, the depression being increased in the ducts serving the sanitary rooms due to the presence of the regulator 36 which controls the ducts 33 and 34, or even in the sheath 31 for evacuating the burnt gases as a result of the relative stability of the vacuum at the entrance to the peripheral mouth 2 which is practically independent of the speed of rotation of the turbine.
  • the variant shown in Figure 5 has the important advantage, thanks to the rotation of the turbine (4a) inside the volute 48, to allow the centrifugation of fatty vapors conveyed by the stale air from the kitchen through the duct 29 or the fumes from the heating which reach through the tube 31 and their condensation on the walls of the volute 48 at the level of which they condense to flow naturally through the tube 51 provided for this purpose at the base of the volute and put in communication with the sewer towards which the pressure which reigns in volute 48 pushes them.
  • the device which is the subject of the invention therefore makes it possible to avoid the asphyxiation accidents observed during the use of known ventilation plants which use a turbine of the squirrel cage type which is freely open to the atmosphere, without the addition of static upper draft member through which the evacuated fatty vapors pass.
  • the blades of the turbine in the shape of a squirrel cage quickly become clogged by the condensation of grease at their level; so that in the event of an interruption in the electrical current, these same fouled turbines oppose the natural draft of the general collector of the building to which each individual heater is connected; which causes the diffusion in the upper stages of the burnt gases coming from the lower stages.
  • Such installations are therefore forced to operate continuously causing considerable energy expenditure, the mechanical draft thus obtained is never relayed by a static draft, which constitutes a danger in the event of a breakdown.
  • the device thus formed is completed at its passage through the roof by the sealing sleeve 52 which facilitates installation and ensures perfect sealing at this level.
  • said cuff is guided on the duct 2 (fig. 4) or 59 (fig. 5) which protrudes from the roof and its base naturally encircles the lead flange 55 whose base participates to the roof covering elements.
  • the upper end of the cuff 52 the length of which is adjusted on demand comes into contact with the bolster (la) which it supports also ensuring at this level the necessary tightness.
  • Such an assembly can therefore be effectively used to constitute a central ventilation unit for all the rooms in the same apartment, including the flue, thus economically replacing the multiple ventilation and draft systems which are currently used and whose operation is expensive because generally permanent, while the centralized system currently proposed makes it possible to ensure ventilation of each room proportioned to its own variable needs according to their cycle of use. daily reading and using the electric power only to the extent that the energy of the winds in this place is not sufficient to create the desired ventilation or thermal draft by means of the static elements that the device also includes.
  • This ventilation assembly can also be supplemented incidentally by the deflector 56 (fig. 9) placed inside the ventilated premises, close to the upper edges at the points where an unfavorable thermal bridge causes humidity.
  • Said deflector 56 constituted by a gutter open on the wall side and furnished with diffusion fins 57 receives the air coming from outside the building, under the effect of the forced ventilation created inside of it by the central ventilation, through the perforation 58 made for this purpose in the wall of the room.
  • the upper vanes 6 can occupy a more or less inclined position relative to the flange which carries them, according to the desired flow rate of the cooling flow of the motor 7.
  • the invention can be used to economically meet the standards of V.M.C. - (Controlled mechanical ventilation) which must operate 24 hours a day.
  • V.M.C. - Controlled mechanical ventilation
  • the whole object of the invention makes it possible to achieve a substantial saving by its possibility of alternately using the winds thanks to its static elements or the simple thermal draft as well as its mechanical elements to create the necessary vacuum. It also allows this by the better automatic distribution of the vacuum obtained between the various ventilated rooms thanks to the regulators introduced on the circuits which automatically isolate certain rooms at the right time for the benefit of others.
  • the sanitary rooms are automatically closed by the use of automatic regulators 36, thus reducing the energy consumed to the only energy necessary for the kitchen.
  • the ventilation at medium level of all the premises resumes automatically after the timed time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Ventilation (AREA)
  • Air-Flow Control Members (AREA)
  • Building Environments (AREA)
  • Wind Motors (AREA)
  • Packages (AREA)
  • Packaging Of Machine Parts And Wound Products (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Cookers (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Electric Stoves And Ranges (AREA)
EP86401107A 1985-06-03 1986-05-26 Entlüftungsvorrichtung für Räume und Zugerzeuger für Schornsteine Expired - Lifetime EP0204611B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86401107T ATE52607T1 (de) 1985-06-03 1986-05-26 Entlueftungsvorrichtung fuer raeume und zugerzeuger fuer schornsteine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8508697 1985-06-03
FR8508697A FR2587458B2 (fr) 1979-06-18 1985-06-03 Dispositif d'aeration des locaux et de tirage des cheminees

Publications (3)

