EP0204180B1 - Disjoncteur à hexafluorure de soufre fonctionnant dans un environnement à très basse température - Google Patents

Disjoncteur à hexafluorure de soufre fonctionnant dans un environnement à très basse température Download PDF

Info

Publication number
EP0204180B1
EP0204180B1 EP86106465A EP86106465A EP0204180B1 EP 0204180 B1 EP0204180 B1 EP 0204180B1 EP 86106465 A EP86106465 A EP 86106465A EP 86106465 A EP86106465 A EP 86106465A EP 0204180 B1 EP0204180 B1 EP 0204180B1
Authority
EP
European Patent Office
Prior art keywords
circuit breaker
breaker according
condenser
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86106465A
Other languages
German (de)
English (en)
Other versions
EP0204180A1 (fr
Inventor
Van Doan Pham
Edmond Thuries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8507437A external-priority patent/FR2582145B1/fr
Priority claimed from FR8511717A external-priority patent/FR2585875B2/fr
Priority claimed from FR8601771A external-priority patent/FR2594255B2/fr
Application filed by Alstom SA filed Critical Alstom SA
Priority to AT86106465T priority Critical patent/ATE47503T1/de
Publication of EP0204180A1 publication Critical patent/EP0204180A1/fr
Application granted granted Critical
Publication of EP0204180B1 publication Critical patent/EP0204180B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/562Means for avoiding liquefaction or for disposing of liquefaction products

