EP0201364A1 - Process for de-asphalting a hydrocarbon charge containing asphaltene - Google Patents
Process for de-asphalting a hydrocarbon charge containing asphaltene Download PDFInfo
- Publication number
- EP0201364A1 EP0201364A1 EP86400589A EP86400589A EP0201364A1 EP 0201364 A1 EP0201364 A1 EP 0201364A1 EP 86400589 A EP86400589 A EP 86400589A EP 86400589 A EP86400589 A EP 86400589A EP 0201364 A1 EP0201364 A1 EP 0201364A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solvent
- phase
- mixture
- zone
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 44
- 230000008569 process Effects 0.000 title claims description 25
- 229930195733 hydrocarbon Natural products 0.000 title claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 14
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 13
- 239000002904 solvent Substances 0.000 claims abstract description 89
- 239000010426 asphalt Substances 0.000 claims abstract description 37
- 238000005406 washing Methods 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims description 29
- 238000002156 mixing Methods 0.000 claims description 10
- 238000010908 decantation Methods 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 230000001174 ascending effect Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 4
- 239000011874 heated mixture Substances 0.000 claims 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 58
- 239000003921 oil Substances 0.000 description 34
- 239000011347 resin Substances 0.000 description 29
- 229920005989 resin Polymers 0.000 description 29
- 238000001556 precipitation Methods 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000011877 solvent mixture Substances 0.000 description 10
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- 239000001273 butane Substances 0.000 description 6
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 6
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000693 micelle Substances 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 239000000571 coke Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- 241001415961 Gaviidae Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000005374 Poisoning Diseases 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001935 peptisation Methods 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KSECJOPEZIAKMU-UHFFFAOYSA-N [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] Chemical class [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] KSECJOPEZIAKMU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000012296 anti-solvent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000011552 falling film Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000010198 maturation time Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/003—Solvent de-asphalting
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
Definitions
- the process which is the subject of the present invention applies to the treatment of residues of conventional crude oils, whether atmospheric residues or residues under vacuum, as well as to the treatment of heavy or extra heavy oils topped such as they can be obtained, for example, from the deposits of FAJA PE-TROLIFERA in VENEZUELA or from the deposits of ATHABASCA in CANADA.
- the method as claimed may also be advantageously used for the treatment of atmospheric or vacuum residues which result from another thermal or catalytic preliminary treatment such as visbreaking, hydrocoreduction, thermal treatment in the presence of a hydrogen donor solvent, various catalytic hydrotreatments with more or less extensive conversion of the charge treated.
- This separation consists in breaking the balance existing between the asphaltenes and the surrounding maltenic medium by adding a solvent which decreases the viscosity and especially the surface tension of the oily medium.
- the recommended solvents are generally paraffins or (and) light olefins with 3, 4, 5, 6, and (or) 7 carbon atoms. In fact, light paraffin plays an anti-solvent role with respect to asphaltenes and possibly with respect to resins.
- Asphaltenes and resins are rejected out of the oily medium in the form of a distinct phase and this all the better when the density and the surface tension of the solvent medium plus oil are lower. Consequently, the yield in "asphalt phase" and the quality of the deasphalted oil are linked for a given charge to the following parameters and variables: nature of the solvent, solvent content, temperature and pressure but also very strongly depend on the characteristics of the technology. used.
- the process which is the subject of the present invention therefore relates to deasphalting with hydrocarbon solvents comprising paraffinic or olefinic hydrocarbons having from 3 to 7 carbon atoms.
- hydrocarbon solvents comprising paraffinic or olefinic hydrocarbons having from 3 to 7 carbon atoms.
- the use of the hydrocarbon solvent is carried out in such a way that it makes it possible to obtain excellent yields of a very good quality oil with a minimum solvent content and that it makes it possible to design industrial extrapolation to units capable of processing annual capacities of around 2 to 4 million tonnes in a single line.
- a first object of the present invention is to carry out the deasphalting of a hydrocarbon feed containing asphaltenes, in particular of a residue or of a heavy oil, with a solvent having 3 to 7 carbon atoms so as to obtain a oil containing less than 0.05% of asphaltenes precipitated by heptane according to standard AFNOR NFT 60115.