Publication Number Publication Date
EP0204611A2 true EP0204611A2 (de) 1986-12-10
EP0204611A3 EP0204611A3 (en) 1988-03-09
EP0204611B1 EP0204611B1 (de) 1990-05-09

Family

ID=9320024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401107A Expired - Lifetime EP0204611B1 (de) 1985-06-03 1986-05-26 Entlüftungsvorrichtung für Räume und Zugerzeuger für Schornsteine

Country Status (7)

Country Link
US (1) US4759272A (de)
EP (1) EP0204611B1 (de)
AT (1) ATE52607T1 (de)
CA (2) CA1298132C (de)
DE (1) DE3671096D1 (de)
ES (1) ES8708049A1 (de)
PT (1) PT82694B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4001849A1 (de) * 1990-01-12 1991-07-18 Langner Horst Aufsatz fuer einen kamin
WO1992014100A1 (en) * 1989-12-19 1992-08-20 ABB Fläkt Oy A method of and a device for mechanically removing gas from a room space
WO2007145545A2 (en) * 2006-06-15 2007-12-21 Jovan Babic Insert for prevention of return of odours from air ventilating installations

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156535A (en) * 1990-10-31 1992-10-20 Itt Corporation High speed whirlpool pump
US5299326A (en) * 1992-07-28 1994-04-05 Alexander Alton L Vehicle toilet vent apparatus
FR2711770B1 (fr) * 1993-10-25 1996-01-12 Zaniewski Michel Perfectionnements aux dispositifs modulaires permettant l'assemblage d'appareils d'extraction des fumées ou d'aération des locaux.
DE19714644C2 (de) * 1997-04-09 1999-09-02 Draegerwerk Ag Gasfördereinrichtung für Beatmungs- und Narkosegeräte und dessen Verwendung
US6951241B1 (en) * 1999-06-21 2005-10-04 Fasco Industries, Inc. Method for cooling a motor in a blower assembly for a furnance
FR2805600B1 (fr) * 2000-02-25 2002-05-03 Elge Ind Groupe de ventilation mecanique controlee ameliore
US6352473B1 (en) 2000-03-10 2002-03-05 Thomas L. Clark Windjet turbine
NL1018880C2 (nl) * 2001-09-04 2003-03-05 Stork J E Ventilatoren Bv Gebouw met bewakingsmiddelen voor bewaking van ventilatie en rookgassen.
US7001265B1 (en) * 2001-09-28 2006-02-21 Beaty Terry L Air exhaust system
FR2850450B1 (fr) * 2003-01-29 2005-04-29 Atlantic C V I Groupe de ventilation mecanique controlee
US7001266B2 (en) * 2003-04-30 2006-02-21 Virginia Tech Intellectual Properties, Inc. Rooftop vent for reducing pressure under a membrane roof
US7101279B2 (en) * 2004-04-27 2006-09-05 O'hagin Harry T Solar-powered attic vent with a one-piece, fitted skeleton
US8156931B2 (en) * 2005-04-29 2012-04-17 M&G DuraVent, Inc. Direct vent cap
US7699051B2 (en) * 2005-06-08 2010-04-20 Westen Industries, Inc. Range hood
US20070243820A1 (en) 2006-04-18 2007-10-18 O'hagin Carolina Automatic roof ventilation system
US8607510B2 (en) * 2006-10-25 2013-12-17 Gregory S. Daniels Form-fitting solar panel for roofs and roof vents
US20080172935A1 (en) * 2007-01-22 2008-07-24 Chiang-Kuei Feng Conservatory apparatus
US20100330898A1 (en) * 2008-02-26 2010-12-30 Daniels Gregory S Roof ventilation system
GB0803674D0 (en) * 2008-02-28 2008-04-09 Hendrickson Thor Ventilation system
MY159003A (en) * 2008-05-13 2016-11-30 Gregory S Daniels Ember-resistant and flame-resistant roof ventilation system
NZ569850A (en) * 2008-07-16 2011-03-31 Herville Neville Donald D Chimney cover with diffuser and sleeve sides enclosing expansion area
US8375642B1 (en) 2011-12-16 2013-02-19 Oscar T. Scott, IV Re-deployable mobile above ground shelter
US8245450B2 (en) 2008-10-14 2012-08-21 Oscar T. Scott, IV Re-deployable mobile above ground shelter
US8136303B2 (en) * 2008-10-14 2012-03-20 Oscar T. Scott, IV Re-deployable above ground shelter
US8534001B2 (en) 2008-10-14 2013-09-17 Oscar T. Scott, IV Re-deployable mobile above ground shelter
US8368240B1 (en) * 2008-11-24 2013-02-05 Bob Burkett Roof installed wind turbine vent and solar panel electric power generation system
US8747071B2 (en) * 2009-07-07 2014-06-10 Fujikoki Corporation Drain pump
US20110017679A1 (en) * 2009-07-23 2011-01-27 Arthur Louis Zwern Home-scale water and sanitation system
US20110021133A1 (en) * 2009-07-23 2011-01-27 Arthur Louis Zwern Passive heating, cooling, and ventilation system
WO2011011011A1 (en) * 2009-07-23 2011-01-27 Arthur Louis Zwern Integrated infrastructure for sustainable living
US20110021134A1 (en) * 2009-07-23 2011-01-27 Arthur Louis Zwern Multi-function ventilation and electrical system
US20110017200A1 (en) * 2009-07-23 2011-01-27 Arthur Louis Zwern Integrated off-grid thermal appliance
US20120003920A1 (en) * 2010-06-30 2012-01-05 David Allen Campbell Chimney attic ventilator
US8782967B2 (en) 2010-09-27 2014-07-22 Gregory S. Daniels Above sheathing ventilation system
US9285131B2 (en) * 2011-05-13 2016-03-15 Kent L. Brown Venting and cooling system for a house
EP2594847B1 (de) * 2011-11-18 2018-04-04 exodraft a/s Motorbetriebenes Kaminentwurfssystem und Antrieb zur Verwendung in dem System
AU2013313031B2 (en) * 2012-09-07 2018-06-21 Csr Building Products Limited Rotor ventilator
IN2015DN02500A (de) * 2012-09-07 2015-09-11 Csr Building Products Ltd
US9394693B2 (en) 2013-11-22 2016-07-19 Gregory S. Daniels Roof vent for supporting a solar panel
USD748239S1 (en) 2014-03-06 2016-01-26 Gregory S. Daniels Roof vent assembly
AU2014385207B2 (en) 2014-03-06 2019-11-28 Gregory S. Daniels Roof vent with an integrated fan
USD755944S1 (en) 2014-03-06 2016-05-10 Gregory S. Daniels Roof vent assembly
US8966832B1 (en) 2014-04-11 2015-03-03 Oscar T. Scott, IV Mobile aboveground shelter with protected anchoring
US9982447B2 (en) 2015-04-09 2018-05-29 Red Dog Mobile Shelters, Llc Mobile safety platform with integral transport
USD930810S1 (en) 2015-11-19 2021-09-14 Gregory S. Daniels Roof vent
US11326793B2 (en) 2018-12-21 2022-05-10 Gregory S. Daniels Roof vent and roof ventilation system
USD891604S1 (en) 2015-11-19 2020-07-28 Gregory S. Daniels Roof vent assembly
US10288082B2 (en) 2016-11-15 2019-05-14 Carnes Company, Inc. Centrifugal fan assembly including cooling vanes and a cooling plate
WO2019235423A1 (ja) * 2018-06-05 2019-12-12 株式会社村田製作所 送風装置、流体制御装置
USD964546S1 (en) 2020-10-27 2022-09-20 Gregory S. Daniels Roof vent with a circular integrated fan
USD963834S1 (en) 2020-10-27 2022-09-13 Gregory S. Daniels Roof vent with a circular integrated fan