Definitions

  • the present invention relates to a high voltage circuit breaker with sulfur hexafluoride (SFa).
  • SFa sulfur hexafluoride
  • Circuit breakers of this type are often installed outdoors and may have to operate in an environment with very low temperatures.
  • Document DE-A-2248116 shows a self-blowing dielectric gas circuit breaker such as sulfur hexafluoride in which the gas which condenses, in the form of liquid, on the porcelain walls of the circuit breaker, is collected in a collector and injected by means of a cylinder and piston pump at the arc zone, during an opening operation of the circuit breaker.
  • Document US-A-3356810 describes a dielectric gas circuit breaker such as sulfur hexafluoride in which the gas, which liquefies on the walls of the high voltage and high pressure chamber, is collected by gravity in a tank placed at the base of the circuit breaker.
  • An object of the invention is to provide a circuit breaker in which no condensation can take place on the side walls of the circuit breaker.
  • Another object of the invention is to provide a circuit breaker in which at least partial evaporation of the condensed gas is ensured to maintain the gas density at a level compatible with proper operation of the circuit breaker.
  • the present invention relates to a high voltage circuit breaker comprising a sealed enclosure in which is disposed a fixed assembly comprising a main contact and an arcing contact and a movable assembly comprising a main contact and an arcing contact, the enclosure being filled with pressurized gas constituted at least partially of sulfur hexafluoride, characterized in that it comprises a condenser arranged outside the circuit breaker, the interior of the condenser being in communication with the interior of the enclosure by at least a first pipe ensuring a transfer of gas between the interior of the enclosure and the condenser and by at least a second pipe for transferring the liquefied gas in the condenser towards the interior of the enclosure.
  • circuit breakers filled with sulfur hexafluoride also applies to circuit breakers filled with a mixture of sulfur hexafluoride and nitrogen.
  • FIG. 1 we can distinguish, in an insulating envelope 1, preferably made of porcelain, a set of fixed contacts 10 and a movable assembly 20.
  • the envelope is filled with insulating gas which we will assume, for simplicity, to be pure sulfur hexafluoride.
  • the movable assembly comprises a series of contact fingers 21, constituting the movable main contact and cooperating with the fixed main contact 11 and a series of contact fingers 22 forming the movable arcing contact and cooperating with the fixed arcing contact 12.
  • a blowing nozzle 23 makes it possible to channel the blown gas pushed, at the opening of the circuit breaker, by the fixed piston 24.
  • the circuit breaker is completed by a condenser 30, placed outside the circuit breaker.
  • This condenser is very simply constituted by a metal container, connected by two pipes 31 and 32 outside the circuit breaker.
  • the shape of the container is indifferent (sphere, torus, etc.).
  • the choice of metal and its thickness is such that the internal wall of the condenser can very quickly be brought to a temperature close to the temperature of the external environment.
  • the pipe 31 is of large diameter (5 to 15 cm) and opens at one end, towards the wall of the circuit breaker and at the other end towards half the height of the condenser.
  • Line 32 has a smaller diameter of the order of a centimeter and opens at one end to the lowest part of the condenser and at the other end towards the center of the circuit breaker.
  • the main idea of the invention is to promote condensation in a given place when the temperature drops, to avoid condensation on the internal walls of the circuit breaker.
  • condensation preferably occurs in the condenser 30.
  • the gas rises through the duct 31 and partially condenses there.
  • the condensate 33 flows through the conduit 32 towards the inside of the circuit breaker.
  • the conduit 32 opens near the tube 13 supporting the fixed contact 11; this tube 13 is provided with a flange 14 constituting a spillway making it possible to obtain the formation of a film of liquid SF 6 which flows along the tube 13.
  • this liquid film s' evaporates which contributes to creating a gas with greater density of SF 6 in the space 25 of the circuit breaker.
  • a notch 16 in the fixed arcing contact makes it possible to facilitate the descent of the gas when the contacts are in the closed position.
  • This notch is made at the neck of the blowing nozzle, shown in broken lines. Through this notch 16 the heavy gas can easily descend to the volume 24A. When the circuit breaker opens following a fault on the network, a high density compressed gas is thus obtained through the nozzle 23.
  • FIG. 2 represents another embodiment of a circuit breaker, according to the invention.
  • the circuit breaker is shown in the closed position.
  • the fixed arcing contact 12A has, towards its end, openings 17, of small diameter, which can be closed by a valve 18 pushed by a spring 19 (FIG. 2A).
  • the cylinder 13A which carries the fixed arcing contact 12A receives a piston 26 mechanically linked by tie rods such as 27 to the moving element 20.
  • the piston 26 is hollow and receives the end of the conduit 32 connected to the condenser 30.
  • the piston 26 is provided with an orifice 26A provided with a normally open valve. The condensate of the condenser flows through the conduit 32 in the piston 26 then through the orifice 26A in the contact 12A.
  • the operation of the circuit breaker is as follows: when the circuit breaker closes, the spring 28 is compressed by the tie rods 27.
  • the liquid SF 6 which forms at low outside temperature descends, as said above, in the hollow fixed contact 12A.
  • the spring 28 expands, pushes the piston 26 which compresses the gas below it causing the opening of the valve 18 and the spraying of SF 6 , in the form of mist, in the area of bow.
  • This SF fog high density promotes failure.
  • the valve 26A closes due to the increase in pressure in the cut-off chamber and prevents the gas from going up in the condenser.
  • tie rods such as 27 will no longer be necessary.
  • FIG. 3 represents an alternative embodiment of a circuit breaker of the type comprising a movable assembly with main contact 51 and arcing contact 52 and a fixed assembly comprising a fixed main contact 61 and a series of fingers 62 forming a fixed arcing contact.
  • a nozzle 63 and a deflector 64 delimit a chamber 65 in which the gas heats up and rises in pressure under the effect of the arc formed during a separation of the arcing contacts.
  • a piston 66 mechanically linked to the mobile assembly, or provided with own displacement means, pushes, during the opening of the circuit breaker, a fresh gas through an annular conduit formed by the deflector 64 and the contacts 62.
  • a condenser 70 is arranged outside the circuit breaker and connected by two conduits 71 and 72 outside the circuit breaker.
  • the conduit 71 of larger diameter than the conduit 72, opens into the circuit breaker on the side of the porcelain wall.
  • the conduit 72 of smaller diameter opens into the chamber 65.
  • the condenser shown is of toroidal shape.
  • a valve 75 closes when the pressure in the chamber 65 increases beyond a given limit and then prevents any communication between the condenser 70 and the chamber 65.
  • the nozzle 63 is advantageously curved to form a gutter to collect the liquid SF 6 which flows along the wall of the chamber 65.
  • the heat released by the arc vaporizes this SF 6 , the vapor pressure of which then increases locally, thus promoting the cut.
  • the arc is extinguished by blowing the compressed SF 6 into the enclosure 66A using the piston 66.
  • FIG. 4 shows an overall view of a circuit breaker comprising, above the breaking chamber 100, a toric condenser 101, with its gas supply pipes 102 and its liquid pipes 103.
  • Column 105 contains the circuit-breaker operating linkage and chamber 106 its operating mechanism.
  • a second condenser 108 is placed, collecting the gaseous or already liquefied SF ⁇ .
  • the condensate is vaporized by a heating member 109 and reinjected inside the circuit breaker.
  • the heating energy supplied by the member 109 can be either electrical energy or thermal energy from the ground. At 1 or 2 meters in the ground, the temperature is sufficient to evaporate the liquid SF 6 at -50 ° C from 108.
  • All these variants aim to collect the liquid SF 6 formed during the periods of closure or the opening of the circuit breaker in an area close to the arcing zone, and, when the circuit breaker opens, to spray and spray this liquid , using compressed gas, on the arch.
  • the reference 120 designates an insulating ceramic envelope of a circuit breaker sealed in a sealed manner by two end flanges 121 and 122, defining a sealed enclosure 123 filled with sulfur hexafluoride (SF 6 ) under pressure a few bars.
  • SF 6 sulfur hexafluoride
  • the movable assembly includes a tubular arcing contact 127 at the end of a tube 130 connected to an actuator not shown .
  • the tube carries a crown 131 of contact fingers 132, cooperating, when the circuit breaker is closed, with the fixed main contact 124.
  • the tube 130 slides in the flange 122; sealing is ensured by a seal 134.
  • the fixed assembly also comprises two tubes coaxial with each other and with tube 124.
  • One 135 is fixed to the flange 121, the other 136 is arranged in the extension of the fixed arcing contacts.
  • the two tubes 124 and 136 define an annular volume 137 in which a piston 138 slides in leaktight fashion.
  • the latter is carried by a tube 139 fixed to a crown 140 sliding, in a guided manner, inside the tube 135.
  • the crown 140 is fixed to the tube 139 by arms 141 passing through slots 142 of the tube 124.
  • a spring 143 disposed between the flange 121 and the piston 138, exerts on the latter a force tending to move the piston towards the arcing contacts.
  • a casing 144 made of insulating material with very good resistance to pressure such as epoxy glass, surrounds the arc zone. It is fixed on one side to the crown 140 and on the other side to a ring 145 sliding, in a guided manner, in a tube 146 fixed to the flange 122.
  • the circuit breaker is provided with a condenser 150 disposed outside of the circuit breaker and above it.
  • the condenser is connected to the circuit breaker by a pipe 151 ensuring a transfer of gas between the interior of the circuit breaker and the condenser.