- a second object of the invention is to selectively carry out the operation, that is to say to obtain concomitantly with the quality of the deasphalted oil a very good yield in this same oil and this by using the minimum of solvent, i.e. solvent-to-oil metric ratios, which may be as low as 3/1 to 4/1.
- a third object of the invention consists in carrying out the operation by separating the elementary physicochemical operations which make up the overall deasphalting operation: mixing-precipitation, decantation of the asphalt phase, washing-peptization of the asphalt phase.
- the process which is the subject of the invention allows the treatment of very large annual residues or heavy oils in a single decanter with respect for the quality and yield criteria which constitute the first and second subject of the invention.
- US Patent No. 2,081,473 presents the general concept of the deasphalting operation, consequently recommends the whole range of solvents generally cited, from methane to naphtha via propane, butane and light gasoline, but it does not specify neither the range of solvent / oil ratios recommended, nor a fortiori, the "de facto" dissociation of the operation into its elementary physico-chemical stages with application for each stage of a range of optimal operating conditions.
- US Patents No. 2587643 and 2882219 claim the addition of modifiers or additives either with solvent, namely organic carbonates for US Patent No. 2587643, or with charges, namely aromatics for US Patent No. 2882219.
- US Pat. Nos. 2002004, 2101308 and 3074882 they recommend carrying out the deasphalting operation in two or more successive stages but the sequences of stages envisaged are conceptually different from the staggering of stages of the present invention.
- US Patent No. 2002004 relates to a two-stage deasphalting process with intermediate distillation of the hydrocarbon phase rich in solvent from the first extraction zone. The effluent from the bottom of the distillation column is subjected to a second deasphalting step which in fact makes it possible to isolate resins.
- US Patent No. 2101 308 proposes a first step of deasphalting with light gasoline as solvent; the light oil-essence mixture from this first is treated with SO 2 , for a subsequent elimination of resins and aromatics.
- US Patent No. 3,074,882 operates a first butane precipitation.
- the butane is separated from the oil-butane mixture and the residual oil is treated with propane in two successive stages making it possible, on the one hand, to obtain resins and, on the other hand, a deasphalted and de-resinated oil.
- US Patent No. 3830_ 732 it recommends also a two-stage deasphalting consisting first of all in precipitating asphaltenes and resins with a first solvent in a volumetric .solvent / oil ratio of less than 4/1; in a second step, the asphaltic phase resulting from the first step is in turn repeptified by a solvent having at least one carbon atom more than the solvent recommended in the first step.
- This peptization of the asphalt phase makes it possible to redissolve the resins in the second solvent.
- a particular claim of this patent recommends that the operation in the first step is carried out at a temperature higher than that of the second step.
- the mixture between the charge to be deasphalted and the deasphalting solvent is produced upstream of the exchanger which raises the mixing temperature to the value required to achieve good precipitation and good decantation.
- the charge-solvent mixture passes through the tubes of the exchanger and not on the shell side.
- the residence time of the charge-solvent mixture in the precipitation mixing zone is between 5 sec and 5 min, preferably between 20 seconds and 120 seconds.
- the residence time of the mixture in the settling zone is between 4 and 20 minutes.
- the residence time of the oil-solvent mixture in the washing zone also remains between 4 and 20 minutes.
- the upward speeds of the oil-solvent mixtures both in the settling zone and in the washing zone will usefully remain less than 1 cm / s * and preferably less than 0.5 cm / s.
- the temperature applied in the washing zone will be 5 to 50 ° C lower than the temperature applied in the decanting zone.
- the oil-solvent mixture from the washing zone will be recycled in the decanter and even more advantageously upstream from the exchanger located at the entrance to the decantation zone.
- the solvent / asphalt phase ratio recommended in the washing zone will be between 0.5 and 8 and preferably between 1 and 5.
- the process can comprise two stages, each stage including the three basic stages of precipitation, decantation and washing.
- the temperature recommended in each stage of the first stage is preferably on average 10 to 40 ° C lower than the temperature of each corresponding stage of the second stage.