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2459424A1 (fr) * 1979-06-18 1981-01-09 Zaniewski Michel Dispositif d'aeration des locaux et de tirage des cheminees

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US116049A (en) * 1871-06-20 Improvement in ventilators
US891967A (en) * 1907-10-28 1908-06-30 Louis S Wiemann Ventilator.
US1011259A (en) * 1910-06-15 1911-12-12 George W Smith Fan.
US1575144A (en) * 1925-06-25 1926-03-02 Jacob W Bishop Ventilator
US1623286A (en) * 1926-06-01 1927-04-05 Louden Machinery Co Air control for ventilating systems
CH152187A (de) * 1929-09-16 1932-01-31 Kraus Hermann Einrichtung an Schornsteinen, Rauchkanälen und dergleichen zur Regelung des Nebenluftzuges.
US2106040A (en) * 1936-01-22 1938-01-18 Gen Electric Blower rotor for very high peripheral velocity
US2561135A (en) * 1946-06-03 1951-07-17 Perfection Stove Co Mechanically driven impeller type draft inducer for combustion apparatus
US2617371A (en) * 1947-09-03 1952-11-11 Perfection Stove Co Mechanical draft inducer for combustion apparatus, including provisions for relieving back drafts
GB705949A (en) * 1951-09-17 1954-03-24 John Gibbs & Son Ltd Improvements in or relating to apparatus for ventilating holds and between deck enclosures of ships
FR1246321A (fr) * 1959-10-08 1960-11-18 Ventilateur de tirage mécanique
CA1095316A (en) * 1980-05-07 1981-02-10 Jacques Morissette Plenum chamber for ventilator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2459424A1 (fr) * 1979-06-18 1981-01-09 Zaniewski Michel Dispositif d'aeration des locaux et de tirage des cheminees