  • a pipe 152 extended by a tube 153 opening out under the flange 121, allows the flow towards the interior of the circuit breaker of the liquid formed in the condenser.
  • the liquid passes into the volume 155, surmounting the piston 138, crosses the latter by channels 138A or by valves and reaches the volume 137.
  • the crown 125 is provided with valves 125A which open when the pressure in the volume 137 reaches a certain threshold.
  • a screen 125C contains the liquid of volume 137 to prevent it from flowing through the passages 125B passing through the crown 125.
  • the screen 125C defines with the adjacent parts a container 137A.
  • the circuit breaker works as follows.
  • the spring 143 is bandaged under the action of the envelope pushed by a ring 156 secured to the tubular contact 130 and coming to bear against the ring 145.
  • the SF 6 gas condenses in the condenser 150 when the ambient temperature drops for example from -20 ° C to -50 ° C.
  • the liquid SF 6 falls into the volume 155 through the tube 153, then passes through the small holes 138A (or the valves) to be stored in the container 137A.
  • the rod 130 is operated (towards the bottom of the figure).
  • the piston 138 compresses the gas in volume 137.
  • the valves 125A open when the pressure in volume 137 reaches a given threshold.
  • the compressed gas in the volume 137 leaves with the liquid SF 6 to mix well in the enclosure 157 surrounding the arcing contacts.
  • the energy of the arc 158 and the compression energy of the movable piston 138 producing a very rapid rise in the temperature of this mixture with high density of SF 6 and bring it to a high pressure.
  • the passages 125B in the crown 125 facilitate the filling of SF 6 with volume 137 during the closing maneuver by sucking the SF 6 in volume 157.
  • the mobile contact 130 rises and drives the insulating envelope 144.
  • the movable contact 130 descends with a speed which may be greater than that of the casing 144 and of the piston 138.
  • the relaxation of the spring 143 makes it possible to compress the gas in the volume 137.
  • the use of the insulating envelope 144, and cylinders 135 and 146 makes it possible to dynamically separate the pressures of the enclosures 123 (outside the envelope) and 160.
  • the volume of the enclosure 123 is much lower than that of the enclosure 160.
  • the porcelain casing 120 of the circuit breaker breaks, the low value of the volume 123 prevents a violent explosion of the porcelain 120.
  • the gas in volume 160 slowly escapes to the atmosphere through the play of the guides of the rings 140 and 145, which offer a deliberately imperfect seal.
  • the upper plate 121 and the other parts which are fixed to it remain attached to the lower plate 122 and to the movable contact 130 by means of the arms 141, the casing 144 and the stop 146A of the tube 146.
  • a safety membrane 161 When the pressure in the enclosure 160 rises too high, for example following a non-cut or an ignition between contacts, a safety membrane 161 operates.
  • a deflector 162 prevents the projection of the pieces of the membrane 161.
  • the presence of the insulating envelope 144 protects the porcelain 120 against rapid increases in pressure.
  • FIG. 7 shows another alternative embodiment of the invention.
  • the elements common to FIGS. 5 to 7 have been given the same reference numbers.
  • the condenser 150 with its tubes 151 and 152.
  • the set of fixed contacts comprises a main tubular contact 172 and an arcing contact 173 in the form of a rod fixed by the radial arms 174.
  • the moving element comprises a tube 175 carrying arcing contact fingers 176.
  • a crown 177 connects the tube 175 with a tube 178.
  • This tube carries a crown 179 on which are arranged main movable contacts 180, a spark arrester 181 and an insulating blowing nozzle 182.
  • the dashed lines show the position of the nozzle 182 and that of the arcing fingers 176 when the circuit breaker is closed.
  • Crowns 177 and 179 define a volume 183.
  • the crown 177 carries valves 177A and passages 177B.
  • a fixed annular piston 184 carried by a tubular rod 185 completes the breaking chamber.
  • the piston 184 defines with the crown 177 a volume to be compressed 186.
  • the liquid SF 6 flowing through the tube 171 is collected in the funnel constituted by the nozzle 182, flows along the internal surface of this nozzle then collects in the container 183A defined by the screen 183B and the adjacent walls.
  • the walls of the container 183A can be provided with thermal insulation.
  • the holes 177B facilitate the filling of the volume 186 when the circuit breaker closes.
  • FIG. 8 represents a circuit breaker identical to that of FIG. 7 further comprising a small tank 190 provided with openings 190A which, when the circuit breaker is in the open position, are closed by a valve 191 pushed by a spring 192.
  • the piston 184 carries valves 184A making it possible to facilitate the filling of SF 6 when the circuit breaker closes.
  • FIG. 8 makes it possible to collect, during the opening periods of the circuit breaker, a certain amount of liquid SF 6 which remains placed above the arc zone and which, when closed, will fill the volume 183; with this arrangement, the liquid SF 6 does not fall into the volume 183 when the circuit breaker is in the "open" position.
  • Figures 9 and 10 relate to two other embodiments.
  • These embodiments also aim to collect the liquefied gas formed during the closing or opening periods of the circuit breaker in an area close to the arcing zone, and, when the circuit breaker opens, to spray and spray this liquid using compressed SF ⁇ gas, on the arc.
  • This mobile assembly is enveloped by an external tube 178, the end of which constitutes a spark arrester 181.
  • This mobile assembly comprises an internal tube 175, provided at its end with a crown 179 fitted in the external tube 178, a fixed annular piston 184 carried by a tubular rod 185, an insulating blowing nozzle 182, and an annular tank 333 solidiare of the crown 179 by means of rods 334.
  • the main contact 180 and the arcing contact 176 are carried by the crown 179.
  • An annular space 331 is formed between the main contact 180 and the nozzle 182, and an orifice 332, formed in the crown 179, places the annular space 331 in communication with the reservoir 333 covered by a grid 341.
  • the crown 179 also includes orifices 337 putting the reservoir 333 into communication with an annular space 336 internal to the insulating nozzle 182.
  • the flange 121 receives a bell-shaped condenser 300 with or without cooling fins.
  • a transfer pipe 301 fulfills the role of the first pipe ensuring a transfer of gas between the interior of the enclosure and the condenser.
  • the condenser contains an insulating enclosure 310 separated by a partition 313, to form two equal or unequal compartments 311, 312.
  • the compartment 311 is connected to the orifice 302A by a siphon 303, this orifice being extended by a tube 304, and the compartment 312 is in direct communication with the orifice 302B.
  • the tubular contact 172 comprises a gutter 340 and an annular reservoir 338 constituted by an annular partition.
  • the dashed lines show the position of the nozzle 182 and that of the arcing contact 176 when the circuit breaker is closed.
  • This circuit breaker operates as follows:
  • the SF 6 gas condenses in the condenser 300. This condensation causes the pressure to drop slightly and there is therefore a call for gas from the enclosure to the condenser through line 301.
  • the SF 6 liquid is stored in the insulating enclosure 310, therefore in the two compartments 311, 312.
  • the liquid SF 6 When the liquid SF 6 reaches a certain level, it is transferred from the compartment 311 into the space 331 via the siphon 303 of the orifice 302A and the tube 304, and through the orifice 332 into the reservoir 333. Likewise, the liquid SF 6 is transferred from the compartment 312 into the reservoir 338 through the orifice 302 B and through the gutter 340.
  • the SF 6 liquid is projected, by the acceleration effect of the movable contact, against the crown 179 and driven by the SF 6 gas compressed in the cylinder towards the internal space 336 through the orifices 337.
  • the gas arrives at the neck of the nozzle 182 in the form of a mist.
  • a fine mesh 341 is used, and to better conserve the liquid SF 6 in the reservoir 333, the latter is thermally isolated from the other surrounding metal parts.
  • This reservoir 333 and its fixing rods 334 can be replaced by only a flexible accordion container fixed to the crown 179.
  • the reservoir 333 and the rods 334 can be replaced by a flexible accordion-type reservoir and, when triggered, provide for this flexible reservoir to strike the piston 184 at the end of the stroke.
  • the elements common to the two embodiments are recognized, as regards the fixed assembly, the main contact 172, the arcing contact 173 fixed by radial arms 174, as regards the assembly movable, the outer tube 178, the inner tube 175 have at its end the crown 179, the tubular rod 185 carrying the fixed piston 184, the blowing nozzle 182 and the arcing contact 176, then as regards the condenser 300 the transfer line 301, the two small transfer lines 302A, 302 B, the tube 304, the insulating enclosure 310 provided with two compartments 311, 312.
  • the inside of the arcing contact 173 constitutes a reservoir 317 connected to the compartment 312 of the insulating enclosure 310 by the orifice 302B and by a tube 305.
  • the top of the tank 317 has an opening 318 which allows better contact with the surrounding gas during the vaporization of the SF 6 liquid.
  • the main contact 180 is not installed on the mobile assembly but on the fixed assembly, at the end of the main contact 172, this contact 180 coming to bear on an end shoulder of the tube 178.
  • the liquid reservoir is placed inside the insulating nozzle 182, this reservoir 320, constituted by a partition 321, being in communication with the free space between crown 179 and piston 184, by means of valves 177A, this free space being in permanent communication with an annular space 336 by means of orifices 337.
  • the insulating nozzle 182 has an orifice 322 which makes it possible to supply the reservoir 320 with SF 6 liquid.
  • a fine mesh 323 is placed at the top of the reservoir 320 to promote the spraying of the liquid SF 6 .
  • This circuit breaker operates as follows:
  • the liquid SF 6 leaving the condenser through the tube 304 falls on the nozzle 182, crosses the orifice 322 and enters the reservoir 320.
  • valves 177A allow, thanks to the compressed SF 6 , to quickly inject and spray the SF 6 liquid towards the arc zone.
  • the compressed SF 6 gas also passes through the orifices 337.