- the process which is the subject of the invention can use hydrocarbon solvents having from 3 to 7 carbon atoms, paraffinic, olefinic or cyclanic, alone, mixed together in various proportions or added with additives, for example , of the phenol, glycol type, alcohols from C1 to C6.
- the process of the present invention lends itself more advantageously to the use of paraffinic and / or olefinic solvents. having 4 to 6 carbon atoms.
- FIG. 1 presents the essential characteristics of the method corresponding to the invention.
- the load to be treated is introduced via line (1) to the mixing valve (2), where the solvent S1 and S "1 is introduced, originating from the recovery of the solvent (23) contained respectively in the solvent mixture.
- -Oil or in the asphaltic solvent-phase mixture lines 3 and 4).
- charge-solvent passes through an exchanger (5) where it is brought to the temperature required for the deasphalting operation considered; this temperature will vary between 100 and 200 ° C depending on the solvent considered (for example isobutane, butane, isopentane, pentane, light gasoline) depending on the type of feed to be treated (headless crude, atmospheric residue, vacuum residue), depending on the origin of the crude oil considered and according to the solvent / oil ratio used.
- the temperature at the outlet of the exchanger will be between 190 and 170 °. C and the pressure between 4 and 5 M Pascals insofar as the aim is to obtain a deasphalted oil containing less than 0.05% of asphalts according to the AFNOR NFT 60115 STANDARD. It is important to specify that according to one of the preferred characteristics of the process, the charge-solvent mixture passes through the tubes of the exchanger and not on the shell side, moreover, it is recommended to carry out a gravity flow in this exchanger, that is to say that the charge-solvent mixture runs up and down the heat exchanger tubes.
- the mixture brought to the required temperature is introduced via line (6) into the extractor flask (7) where the decantation takes place.
- the precipitation of the asphalt phase begins almost instantaneously at the level of the mixing valve and is followed in the exchanger (5) as the temperature rises.
- the residence time of the mixture between the mixing valve and the entry of the settling tank is between 5 seconds and 5 minutes and preferably between 20 seconds and 120 seconds.
- the turbulence in line 6 is usefully controlled to avoid the bursting into too small particles of the miscelles of asphaltic phase in suspension in the oil-solvent medium; in practice, it is recommended that at the outlet of the exchanger the number of REYNOLDS of the mixture be between 2.10 ° and 10 6 and preferably between 5.10 * and 5.10 5 . In this range of values, it can also be seen that the agglomeration of the micelles is initiated, making subsequent settling in the settling tank easier and faster.
- the asphaltic phase micelles are agglomerated and decanted.
- the volume and the geometry of the decanter are calculated so that the residence time of the solvent-oil mixture is between 4 and 20 minutes and preferably between 8 and 15 minutes and so that the rate of rise of the solvent-oil mixture is always less than 1 cm per second.
- the settling tank preferably operates isothermally, that is to say at a temperature substantially equal to the inlet temperature of the mixture, apart from the heat losses.
- the asphalt phase is collected in an underlying boot (8) where a level control causes it to be drawn off by the pump - (10) via the pipes (9 and 11) up to the column (12) where the washing takes place of the asphaltic phase and the selective repeptisation of a part of the resins by the solvent S'1 recycled from the fractionation unit (23) via the pipe (14).
- the exchanger (15) makes it possible to adjust the temperature of the washing solvent to the optimum temperature for the envisaged operation.
- the pressure applied in the washing tower is preferably very close to the upstream decanter pressure; the temperature of the solvent S'1 at the entrance to the tower will preferably be 5 to 50 ° C lower than the temperature of the asphalt phase introduced by line (11) at the top of the washing zone.
- the temperature gradient established between the inlets of the pipes (11) and (14) makes it possible to adjust for a given solvent flow rate S'1 and an asphaltic phase of a given nature the rate of repeptation of the resins, that is to say -dith allows to regulate the asphalt yield and the softening point of the asphalt.
- the solvent flow rate also affects the asphalt yield and its softening point. According to the process which is the subject of the invention, this flow rate is adjusted so that the volume ratio of solvent / asphalt phase is between 0.5 and 8 and preferably between 1 and 5.