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014100A1 (en) * 1989-12-19 1992-08-20 ABB Fläkt Oy A method of and a device for mechanically removing gas from a room space
DE4001849A1 (de) * 1990-01-12 1991-07-18 Langner Horst Aufsatz fuer einen kamin
WO2007145545A2 (en) * 2006-06-15 2007-12-21 Jovan Babic Insert for prevention of return of odours from air ventilating installations
WO2007145545A3 (en) * 2006-06-15 2008-11-06 Jovan Babic Insert for prevention of return of odours from air ventilating installations

Also Published As

Publication number Publication date
DE3671096D1 (de) 1990-06-13
US4759272A (en) 1988-07-26
ES554225A0 (es) 1987-09-01
EP0204611B1 (de) 1990-05-09
CA1314753E (fr) 1993-03-23
ATE52607T1 (de) 1990-05-15
ES8708049A1 (es) 1987-09-01
PT82694A (fr) 1986-07-01
EP0204611A3 (en) 1988-03-09
CA1298132C (fr) 1992-03-31
PT82694B (pt) 1992-07-31

Similar Documents

Publication Publication Date Title
EP0204611B1 (de) Entlüftungsvorrichtung für Räume und Zugerzeuger für Schornsteine
CA2117983C (fr) Dispositif modulaire permettant l'assemblage d'appareils d'extraction des fumees ou d'aeration des locaux
EP1778975B1 (de) Windenergiegeneratorturm
CH663658A5 (fr) Dispositif de ventilation.
CH638028A5 (fr) Dispositif d'aeration de locaux et de tirage de cheminees.
FR2691789A1 (fr) Perfectionnements aux dispositifs assurant la répartition et la régulation automatique des débits d'air notamment pour la ventilation des locaux.
CH626154A5 (de)
FR2587458A2 (fr) Dispositif d'aeration des locaux et de tirage des cheminees
FR2651865A1 (fr) Systeme de branchement.
EP2161446A1 (de) Windturbine
EP0329498B1 (de) Vorrichtung zur Luftbewegung in einem Kanal
FR2588317A1 (fr) Aerogenerateur orientable a vortex
FR2644562A1 (fr) Aerotherme d'axe vertical du type assurant une distribution d'air en effet cyclone
EP3246576A1 (de) Gasextraktor, der eine windkraftanlage, einen ventilator, einen motor und eine kupplungsvorrichtung umfasst
FR3008482A1 (fr) Perfectionnement aux installations de chauffage avec conduit d' evacuation de fumee muni d'une arrivee d'air comburant
FR2918721A1 (fr) Appareil de controle de debit de fluide gazeux.
FR2944340A1 (fr) Installation de ventilation double flux coaxial avec pompe a chaleur integree pour le logement collectif
EP0165175A2 (de) Abzug und Lüftungsanlage, regelbar in Abhängigkeit von der Temperatur und dem Feuchtigkeitsgrad des Luftstroms
FR2543265A1 (fr) Dispositif modulaire de protection de cheminee participant a l'extraction des fumees et utilise comme registre
FR2982011A1 (fr) Dispositif de recuperation de chaleur pour un poele, notamment un poele a bois, ainsi qu'installation correspondante de chauffage d'un batiment
FR2465898A1 (fr) Aeromoteur adapte a la production de grandes puissances
FR2660050A1 (fr) Chaudiere murale a gaz du type etanche et a circulation d'air forcee pour usage domestique.
FR3138928A1 (fr) Centrale de conversion d’énergie renouvelable
FR2776054A1 (fr) Installation de ventilation collective a prise d'air a ouverture thermique
FR2671167A1 (fr) Procede et dispositif destine a faire tirer les cheminees a feu ouvert independamment de l'air de la piece.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880830

17Q First examination report despatched

Effective date: 19890120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 52607

Country of ref document: AT

Date of ref document: 19900515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3671096

Country of ref document: DE

Date of ref document: 19900613

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
ITPR It: changes in ownership of a european patent

Owner name: ASSUNZIONE O VARIAZIONE MANDATO;D'AGOSTINI ORGANIZ

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86401107.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950501

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950510

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950531

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960526

Ref country code: AT

Effective date: 19960526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960531

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970516

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970519

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970529

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970723

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: ZANIEWSKI MICHEL HENRI

Effective date: 19980531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980526

EUG Se: european patent has lapsed

Ref document number: 86401107.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050526