Description

  • La présente invention est relative à un disjoncteur à haute tension à hexafluorure de soufre (SFa).
  • Les disjoncteurs de ce type sont souvent installés en plein air et peuvent être amenés à devoir fonctionner dans un environnement à très basse température.
  • Dans un disjoncteur rempli de gaz SFε à une pression relative de 5 bars à 20°C, il y a risque de condensation du gaz dès que la température extérieure atteint -30°C. La pression interne tombe à 2,3 bars à ~50°C.
  • Ces circonstances produisent deux types d'inconvénients:
    • - d'une part, les gouttelettes de liquide provenant de la condensation du gaz qui se forment sur les parois intérieures du disjoncteur (porcelaine) peuvent entraîner des amorçages entre les parties sous tension,
    • - d'autre part, la baisse de pression du gaz, dûe à la basse température, produit une baisse de la qualité d'isolement du disjoncteur et peut conduire à des réamorçages au cours de l'ouverture du disjoncteur.
  • Le document DE-A-2248116 montre un disjoncteur à autosoufflage à gaz diélectrique tel que l'hexafluorure de soufre dans lequel le gaz qui se condense, sous forme de liquide, sur les parois de porcelaine du disjoncteur, est recueilli dans un collecteur et injecté au moyen d'une pompe à cylindre et piston au niveau de la zone d'arc, lors d'une manoeuvre d'ouverture du disjoncteur.
  • Le document US-A-3406269 décrit un disjoncteur à hexafluorure de soufre dans lequel le gaz qui se condense, sous forme de liquide, sur les parois de la cuve, est recueilli dans un collecteur situé à la base de la cuve et renvoyé en partie dans la zone d'arc, lors d'une manceuvre d'ouverture du disjoncteur.
  • Le document US-A-3356810 décrit un disjoncteur à gaz diélectrique tel que l'hexafluorure de soufre dans lequel le gaz, qui se liquéfie sur les parois de la chambre à haute tension et à haute pression, est recueilli par gravité dans un réservoir placé à la base du disjoncteur.
  • Un but de l'invention est de réaliser un disjoncteur dans lequel aucune condensation ne peut avoir lieu sur les parois latérales du disjoncteur.
  • Un autre but de l'invention est de réaliser un disjoncteur dans lequel une évaporation au moins partielle du gaz condensé est assurée pour maintenir la densité de gaz à un niveau compatible avec un bon fonctionnement du disjoncteur.
  • La présente invention a pour objet un disjoncteur à haute tension comprenant une enceinte étanche dans laquelle est disposé un ensemble fixe comprenant un contact principal et un contact d'arc et un ensemble mobile comprenant un contact principal et un contact d'arc, l'enceinte étant remplie de gaz sous pression constitué au moins partiellement d'hexafluorure de soufre, caractérisé en ce qu'il comprend un condenseur disposé à l'extérieur du disjoncteur, l'intérieur du condenseur étant en communication avec l'intérieur de l'enceinte par au moins une première canalisation assurant un transfert de gaz entre l'intérieur de l'enceinte et le condenseur et par au moins une seconde canalisation pour transférer le gaz liquéfié dans le condenseur vers l'intérieur de l'enceinte.
  • L'invention sera bien comprise par la description ci-après de plusieurs modes de réalisation de l'invention, en référence au dessin annexé dans lequel:
    • - la figure 1 est une vue partielle en coupe axiale d'un disjoncteur selon un premier mode de réalisation de l'invention,
    • - la figure 2 est une vue partielle en coupe axiale d'un disjoncteur selon un second mode de réalisation de l'invention,
    • - la figure 2A est une vue agrandie en coupe d'un détail de la figure 2,
    • - la figure 3 est une vue partielle en coupe axiale d'un disjoncteur selon une autre variante,
    • - la figure 4 est une vue en élévation d'un disjoncteur selon une autre variante,
    • - la figure 5 est une vue partielle en coupe axiale d'un disjoncteur selon une autre variante de l'invention représenté en position fermée,
    • - la figure 6 est une vue partielle en coupe axiale du même disjoncteur, en position ouverte,
    • - la figure 7 est une vue en coupe axiale d'un disjoncteur selon une autre variante de réalisation de l'invention,
    • - la figure 8 est une vue en coupe axiale d'un disjoncteur selon une autre variante de réalisation de l'invention,
    • - la figure 9 est une vue partielle en coupe axiale d'un disjoncteur selon une autre variante de réalisation de l'invention,
    • - la figure 10 est une vue partielle en coupe axiale d'un disjoncteur selon une autre variante de réalisation.
  • L'invention, qui s'aplique aux disjoncteurs remplis d'hexafluorure de soufre, s'applique également aux disjoncteurs remplis d'un mélange d'hexafluorure de soufre et d'azote.
  • Dans la figure 1, on peut distinguer, dans une enveloppe isolante 1, de préférence en porcelaine, un ensemble de contacts fixes 10 et un ensemble mobile 20. L'enveloppe est remplie de gaz isolant que l'on supposera, pour simplifier, être de l'hexafluorure de soufre pur.
  • L'ensemble mobile comprend une série de doigts de contact 21, constituant le contact principal mobile et coopérant avec le contact principal fixe 11 et une série de doigts de contact 22 formant le contact d'arc mobile et coopérant avec le contact d'arc fixe 12.
  • Une buse de soufflage 23 permet de canaliser le gaz de soufflage poussé, à l'ouverture du disjoncteur, par le piston fixe 24.
  • Selon une caractéristique de l'invention, le disjoncteur est complété par un condenseur 30, placé extérieurement au disjoncteur. Ce condenseur est constitué de manière très simple par un récipient métallique, relié par deux canalisations 31 et 32 à l'extérieur du disjoncteur.
  • La forme de récipient est indifférente (sphère, tore, etc....). Le choix du métal et de son épaisseur est tel que la paroi interne du condenseur puisse très rapidement être portée à une température voisine de la température de l'environnement extérieur.
  • La canalisation 31 est de grand diamètre (5 à 15cm) et débouche à une extrémité, vers la paroi du disjoncteur et à l'autre extrémité vers la mi- hauteur du condenseur.
  • La canalisation 32 est de plus petit diamètre de l'ordre du centimètre et débouche, à une extrémité, à la partie la plus basse du condenseur et à l'autre extrémité, vers le centre du disjoncteur.
  • L'idée maîtresse de l'invention est de favoriser la condensation en un lieu donné lorsque la température baisse, pour éviter la condensation sur les parois internes du disjoncteur.
  • Lorsque survient une baisse de la température extérieure, la condensation se produit préférentiellement dans le condenseur 30. Le gaz monte par le conduit 31 et s'y condense partiellement. Le condensat 33 s'écoule par le conduit 32 vers l'intérieur de disjoncteur. Le conduit 32 débouche près du tube 13 support du contact fixe 11; ce tube 13 est muni d'une collerette 14 constituant en déversoir permettant d'obtenir la formation d'un film de SF6 liquide qui s'écoule le long du tube 13. Lorsque le courant circule dans le disjoncteur, ce film liquide s'évapore ce qui contribue à créer un gaz à densité de SF6 plus grande dans l'espace 25 du disjoncteur.
  • Le tube 13 et le contact tubulaire 11 se rejoignent en formant une goulotte 15 dans lequel le SF6 liquide peut s'accumuler.
  • Une échancrure 16 dans le contact d'arc fixe permet de faciliter la descente du gaz quand les contacts sont en position fermée. Cette échancrure est pratiquée au niveau du col de la buse de soufflage, représentée en traits interrompus. A travers cette échancrure 16 le gaz lourd peut descendre facilement jusqu'au volume 24A. Lors de l'ouverture du disjoncteur suite à un défaut sur le réseau, on obtient ainsi un gaz comprimé à haute densité à travers la buse 23.
  • En plus lors de la coupure d'un courant de forte intensité, celui-ci traverse les pièces 21, 11 et 13 qui s'échauffent par effet Joule, ce qui provoque la vaporisation rapide du liquide SF6 contenu dans la goulette 15 et le long de la paroi interne du tube 13.
  • La figure 2 représente un autre mode de réalisation d'un disjoncteur, selon l'invention.
  • Les éléments communs aux figures 1 et 2 ont reçu les mêmes numéros de référence.
  • Le disjoncteur est représenté en position fermée.
  • Le contact d'arc fixe 12A, comporte vers son extrémité, des ouvertures 17, de faible diamètre, pouvant être fermées par un clapet 18 poussé par un ressort 19 (figure 2A).
  • Le cylindre 13A qui porte le contact d'arc fixe 12A reçoit un piston 26 lié mécaniquement par des tirants tels que 27 à l'équipage mobile 20. Le piston 26 est creux et reçoit l'extrémité du conduit 32 relié au condenseur 30. Le piston 26 est muni d'un orifice 26A muni d'un clapet normalement ouvert. Le condensat du condenseur s'écoule par le conduit 32 dans le piston 26 puis par l'orifice 26A dans le contact 12A.
  • Le fonctionnement du disjoncteur est le suivant: à la fermeture du disjoncteur, le ressort 28 est comprimé par les tirants 27.
  • Le SF6 liquide qui se forme à basse température extérieure descend, comme on l'a dit plus haut, dans le contact fixe creux 12A.
  • A l'ouverture du disjoncteur, le ressort 28 se détend, pousse le piston 26 qui comprime le gaz au-dessous de lui provoquant l'ouverture du clapet 18 et la pulvérisation du SF6, sous forme de brouillard, dans la zone d'arc.
  • Ce brouillard de SFa à grande densité favorise la coupure.
  • Le clapet 26A se ferme en raison de l'augmentation de la pression dans la chambre de coupure et empêche le gaz de remonter dans le condenseur. On peut aussi réaliser la compression du gaz dans le tube 12A par le déplacement d'un piston sous l'effet de l'attraction ou de la répulsion électromagnétique en utilisant le courant de court-circuit à travers une bobine en série avec le contact fixe 13.
  • L'utilisation de l'effet électromagnétique du courant de court-circuit permet d'injecter du SF6 liquide dans l'enceinte 25A à travers les ouvertures 17 quelques centièmes de seconde avant l'ouverture du contact mobile 20.
  • Dans cette solution les tirants tels que 27 ne seront plus nécessaires.