- the column is advantageously operated so that the level of settling of the asphalt phase (17) is adjusted below the injection pipe (14) of the solvent S'1 and more precisely below the distribution device ( 16) of this same solvent in the continuous solvent-oil medium although a setting at a higher level still gives good performance.
- the column is preferably equipped with baffle plates (13) which allow better contact between the micelles of the asphalt phase and the upward flow of solvent. These baffles are preferably calculated in such a way that the rate of rise of the solvent or more precisely of the solvent phase added with the washed oil and the peptized resins remains less than 36 m / hour.
- the column head is preferably devoid of baffles to reduce this rate of rise and can be designed with a diameter slightly higher to avoid any entrainment of the colloidal particles of asphaltic phase of diameter lower than the micron.
- the product from the top of the column is recycled in the liquid phase via the line (18) in the solvent S1 slightly upstream of the mixing valve (2).
- the asphalt phase swollen with almost pure solvent is withdrawn from the bottom of the washing column by means of the pump (20) via the line (19) up to the vaporization tower (21) where the asphalt, which has been withdrawn, is separated. via line (22), solvent which is recycled through the. line (4), either at the head of the decanter, or upstream of this decanter and preferably at the level of the mixing valve.
- the recovery of the solvent associated with the deasphalted oil it is shown diagrammatically by the rectangle (23) and can for example be carried out in the process relating to the invention by vaporization of the solvent in a cascade of evaporators or of the exchanger type. conventional, either preferably of the falling film exchanger type or by separation of the solvent phase from the oil phase in a decanter operating under supercritical conditions or by ultrafiltration of the solvent on appropriate mineral membranes.
- the deasphalted oil leaves through the line (27).
- the decanter was in elongated form, was provided with a boot and was preferably inclined by 5 to 10 ° relative to the horizontal plane to allow the asphalt phase to flow freely towards the boot underlying.
- the invention does not however stipulate that this decanter is necessarily elongated; it can also be vertical as shown in FIG. 2, insofar as this geometry makes it possible to comply with the constraints of rising speed and of settling time recommended above. This geometry which requires less floor space will therefore be recommended for the treatment of annual capacities of less than 2 million tonnes:
- the decanter is, for process conditions, arranged vertically, the arrangement of the stages and the operating conditions recommended are strictly those which are the subject of the present invention.
- the method in a last variant can also be applied to the case where the operation is carried out in two stages with precipitation of a hard asphalt phase in a first stage and precipitation of a resin phase in a second stage.
- the simple idea of separate production of an asphalt phase and a resin phase has been known and practiced industrially for a very long time and is not part of the body of the invention.
- the object of the invention relates to the fact that each stage, as shown in FIG. 3, comprises a staggering of the 3 elementary stages: mixing-precipitation, decantation, washing-repeping, completely similar to that described in the previous variants where the asphalts and resins were precipitated in a single phase.
- the precipitation and decantation are carried out in the first stage at a temperature of 20 to 60 ° C lower than that which is applied when the precipitation is carried out in one go, that is to say say at the minimum temperature so that the asphalt phase remains liquid and sufficiently fluid at the outlet of the decanter to be able to be handled without problem.
- the step of washing the asphalt phase in this variant is carried out at a temperature equal to or slightly higher than that of the decanter.
- the solvent-oil-resin mixture from washing through line 18 is mixed with the solvent-oil-resin mixture from the first decanter (24).
- the oil-resin solvent mixture is heated (35) to a temperature 30 to 70 ° C higher than that applied in the first decanter.
- the solvent-oil-resins mixture preferably passes through the tubes of the exchanger and not on the shell side; moreover the flow of the solvent-oil-resins mixture will be a gravity flow; the extract is separated by the line (38) for fractionation in the separator (23).
- the raffinate is sent by line (39) to the washer (40).
- the ascending speeds and the residence times in the settling tank (37) and the column (40) are included in the ranges recommended above for the tank (7) and the column (12).
- the solvent / resin phase ratio at (40) is between 2 and 4.
- the solvent-oil mixture is recycled via line (43) upstream of the exchanger (35).