  • La figure 3 représente une variante de réalisation de disjoncteur du type comprenant un équipage mobile avec contact principal 51 et contact d'arc 52 et un ensemble fixe comprenant un contact principal fixe 61 et une série de doigts 62 formant un contact d'arc fixe. Une buse 63 et un déflecteur 64 délimitent une chambre 65 dans laquelle le gaz s'échauffe et monte en pression sous l'effet de l'arc formé lors d'une séparation des contacts d'arc.
  • Un piston 66, mécaniquement lié à l'équipage mobile, ou muni de moyens de déplacement propre, pousse, lors de l'ouverture du disjoncteur, un gaz frais à travers un conduit annulaire formé par le déflecteur 64 et les contacts 62.
  • Comme dans l'exemple précédent, un condenseur 70 est disposé à l'extérieur du disjoncteur et relié par deux conduits 71 et 72 à l'extérieur du disjoncteur. Le conduit 71, de plus grand diamètre que le conduit 72, débouche dans le disjoncteur du côté de la paroi de porcelaine. Le conduit 72 de plus faible diamètre débouche dans la chambre 65. Le condenseur représenté est de forme torique.
  • Une vanne 75 se referme lorsque la pression dans la chambre 65 croît au-delà d'une limite donnée et interdit alors toute communication entre le condenseur 70 et la chambre 65.
  • La buse 63 est avantageusement recourbée pour constituer une gouttière pour recueillir le SF6 liquide qui coule le long de la paroi de la chambre 65.
  • Au moment d'une coupure de grand courant, la chaleur dégagée par l'arc vaporise ce SF6 dont la pression de vapeur augments alors localement, favorisant ainsi la coupure. Pour les faibles courants à couper, l'extinction de l'arc se fait par le soufflage du SF6 comprimé dans l'enceinte 66A à l'aide du piston 66.
  • La figure 4 montre une vue d'ensemble d'un disjoncteur comprenant, au-dessus de la chambre de coupure 100, un condenseur torique 101, avec ses conduits d'amenée de gaz 102 et ses conduits de liquide 103.
  • La colonne 105 contient la tringlerie de manoeuvre du disjoncteur et la chambre 106 son mécanisme de manœuvre.
  • Le potentiel de la masse règne au niveau du bas de la colonne 105.
  • Un second condenseur 108 est placé, recueillant le SFε gazeux ou déjà liquéfié. Le condensat est vaporisé par un organe de chauffage 109 et réin- jecté à l'intérieur du disjoncteur. L'énergie de chauffage fournie par l'organe 109 peut être soit l'énergie électrique, soit l'énergie thermique du sol. A 1 ou 2 mètres dans le sol, la température est suffisante pour évaporiser le SF6 liquide à -50°C provenant de 108.
  • Comme déjà signalé plus haut, la condensation du SF6 fait diminuer la pression dans l'enceinte du disjoncteur.
  • L'addition au SF6 de 1 à 2 bars d'azote en plus permet une meilleure tenue diélectrique en position d'ouverture des contacts et améliore le fonctionnement mécanique du disjoncteur en très basse température.
  • Diverses variantes de réalisations sont présentées, en référence aux figures 5 à 8.
  • Toutes ces variantes visent à recueillir le SF6 liquide formé pendant les périodes de fermeture ou l'ouverture du disjoncteur dans une zone proche de la zone d'arc, et, au moment de l'ouverture du disjoncteur, à projeter et pulvériser ce liquide, à l'aide de gaz comprimé, sur l'arc.
  • Dans la figure 5, la référence 120 désigne une enveloppe isolante en céramique d'un disjoncteur fermé de manière étanche par deux flasques d'extrémités 121 et 122, définissant une enceinte 123 étanche remplie d'hexafluorure de soufre (SF6) sous une pression de quelques bars.
  • A l'intérieur de l'enceinte 123, on trouve un ensemble de contacts fixes comprenant un contact principal tubulaire 124 et un contact d'arc 126. Ces derniers sont dotés de pare-étincelles 128. Les doigts 126 et le pare-étincelles sont portés par une couronne 125 fixée au tube 124. Une buse de soufflage isolante 129 prolonge le tube 124. L'ensemble mobile comprend un contact d'arc tubulaire 127 à l'extrémité d'un tube 130 relié à un organe de manceuvre non représenté. Le tube porte une couronne 131 de doigts de contact 132, coopérant, lorsque le disjoncteur est fermé, avec le contact principal fixe 124. Le tube 130 coulisse dans le flasque 122; l'étanchéité est assurée par un joint 134.
  • L'ensemble fixe comprend en outre deux tubes coaxiaux entre eux et au tube 124.
  • L'un 135 est fixé au flasque 121, l'autre 136 est disposé dans le prolongement des contacts d'arc fixes. Les deux tubes 124 et 136 délimitent un volume annulaire 137 dans lequel coulisse, de façon étanche, un piston 138.
  • Ce dernier est porté par un tube 139 fixé à une couronne 140 coulissant, de façon guidée, à l'intérieur du tube 135. La couronne 140 est fixée au tube 139 par des bras 141 passant dans des lumières 142 du tube 124. Un ressort 143, disposé entre le flasque 121 et le piston 138, exerce sur ce dernier une force tendant à déplacer le piston vers les contacts d'arc. Une enveloppe 144, en matériau isolant de très bonne tenue à la pression tel que verre époxy, entoure la zone d'arc. Elle est fixée d'un côté à la couronne 140 et d'un autre côté à une bague 145 coulissant, de manière guidée, dans un tube 146 fixé au flasque 122.
  • Comme précédemment indiqué, le disjoncteur est muni d'un condenseur 150 disposé à l'extérieur du disjoncteur et au-dessus de celui-ci.
  • Le condenseur est relié au disjoncteur par une canalisation 151 assurant un transfert de gaz entre l'intérieur du disjoncteur et le condenseur.
  • Par ailleurs, une canalisation 152 prolongée par un tube 153 débouchant sous le flasque 121, permet l'écoulement vers l'intérieur du disjoncteur du liquide formé dans le condenseur.
  • Le liquide passe dans le volume 155, surmontant le piston 138, traverse ce dernier par des canaux 138A ou par des clapets et atteint le volume 137. La couronne 125 est munie de clapets 125A qui s'ouvrent lorsque la pression dans le volume 137 atteint un certain seuil. Un écran 125C contient le liquide du volume 137 pour éviter son écoulement par les passages 125B traversant la couronne 125.
  • L'écran 125C définit avec les pièces adjacentes un récipient 137A. Pour mieux maintenir le SF6 à l'état liquide contre la vaporisation, il est avantageux d'isoler thermiquement le récipient 137A contenant le SF6 liquide des autres pièces métalliques adjacentes, par une couche isolante non représentée.
  • Le fonctionnement du disjoncteur est le suivant.
  • Lorsque le disjoncteur est fermé le tube 130 est en position haute (figure 5).
  • Le ressort 143 est bandé sous l'action de l'enveloppe poussée par une bague 156 solidaire du contact tubulaire 130 et venant en appui contre la bague 145.
  • Le gaz SF6 se condense dans le condenseur 150 quand la température ambiante baisse par exemple de-20°C à-50°C.
  • Le liquide SF6 tombe dans le volume 155 à travers le tube 153, puis traverse les petits trous 138A (ou les clapets) pour se trouver stocké dans le récipient 137A. A l'ouverture du disjoncteur (figure 6), la tige 130 est manoeuvrée (vers le bas de la figure). Le piston 138 comprime le gaz du volume 137. Les clapets 125A s'ouvrent quand la pression dans le volume 137 atteint un seuil donné. A ce moment, le gaz comprimé dans le volume 137 sort avec le SF6 liquide pour se bien mélanger dans l'enceinte 157 entourant les contacts d'arc. L'énergie de l'arc 158 et l'énergie de compression du piston mobile 138 produisant une élévation très rapide de la température de ce mélange à haute densité de SF6 et le portent à une pression élevée.
  • Au passage à zéro du courant de court-circuit, l'arc 158 s'éteint grâce au soufflage très énergique de ce gaz dense à travers la buse isolante 129.
  • Les passages 125B dans la couronne 125 facilitent le remplissage de SF6 du volume 137 lors de la manœuvre de fermeture en aspirant le SF6 dans le volume 157.
  • Pendant cette manoeuvre le contact mobile 130 monte et entraîne l'enveloppe isolante 144.
  • A l'ouverture du disjoncteur le contact mobile 130 descend avec une vitesse qui peut être plus grande que celle de l'enveloppe 144 et du piston 138. La détente du ressort 143 permet de comprimer le gaz dans le volume 137. L'utilisation de l'enveloppe isolante 144, et des cylindres 135 et 146 permet de séparer dynamiquement les pressions des enceintes 123 (extérieure à l'enveloppe) et 160. Le volume de l'enceinte 123 est beaucoup plus faible que celui de l'enceinte 160.
  • Si, pour une raison quelconque, l'enveloppe 120 en porcelaine du disjoncteur vient à casser, la faible valeur du volume 123 interdit une explosion violente de la porcelaine 120.
  • Le gaz du volume 160 s'échappe lentement vers l'atmosphère à travers les jeux des guidages des bagues 140 et 145, qui offrent une étanchéité volontairement imparfaite.
  • Lors de la rupture brutale de la porcelaine 120, la plaque supérieure 121 et les autres pièces qui lui sont fixées, restent attachées à la plaque inférieure 122 et au contact mobile 130 grâce aux bras 141, à l'enveloppe 144 et la butée 146A du tube 146.
  • Quand la pression dans l'enceinte 160 monte trop haut par exemple suite à une non coupure ou à un amorçage entre contacts, une membrane de sécurité 161 fonctionne.
  • Un déflecteur 162 empêche la projection des morceaux de la membrane 161. La présence de l'enveloppe isolante 144 protège la porcelaine 120 contre les élévations rapides de la pression.
  • La figure 7 représente une autre variante de réalisation de l'invention. Dans la figure 7, les éléments communs aux figures 5 à 7 ont reçu les mêmes numéros de référence.
  • On reconnaît l'enveloppe isolante 120 du disjoncteur, le condenseur 150 avec ses tubes 151 et 152. Le tube 152 placé au droit d'une canalisation 170 du flasque 121, est prolongé par un tube 171 qui s'étend jusqu'au voisinage de la buse 182 lorsque le disjoncteur est en position fermée.
  • L'ensemble de contacts fixes comprend un contact principal tubulaire 172 et un contact d'arc 173 sous la forme d'une tige fixée par les bras 174 radiaux.
  • L'équipage mobile comprend un tube 175 portant des doigts de contact d'arc 176.
  • Une couronne 177 solidarise le tube 175 avec un tube 178. Ce tube porte une couronne 179 sur laquelle sont disposés des contacts mobiles principaux 180, un pare-étincelles 181 et une buse isolante de soufflage 182.
  • Les traits en tiretés montrent la position de la buse 182 et celle des doigts d'arc 176 lorsque de disjoncteur est fermé.
  • Les couronnes 177 et 179 délimitent un volume 183.
  • La couronne 177 porte des clapets 177A et des passages 177B.
  • Un piston fixe annulaire 184 porté par une tige tubulaire 185 complète la chambre de coupure.
  • Le piston 184 délimite avec la couronne 177 un volume à comprimer 186. Lorsque le disjoncteur est fermé ou ouvert, le SF6 liquide s'écoulant par le tube 171, est recueilli dans l'entonnoir constitué par la buse 182, coule le long de la surface interne de cette buse puis se rassemble dans le récipient 183A défini par l'écran 183B et les parois adjacentes. Comme précédemment les parois du récipient 183A peuvent être munies d'une isolation thermique.
  • A l'ouverture du disjoncteur, le volume 183 est diminué par le déplacement relatif du piston 184 et de la couronne 177.
  • La pression de ce volume augmente, les clapets 177A s'ouvrent et un soufflage énergique pulvérise le SF6 liquide du récipient 183A et l'injecte vers la buse isolante 182. Grâce au soufflage de ce mélange à densité élevée de gaz et de liquide SF6 comprimé et porté à haute température sous l'action de l'arc, le courant s'éteint rapidement à son passage à zéro. Pour obtenir une bonne pulvérisation du SF6 liquide, une large membrane à trous fins peut être utilisée et fixée à l'entrée de la buse.
  • Les trous 177B facilitent le remplissage du volume 186 à la fermeture du disjoncteur.
  • La figure 8 représente un disjoncteur identique à celui de la figure 7 comportant en outre un petit réservoir 190 muni d'ouvertures 190A qui lorsque le disjoncteur est en position ouverte, sont fermées par un clapet 191 poussé par un ressort 192.
  • En position fermée du disjoncteur, les tiges 193, liées au clapet, s'appuient sur la buse et maintiennent le clapet ouvert, permettant l'écoulement du SF6 liquide dans le volume 183.
  • Le piston 184 porte des clapets 184A permettant de faciliter le remplissage de SF6 à la fermeture du disjoncteur.
  • La disposition de la figure 8 permet de recueillir pendant les périodes d'ouverture du disjoncteur une certaine quantité de SF6 liquide qui reste placée au-dessus de la zone d'arc et qui à la fermeture viendra remplir le volume 183; avec cette disposition, le SF6 liquide ne tombe pas dans le volume 183 lorsque le disjoncteur est en position «ouvert».
  • On conçoit qu'en utilisant une buse isolante de plus grande dimension telle que celle de la figure 1, en montant les doigts 180 sur le tube de contact fixe 172, on peut stocker le SF6 liquide à l'intérieur même de la buse isolante. Ceci fait rapprocher encore le SF6 liquide de la zone d'arc.
  • Pour remplir le récipient de SF6 liquide il est avantageux de ne faire descendre le SF6 liquide du condenseur 150 dans le tube 171 que lorsque un volume donné de SF6 liquide s'est accumulé dans le condenseur.
  • Pour cela, on peut utiliser soit un dispositif à siphon représenté dans les figures 5 et 6 sous la référence 200, soit un dispositif à flotteur 201 (figure 7).
  • Les figures 9 et 10 concernent deux autres modes de réalisation.
  • Ces modes de réalisation visent également à recueillir le gaz liquéfié formé pendant les périodes de fermeture ou d'ouverture du disjoncteur dans une zone proche de la zone d'arc, et, au moment de l'ouverture du disjoncteur, à projeter et pulvériser ce liquide à l'aide de gaz SFε comprimé, sur l'arc.
  • Dans la figure 9, on reconnaît l'enveloppe isolante 120 du disjoncteur recouverte par le flasque 121, l'ensemble des contacts fixes comprenant le contact principal tubulaire 172 et le contact d'arc 173 constitué d'une tige fixée par les bras radiaux 174, l'ensemble mobile comprenant le contact principal 180 et le contact d'arc 176.
  • Cet ensemble mobile est enveloppé par un tube externe 178 dont l'extrémité constitue en pare- étincelle 181.
  • Cet ensemble mobile comporte un tube interne 175, muni à son extrémité d'une couronne 179 ajustée dans le tube externe 178, un piston annulaire fixe 184 porté par une tige tubulaire 185, une buse de soufflage isolante 182, et un réservoir annulaire 333 solidiare de la couronne 179 par l'intermédiaire de tiges 334. Le contact principal 180 et le contact d'arc 176 sont portés par la couronne 179.
  • Un espace annulaire 331 est constitué entre le contact principal 180 et la buse 182, et un orifice 332, pratiqué dans la couronne 179, met en communication l'espace annulaire 331 et le réservoir 333 recouvert par un grillage 341.
  • La couronne 179 comporte également des orifices 337 mettant en communication le réservoir 333 et un espace 336 annulaire interne à la buse isolante 182.
  • Le flasque 121 reçoit un condenseur 300 en forme de cloche muni ou non d'ailettes de refroidissement.
  • Une canalisation de transfert 301 remplit le rôle de la première canalisation assurant un transfert de gaz entre l'intérieur de l'enceinte et le condenseur.
  • Deux petites canalisations de transfert distinctes 302A, 302B, appelées ci-après orifices 302A, 302B, remplissent le rôle de la seconde canalisation transférant le gaz liquéfié du condenseur vers l'intérieur de l'enceinte.
  • Le condenseur renferme une enceinte isolante 310 séparée par une cloison 313, pour constituer deux compartiments égaux ou inégaux 311, 312.
  • Le compartiment 311 est relié à l'orifice 302A par un siphon 303, cet orifice étant prolongé par un tube 304, et le compartiment 312 est en communication directe avec l'orifice 302B.
  • Le contact tubulaire 172 comporte une gouttière 340 et un réservoir annulaire 338 constitué par une cloison annulaire.
  • Les traits en tiretés montrent la position de la buse 182 et celle du contact d'arc 176 lorsque le disjoncteur est fermé.
  • Ce disjoncteur fonctionne de la manière suivante:
  • Lorsque le disjoncteur est fermé, l'ensemble mobile est en position haute comme représenté en tiretés.
  • Si la température ambiante baisse, par exemple jusqu'à -15°C et en dessous, le gaz SF6 se condense dans le condenseur 300. Cette condensation fait chuter légèrement la pression et il y a donc appel de gaz de l'enceinte vers le condenseur à travers la canalisation 301.
  • Le liquide SF6 est stocké dans l'enceinte isolante 310, donc dans les deux compartiments 311, 312.
  • Quand le liquide SF6 atteint un certain niveau, il est transféré du compartiment 311 dans l'espace 331 par l'intermédiaire du siphon 303 de l'orifice 302A et du tube 304, et à travers l'orifice 332 dans le réservoir 333. De même, le liquide SF6 est transféré du compartiment 312 dans le réservoir 338 par l'orifice 302 B et par la gouttière 340.
  • Au déclenchement, le liquide SF6 est projeté, par l'effet d'accélération du contact mobile, contre la couronne 179 et entraîné par le gaz SF6 comprimé dans le cylindre vers l'espace interne 336 à travers les orifices 337.
  • Le gaz arrive au niveau du col de la buse 182 sous forme de brouillard.
  • L'action de l'arc fait monter rapidement la pression de ce gaz et ceci facilite grandement la coupure des courants de défaut.
  • Pour obtenir de fines gouttelettes de liquide SF6 au moment du déclenchement, on utilise un grillage fin 341, et pour mieux conserver le liquide SF6 dans le réservoir 333, ce dernier est thermiquement isolé des autres pièces métalliques environnantes. Ce réservoir 333 et ses tiges de fixations 334 peuvent être remplacés par seulement un récipient flexible en accordéon fixé à la couronne 179.
  • Pour obtenir une injection de liquide SF6 plus importante, on peut remplacer le réservoir 333 et les tiges 334 par un réservoir flexible en accordéon et prévoir, au déclenchement, que ce réservoir flexible vienne heurter le piston 184 en fin de course.
  • Dans la figure 10, on reconnaît les éléments communs aux deux modes de réalisation, en ce qui concerne l'ensemble fixe, le contact principal 172, le contact d'arc 173 fixé par des bras radiaux 174, en ce qui concerne l'ensemble mobile, le tube externe 178, le tube interne 175 comportent à son extrémité la couronne 179, la tige tubulaire 185 portant le piston fixe 184, la buse de soufflage 182 et le contact d'arc 176, puis en ce qui concerne le condenseur 300 la canalisation de transfert 301, les deux petites canalisations de transfert 302A, 302 B, le tube 304, l'enceinte isolante 310 munie de deux compartiments 311, 312.
  • Dans ce mode de réalisation, l'intérieur du contact d'arc 173 constitue un réservoir 317 relié au compartiment 312 de l'enceinte isolante 310 par l'orifice 302B et par un tube 305. Le haut du réservoir 317 comporte une ouverture 318 qui permet un meilleur contact avec le gaz environnant lors de la vaporisation du liquide SF6.
  • Contrairement au premier mode de réalisation, le contact principal 180 n'est pas installé sur l'ensemble mobile mais sur l'ensemble fixe, à l'extrémité du contact principal 172, ce contact 180 venant en appui sur un épaulement d'extrémité du tube 178. Dans l'ensemble mobile, le réservoir de liquide est placé à l'intérieur de la buse isolante 182, ce réservoir 320, constitué par une cloison 321, étant en communication avec l'espace libre entre couronne 179 et piston 184, par l'intermédiaire de clapets 177A, cet espace libre étant en communication permanente avec un espace annulaire 336 par l'intermédiaire d'orifices 337.
  • La buse isolante 182 comporte un orifice 322 qui permet d'alimenter le réservoir 320 en liquide SF6.
  • Un grillage fin 323 est placé en haut du réservoir 320 pour favoriser la pulvérisation du liquide SF6.
  • Ce disjoncteur fonctionne de la manière suivante:
  • Le liquide SF6 sortant du condenseur par le tube 304 tombe sur la buse 182, traverse l'orifice 322 et entre dans le réservoir 320.
  • Au moment du déclenchement, les clapets 177A permettent, grâce au SF6 comprimé, d'injecter et de pulvériser rapidement le liquide SF6 vers la zone d'arc. Le gaz SF6 comprimé passe d'autre part par les orifices 337.
  • Le liquide SF6 sortant du condenseur par la canalisation 305 tombe dans le tube de contact d'arc 173.