- the solvent for washing the resin phase is injected through line (41) at the bottom of the column - (40) for washing the resin phase after passing through the exchanger (42) so as to adjust the temperature of said solvent at a value lower than that of the decanter (37) from 5 to 30 ° C.
- the resin phase (44) is released from the solvent entrained in (45) by "flash” and / or steam entrainment.
- the resin phase (46) is recovered.
- the recovered solvent is sent via line - (47) to line (4).
- the process therefore makes it possible, in two stages of similar designs, to ensure very flexibly the production of an oil phase (27) devoid of asphaltenes and very poor in resins as well as the simul tan of an asphalt phase and a resin phase, the proportions of these last two phases can be adjusted at will, for a given load, a solvent and given solvent levels, by the choice of temperatures applied in ( 7 ) and (37) on the one hand, in (15) and (42) on the other hand.
- a SAFANIYA residue is deasphalted by addition of a solvent essentially consisting of a mixture of pentane and isopentane.
- the characteristics of the residue are presented in Table 1 and the composition of section C5 in Table 2.
- the operation is carried out in a unit capable of treating from 1 t / h to 3 t / h of residue and whose process characteristics are similar to those which are the subject of the invention described above.
- the tubular exchanger is arranged vertically.
- the washing-repeating column is fitted with interwoven horizontal baffles so as to achieve the equivalent of 2 theoretical stages for both mass and heat transfer.
- a series of 10 tests were carried out in accordance with the diagram in FIG. 1.
- the operating conditions applied are presented in table 3.
- the solvent of the oil-solvent mixture was recovered for 90% in a cascade of film evaporators falling and for the last 10 percent by stripping of the oily phase under pressure conditions lower than those applied in the decanting operation.
- Table 4 gives the yields and some characteristics of the products obtained.
- the deasphalting of a BOSCAN atmospheric residue is carried out by adding the same solvent of the C5 cut type as that used in Example 1.
- the operation is carried out in the same unit as that described in the context of Example 1.
- Table 6 gives the essential characteristics of the charge treated and Table 7 the yields and characteristics of the products obtained. This example was more particularly chosen to illustrate the importance of the washing step on the yields of deasphalted oil. This series of tests further highlights the importance of the conditions applied in the washing step.
- the oil yields are higher the lower the washing temperature and the solvent / asphalt phase ratio which, at the outlet of the settling tank, is composed of the asphalt swollen with solvent and oil, is between 1.6 and 2 times the volume of the final asphalt coming out of the washing tower. This implies that the ratio of the solvent to the asphalt phase entering the washing tower in the previous tests remains well between 0.5 and 8.
- the deasphalting of the SAFANIYA vacuum residue is carried out, the characteristics of which are presented in Table 1 but using for the precipitation a C4 cut containing by weight 3% of propane, 35% of isobutane, 61% of butane and 1% of isopentane.
- the tests are carried out in the same unit as that described in the previous examples.
- the operating conditions of the series of tests are summarized in Table 8, the yields and characteristics of the products obtained are presented in Table 9.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
La charge (1) est introduite à 100-220°C, en mélange avec un solvant de désasphaltage (3 et 4) dans un décanteur (7). L'huile désasphaltée (24) est séparée du solvant (23). L'asphalte (9) est lavé dans une colonne puis séparé du liquide de lavage (21).The feed (1) is introduced at 100-220 ° C, mixed with a deasphalting solvent (3 and 4) in a decanter (7). The deasphalted oil (24) is separated from the solvent (23). The asphalt (9) is washed in a column and then separated from the washing liquid (21).