Claims (30)

1. Disjoncteur à haute tension comprenant une enceinte étanche (1) dans laquelle est disposé un ensemble fixe (10) comprenant un contact principal et un contact d'arc et un ensemble mobile (20) comprenant un contact principal et un contact d'arc, l'enceinte étant remplie de gaz sous pression constitué au moins partiellement d'hexafluorure de soufre, caractérisé en ce qu'il comprend un condenseur (30) disposé à l'extérieur du disjoncteur, l'intérieur du condenseur étant en communication avec l'intérieur de l'enceinte par au moins une première canalisation (31) assurant un transfert de gaz entre l'intérieur de l'enceinte et le condenseur et par au moins une seconde canalisation (32) pour transférer le gaz liquéfié dans le condenseur vers l'intérieur de l'enceinte.
2. Disjoncteur selon la revendication 1, caractérisé en ce que le condenseur (30) est une sphère creuse métallique.
3. Disjoncteur selon la revendication 1, caractérisé en ce que le condenseur (30) est un tore creux métallique.
4. Disjoncteur selon l'une des revendications 1 à 3, caractérisé en ce que la première canalisation (31) débouche dans l'enceinte à proximité de la paroi de l'enceinte.
5. Disjoncteur selon l'une des revendications 1 à 4, caractérisé en ce que la seconde canalisation (32) débouche dans l'enceinte à proximité d'un tube métallique (13) constituant le support du contact principal fixe (11).
6. Disjoncteur selon la revendication 5, caractérisé en ce que ledit tube comporte une collerette (14) constituant un déversoir pour le gaz liquéfié provenant du condenseur et assurant la formation d'un film liquide sur la paroi dudit tube.
7. Disjoncteur selon l'une des revendications 5 et 6, caractérisé en ce que ledit tube (13) comporte, au voisinage du contact d'arc fixe (11), une goulotte (15) pour recueillir le gaz liquéfié.
8. Disjoncteur selon l'une des revendications 1 à 4, caractérisé en ce que le contact d'arc fixe (12A) est un tube fermé à son extrémité située dans la zone d'arc et recevant le liquide gaz liquéfié, ledit tube comprenant vers ladite extrémité, au moins un orifice (17) obturable par un clapet (18) s'ouvrant lors de l'ouverture du disjoncteur.
9. Disjoncteur selon la revendication 8, caractérisé en ce que les orifices (17) se trouvent en face de la sortie (40) des gaz comprimés dans l'enceinte (24A).
10. Disjoncteur selon la revendication 7, caractérisé en ce qu'il comprend un piston (26), se déplaçant à l'ouverture du disjoncteur, pour comprimer le gaz surmontant le liquide contenu dans le contact d'arc fixe.
11. Disjoncteur selon la revendication 10, caractérisé en ce que le piston (26) se déplace sous l'action électromagnétique d'une bobine parcourue par le courant de court-circuit.
12. Disjoncteur selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend une chambre thermique (65) constituée par une buse (63) prolongeant le contact principal fixe (61) et un déflecteur (64) entourant le contact d'arc fixe (62), la seconde canalisation (72) débouchant dans ladite chambre thermique.
13. Disjoncteur selon la revendication 12, caractérisé en ce que ladite buse (63) est recourbée pour constituer une gouttière recueillant le gaz liquéfié en provenance du condenseur.
14. Disjoncteur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un second condenseur (108) disposé à l'extérieur du disjoncteur au niveau des pièces ayant le potentiel de la masse, ledit condenseur étant relié à l'intérieur du disjoncteur par des premières canalisations véhiculant du gaz, le liquide condensé étant acheminé à un dispositif (109) de vaporisation dont la sortie est en communication avec l'intérieur du disjoncteur.
15. Disjoncteur selon la revendication 1, caractérisé en ce qu'il comprend un récipient de stockage (137A) dans lequel le SF6 liquide provenant du condenseur s'accumule, ce récipient étant placé dans un volume (137) pouvant être comprimé à l'ouverture du disjoncteur et muni de clapets par lesquels le gaz comprimé mélangé de SF6 liquide est projeté dans la zone d'arc.
16. Disjoncteur selon la revendication 15, caractérisé en ce que le SF6 liquide sortant du condenseur (150) tombe dans le volume de stockage fixe (137) sous son propre poids.
17. Disjoncteur selon l'une des revendications 15 et 16, caractérisé en ce que la zone des contacts est séparée des parois latérales de l'enceinte en céramique par une enveloppe isolante mobile (144) à haute tenue en pression.
18. Disjoncteur selon les revendications 15 à 17, caractérisé en ce que ladite enveloppe isolante est solidaire d'un piston (141) coulissant dans une chambre fixe (137) placée au voisinage des contacts d'arc.
19. Disjoncteur selon l'une des revendications 17 et 18, caractérisé en ce que le volume (123) compris entre les parois latérales de l'enceinte et l'enveloppe est beaucoup plus petit que le volume (160) intérieur à l'enveloppe.
20. Disjoncteur selon l'une des revendications 17 à 19, caractérisé en ce que les extrémités de l'enveloppe sont guidées dans des tubes (146, 135) avec une étanchéité imparfaite.
21. Disjoncteur selon l'une des revendications 17 à 20, caractérisé en ce que le bandage du ressort (143) à la fermeture du disjoncteur est assuré par le mouvement de l'enveloppe (144) celle-ci étant entraînée par le contact d'arc mobile (130).
22. Disjoncteur selon la revendication 1, caractérisé en ce que l'ensemble mobile comprend une chambre cylindrique de compression (186) dans laquelle est disposée un piston fixe (184), et une chambre (183) surmontant la chambre de compression (186) et recueillant le gaz liquéfié dans un récipient (183A) la chambre (183) étant munie de clapets (177A) s'ouvrant directement sur la zone d'arc pour le soufflage du gaz et du SF6 liquide lorsque la pression atteint une valeur donnée dans la chambre de compression (186) en raison de sa diminution de volume provoquée, à l'ouverture du disjoncteur, par le mouvement relatif du piston et de l'ensemble mobile.
23. Disjoncteur selon la revendication 1, caractérisé en ce qu'il comporte, situé au voisinage de la zone d'arc, un petit récipient (190) recueillant le gaz liquéfié lorsque le disjoncteur est en position ouvert, ledit récipient présentant des ouvertures (190A) débouchant directement sur une buse isolante entourant les contacts d'arc l'ouverture étant assurée par un clapet (191) qui ne s'ouvre qu'à la fermeture du disjoncteur.
24. Disjoncteur selon les revendications 22 et 23, caractérisé en ce que le SF6 liquide sortant du condenseur (150) tombe sous son propre poids dans le volume de stockage mobile (183) en longeant la surface interne de la buse isolante (182).
25. Disjoncteur selon les revendications 15 à 24, caractérisé en ce que le récipient (137A, 183A, 183) est isolé thermiquement.
26. Disjoncteur selon l'une des revendications 15 à 25, caractérisé en ce qu'il comprend des moyens pour provoquer la chute du SF6 à partir d'une certaine quantité.
27. Disjoncteur selon la revendication 26, caractérisé en ce que lesdits moyens comprennent un siphon (200) ou un flotteur (201) placé dans le condenseur.
28. Disjoncteur selon la revendication 1, caractérisé en ce que le condenseur (300) comprend une enceinte isolante (310) dans laquelle le gaz liquéfié s'accumule, cette enceinte étant constituée de deux compartiments indépendants (311, 312) séparés par une cloison (313), la seconde canalisation de transfert étant séparée en deux petites canalisations distinctes (302A), 302B) communiquant chacune avec un compartiment de l'enceinte isolante (310).
29. Disjoncteur selon la revendication 28, caractérisé en ce qu'une partie du gaz liquéfié quitte un compartiment (311) de l'enceinte isolante (310) par un siphon (303) raccordé à une petite canalisation de transfert (302A) et tombe sous son propre poids et à travers un orifice (322) dans un réservoir annulaire (333) placé sous la buse (182) et solidaire de l'ensemble mobile, et en ce que l'autre partie du gaz liquéfié quitte l'autre compartiment (312) de l'enceinte isolante par l'autre petite canalisation de transfert (3028) et s'écoule dans un réservoir annulaire (338) interne au contact principal (172) de l'ensemble fixe.
30. Disjoncteur selon la revendication 28, caractérisé en ce qu'une partie du gaz liquéfié quitte un compartiment (311) de l'enceinte isolante par une petite canalisation de transfert (302A) et tombe sous son propre poids dans un réservoir annulaire (320) interne à la buse (182), et en ce que l'autre partie du gaz liquéfié quitte l'autre compartiment (312) de l'enceinte isolante par l'autre petite canalisation de transfert (302B) et pénètre par l'intermédiaire d'un tube (305) dans un réservoir (317) interne au contact d'arc (173) de l'ensemble fixe.
EP86106465A 1985-05-15 1986-05-13 Disjoncteur à hexafluorure de soufre fonctionnant dans un environnement à très basse température Expired EP0204180B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86106465T ATE47503T1 (de) 1985-05-15 1986-05-13 Schalter mit schwefelhexafluorid, funktionierend in einer umgebung bei sehr niedriger temperatur.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR8507437A FR2582145B1 (fr) 1985-05-15 1985-05-15 Disjoncteur a hexafluorure de soufre fonctionnant dans un environnement a tres basse temperature
FR8507437 1985-05-15
FR8511717A FR2585875B2 (fr) 1985-05-15 1985-07-31 Disjoncteur a hexafluorure de soufre fonctionnant dans un environnement a tres basse temperature
FR8511717 1985-07-31
FR8601771A FR2594255B2 (fr) 1985-05-15 1986-02-10 Disjoncteur a hexafluorure de soufre fonctionnant dans un environnement a tres basse temperature.
FR8601771 1986-02-10

Publications (2)

Publication Number Publication Date
EP0204180A1 EP0204180A1 (fr) 1986-12-10
EP0204180B1 true EP0204180B1 (fr) 1989-10-18

Family

ID=27251282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86106465A Expired EP0204180B1 (fr) 1985-05-15 1986-05-13 Disjoncteur à hexafluorure de soufre fonctionnant dans un environnement à très basse température

Country Status (7)