Description
Le procédé qui fait l'objet de la présente invention s'applique au traitement des résidus de pétroles bruts conventionnels, que ce soit des résidus atmosphériques ou des résidus sous vide, ainsi qu'au traitement des huiles lourdes ou extra lourdes étêtées telles qu'on peut les obtenir, par exemple, à partir des gisements de la FAJA PE-TROLIFERA au VENEZUELA ou des gisements de l'ATHABASCA au CANADA. Par extension, le procédé tel qu'il est revendiqué pourra également être avantageusement utilisé pour le traitement de résidus atmosphériques ou sous-vide qui sont issus d'un autre traitement préalable thermique ou catalytique tel que viscoréduction, hydrovis- coréduction, traitement thermique en présence d'un solvant donneur d'hydrogène, hydrotraitements catalytiques divers avec conversion plus ou moins poussée de la charge traitée.The process which is the subject of the present invention applies to the treatment of residues of conventional crude oils, whether atmospheric residues or residues under vacuum, as well as to the treatment of heavy or extra heavy oils topped such as they can be obtained, for example, from the deposits of FAJA PE-TROLIFERA in VENEZUELA or from the deposits of ATHABASCA in CANADA. By extension, the method as claimed may also be advantageously used for the treatment of atmospheric or vacuum residues which result from another thermal or catalytic preliminary treatment such as visbreaking, hydrocoreduction, thermal treatment in the presence of a hydrogen donor solvent, various catalytic hydrotreatments with more or less extensive conversion of the charge treated.
Ces diverses charges sont caractérisées par le fait qu'elles contiennent des résines et des asphaltènes, produits organiques de poids moléculaire élevé, riches en hétéroatomes S, N et O auxquels sont complexés des métaux et en particulier le nickel et le vanadium.These various charges are characterized by the fact that they contain resins and asphaltenes, organic products of high molecular weight, rich in heteroatoms S, N and O which are complexed with metals and in particular nickel and vanadium.
Les inconvénients que procurent en raffinage ces asphaltènes et résines sont bien connus, que ce soit dans le domaine des procédés catalytiques ou celui des procédés thermiques.The drawbacks that these asphaltenes and resins provide in refining are well known, whether in the field of catalytic processes or that of thermal processes.
Ces inconvénients sont liés à leur forte teneur en hétéroatomes mais surtout à leur faible rapport H/C et à la présence des métaux, nickel et vanadium complexés.These drawbacks are linked to their high content of heteroatoms but above all to their low H / C ratio and to the presence of complexed metals, nickel and vanadium.
En craquage catalytique, en présence de catalyseurs zéolithiques, par exemple, la présence dans la charge de composés de ce type entraîne simultanément l'augmentation du dépôt de coke sur le catalyseur au risque de rompre l'équilibre thermique de l'unité et d'élever la température de régénération jusqu'à des valeurs telles que les zéolithes perdent rapidement leur cristallinité, la présence de nickel entraîne le dépôt de ce même métal sur le catalyseur avec comme conséquence l'accroissement de la production de gaz inconden- sables et d'hydrogène et l'accroissement du dépôt de coke. Quant au vanadium, lorsqu'il se dépose sur le catalyseur, il peut également former avec les zéolithes échangées aux terres rares, qui constituent la phase catalytique active de catalyseurs usuels de ce type de réaction, un composé mixte qui entraîne la perte de cristallinité et, partant, la perte d'activité.In catalytic cracking, in the presence of zeolitic catalysts, for example, the presence in the charge of compounds of this type simultaneously causes the increase in the deposition of coke on the catalyst at the risk of upsetting the thermal equilibrium of the unit and of raising the regeneration temperature to values such that the zeolites quickly lose their crystallinity, the presence of nickel causes the deposition of this same metal on the catalyst with as a consequence the increase in the production of incondensable gases and hydrogen and increased coke deposition. As for vanadium, when it is deposited on the catalyst, it can also form with the rare earth exchanged zeolites, which constitute the active catalytic phase of catalysts usual for this type of reaction, a mixed compound which causes the loss of crystallinity and hence the loss of activity.
En hydrotraitement, des empoisonnements de catalyseur aussi notoires sont bien connus. Le dépôt progressif de sulfures de nickel et de vana- dyle sur les agents actifs que sont les sulfures de groupe VIA (molybdène et tungstène) promus par les sulfures du groupe VIII (nickel et cobalt) entraîne une diminution progressive des activités désulfurante, déazotante et hydrogénante de ces catalyseurs.In hydrotreating, such notorious catalyst poisonings are well known. The progressive deposition of nickel and vanadium sulphides on the active agents which are the sulphides of group VIA (molybdenum and tungsten) promoted by the sulphides of group VIII (nickel and cobalt) leads to a progressive reduction in the desulphurizing, denitrogenating and hydrogenating these catalysts.