Country Link
US (1) US4698469A (fr)
EP (1) EP0204180B1 (fr)
JP (1) JPH0610949B2 (fr)
CN (1) CN1006112B (fr)
BR (1) BR8602189A (fr)
CA (1) CA1245693A (fr)
DE (1) DE3666521D1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309227A (ja) * 1988-06-06 1989-12-13 Meidensha Corp パッファ形ガス遮断器
CH683727A5 (de) * 1992-06-11 1994-04-29 Alcatel Str Ag Relais.
US6007885A (en) * 1998-03-19 1999-12-28 W.R. Grace & Co.-Conn. Oxygen scavenging compositions and methods for making same
CA2425350A1 (fr) * 2003-04-14 2004-10-14 Peter Alex Robinet d'arret de contenant avec mise a l'air libre
CA2441991C (fr) * 2003-09-19 2012-11-13 Ronald R. Chisholm Dispositif de transvasement de fluide
US20050115606A1 (en) * 2003-10-01 2005-06-02 Chisholm Ronald R. System for effecting liquid transfer from an elevated supply container
US20050082260A1 (en) * 2003-10-15 2005-04-21 G&W Electric Co. Shielded encapsulated vacuum interrupter
FR2872336B1 (fr) * 2004-06-29 2007-07-20 Areva T & D Sa Dispositif de refroidissement passif pour un appareillage electrique et appareillage electrique comprenant ce dispositif
JP4612407B2 (ja) * 2004-12-22 2011-01-12 株式会社東芝 開閉装置
EP1768150B1 (fr) 2005-09-26 2010-02-17 ABB Technology AG Disjoncteur à haute tension avec pouvoir de coupure ameliorée
EP1947669A1 (fr) * 2007-01-17 2008-07-23 Abb Research Ltd. Pôle pour disjoncteur haute tension à isolation gazeuse et procédé de fabrication d'un tel pôle de disjoncteur
EP2791959B1 (fr) 2011-12-13 2016-03-09 ABB Technology AG Disjoncteur doté d'une injection de fluide
FR3023649B1 (fr) * 2014-07-08 2016-08-19 Alstom Technology Ltd Disjoncteur utilisant l'etat diphasique d'un gaz pour ameliorer les proprietes de coupure
DE102016218316A1 (de) 2016-09-23 2018-03-29 Siemens Aktiengesellschaft Vakuumschalter
CN108987172B (zh) * 2018-09-19 2020-05-29 国网黑龙江省电力有限公司电力科学研究院 一种用于低温地区柱式断路器的外部长期加热装置
CN111725024B (zh) * 2020-06-29 2022-10-18 西安西电开关电气有限公司 一种高压断路器及其灭弧室
CN112002605B (zh) * 2020-08-25 2022-08-12 西安西电开关电气有限公司 一种开关设备及其灭弧室
CN113690093B (zh) * 2021-08-25 2023-01-24 西安西电开关电气有限公司 断路器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE711994C (de) * 1929-08-14 1941-10-10 Siemens Schuckertwerke Akt Ges Schalter mit Lichtbogenloeschung durch gespannte Daempfe
US2733316A (en) * 1954-09-14 1956-01-31 browne
DE1037551B (de) * 1956-09-14 1958-08-28 Licentia Gmbh Elektrischer OElstroemungsschalter
DE1171051B (de) * 1962-05-07 1964-05-27 Siemens Ag Synchronschalter mit Pressgasloeschung
NL122544C (fr) * 1964-03-26
US3406269A (en) * 1965-02-26 1968-10-15 Westinghouse Electric Corp Fluid-blast circuit breakers having means for increasing the density of the fluid during interruption
US3356810A (en) * 1965-03-31 1967-12-05 Siemens Ag Centering device for conducting liquefied arc-extinguishing gas to a highpressure reservoir
DE2010690C3 (de) * 1970-03-03 1974-09-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen Druckgasschalter
DE2063081B2 (de) * 1970-12-11 1979-02-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Hochspannungsschalter
DE2063093C3 (de) * 1970-12-11 1976-01-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Hochspannungsschalter
DE2149625A1 (de) * 1971-10-05 1973-04-12 Siemens Ag Mit verfluessigbarem, elektronegativem gas gefuellter zweidruck-hochspannungsschalter
DE2248116A1 (de) * 1972-09-28 1974-04-04 Siemens Ag Hochspannungs-leistungsschalter mit einem gasfoermigen loesch- und isoliermittel
US3985987A (en) * 1975-07-31 1976-10-12 Allis-Chalmers Corporation Means for recycling liquified insulating gas in a gas insulated circuit breaker
US4326867A (en) * 1976-08-16 1982-04-27 Stokes Anthony D Gas recovery
FR2400251A1 (fr) * 1977-08-10 1979-03-09 Merlin Gerin Disjoncteur haute tension a autosoufflage
US4273978A (en) * 1978-06-09 1981-06-16 Electric Power Research Institute, Inc. Liquid interrupter module
JPS54183665U (fr) * 1978-06-16 1979-12-26
JPS5637241U (fr) * 1979-08-24 1981-04-09
CH641292A5 (de) * 1979-08-30 1984-02-15 Sprecher & Schuh Ag Druckgasschalter.

Also Published As

Publication number Publication date
CN86103295A (zh) 1986-11-12
BR8602189A (pt) 1987-01-13
EP0204180A1 (fr) 1986-12-10
DE3666521D1 (en) 1989-11-23
JPS61269822A (ja) 1986-11-29
CN1006112B (zh) 1989-12-13
JPH0610949B2 (ja) 1994-02-09
US4698469A (en) 1987-10-06
CA1245693A (fr) 1988-11-29

Similar Documents

Publication Publication Date Title
EP0204180B1 (fr) Disjoncteur à hexafluorure de soufre fonctionnant dans un environnement à très basse température
EP1146529A1 (fr) Pôle pour un disjoncteur électrique limiteur de basse tension de puissance et disjoncteur muni d'un tel pôle
WO2016005435A1 (fr) Disjoncteur self-blast utilisant l'etat diphasique d'un gaz pour ameliorer les proprietes de coupure
EP0684622B1 (fr) Disjoncteur à autocompression réduite
EP0591039B1 (fr) Disjoncteur à haute tension à auto-soufflage ayant une chambre de coupure à compression de gaz réduite
FR2576142A1 (fr) Disjoncteur a haute tension, a gaz comprime, a energie de manoeuvre assistee par l'effet thermique de l'arc
CH626745A5 (en) High-voltage self-blasting circuit breaker
CA2035688C (fr) Disjoncteur a moyenne ou haute tension a autosoufflage
EP0789928B1 (fr) Disjoncteur a haute tension et a autosoufflage de l'arc
CA1260047A (fr) Disjoncteur a hexafluorure de soufre utilisable aux temperatures exterieures tres basses
EP1235243B1 (fr) Disjoncteur incluant un canal de vidange de la chambre de compression par piston
EP0004213B1 (fr) Dispositif d'extinction d'arc à autosoufflage pneumatique et magnétique
EP0080924A1 (fr) Disjoncteur miniature à deux chambres de coupure accolées
EP0785562B1 (fr) Disjoncteur à double mouvement des contacts
FR2582145A1 (fr) Disjoncteur a hexafluorure de soufre fonctionnant dans un environnement a tres basse temperature
FR2585875A2 (fr) Disjoncteur a hexafluorure de soufre fonctionnant dans un environnement a tres basse temperature
FR2490397A2 (fr) Disjoncteur a haute tension a arc tournant et autosoufflage
EP0458236B1 (fr) Disjoncteur à moyenne tension
FR2683937A1 (fr) Disjoncteur hybride pour la coupure des courants a grande composante continue.
BE897956A (fr) Chambre de coupure pour disjoncteur a gaz
FR2696316A1 (fr) Disjoncteur à haute ou moyenne tension à expansion thermique et soufflage additionnel par aspiration.
FR2575596A1 (fr) Disjoncteur a gaz comprime a double coupure thermodynamique et une pluralite de directions de soufflage
CH634687A5 (en) Rotating-arc and self-blasting high-voltage circuit breaker
FR2623657A1 (fr) Disjoncteur a autosoufflage par expansion de gaz isolant, equipe d'un ecran de repartition de champ electrique
CA1257634A (fr) Disjoncteur a haute tension a hexafluorure de soufre pouvant fonctionner a des temperatures exterieures basses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870217

17Q First examination report despatched

Effective date: 19880728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 47503

Country of ref document: AT

Date of ref document: 19891115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3666521

Country of ref document: DE

Date of ref document: 19891123

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920424

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920522

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920526

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920527

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920531

Year of fee payment: 7

Ref country code: AT

Payment date: 19920531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920615

Year of fee payment: 7

Ref country code: BE

Payment date: 19920615

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920618

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930513

Ref country code: GB

Effective date: 19930513

Ref country code: AT

Effective date: 19930513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930531

Ref country code: CH

Effective date: 19930531

Ref country code: BE

Effective date: 19930531

BERE Be: lapsed

Owner name: ALSTHOM

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930513

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86106465.7

Effective date: 19931210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050513