En hydrocracking la teneur en asphaltènes, déterminée par précipitation à l'heptane selon la norme française AFNOR NFT 60115, doit être quasiment indétectable si l'on veut éviter un empoisonnement rapide des sites acides du catalyseur avec production subséquente de coke.In hydrocracking the asphaltenes content, determined by heptane precipitation according to the French standard AFNOR NFT 60115, must be almost undetectable if one wishes to avoid rapid poisoning of the acid sites of the catalyst with subsequent production of coke.
En visbreaking, la sévérité des conditions opératoires est également liée à la teneur en ces produits asphalténiques et à leur stabilité intrinsèque. Pour une charge donnée, unesévérité trop élevée exprimée en termes de température et (ou) de temps de maturation trop élevées, entraîne la coagulation des molécules asphalténiques partiellement craquées avec apparition des micelles colloidales qui ont tendance à décanter durant le stockage et à colmater les filtres des appareils d'utilisation.In visbreaking, the severity of the operating conditions is also linked to the content of these asphaltenic products and to their intrinsic stability. For a given load, an excessively high severity expressed in terms of temperature and / or of too high maturation time, results in the coagulation of partially cracked asphaltenic molecules with the appearance of colloidal micelles which tend to decant during storage and to clog the filters. user devices.
Tous ces inconvénients ont incité les raffineries à chercher à séparer sélectivement les composés asphalténiques et résiniques de la fraction huileuse qui les contenait. Cette séparation appelée désasphaltage par un solvant consiste à rompre l'équilibre existant entre les asphaltènes et le milieu malténique environnant par addition d'un solvant qui diminue la viscosité et surtout la tension superficielle du milieu huileux. Les solvants recommandés sont généralement des paraffines ou (et) des oléfines légères à 3, 4, 5, 6, et (ou) 7 atomes de carbone. En fait la paraffine légère joue par rapport aux asphaltènes et éventuellement par rapport aux résines le rôle d'antisolvant. Asphaltènes et résines sont rejetés hors du milieu huileux sous forme d'une phase distincte et ceci d'autant mieux que la densité et la tension superficielle du milieu solvant plus huile sont plus faibles. En conséquence le rendement en "phase asphaltique" et la qualité de l'huile désasphaltée sont liés pour une charge donnée aux paramètres et variables suivants : nature du solvant, taux de solvant, température et pression mais dépendent également très fortement des caractéristiques de la technologie utilisée.All these drawbacks have prompted refineries to seek to selectively separate the asphaltene and resin compounds from the oily fraction which contained them. This separation, called deasphalting by a solvent, consists in breaking the balance existing between the asphaltenes and the surrounding maltenic medium by adding a solvent which decreases the viscosity and especially the surface tension of the oily medium. The recommended solvents are generally paraffins or (and) light olefins with 3, 4, 5, 6, and (or) 7 carbon atoms. In fact, light paraffin plays an anti-solvent role with respect to asphaltenes and possibly with respect to resins. Asphaltenes and resins are rejected out of the oily medium in the form of a distinct phase and this all the better when the density and the surface tension of the solvent medium plus oil are lower. Consequently, the yield in "asphalt phase" and the quality of the deasphalted oil are linked for a given charge to the following parameters and variables: nature of the solvent, solvent content, temperature and pressure but also very strongly depend on the characteristics of the technology. used.
Le procédé qui fait l'objet de la présente invention a donc trait au désasphaltage par des solvants hydrocarbonés comprenant des hydrocarbures paraffiniques ou oléfiniques ayant de 3 à 7 atomes de carbone. Cependant la mise en oeuvre du solvant hydrocarboné est réalisée de telle manière qu'elle permet d'obtenir des rendements excellents d'une huile de très bonne qualité avec un taux de solvant minimum et qu'elle permet de concevoir l'extrapolation industrielle à des unités aptes à traiter en une seule ligne des capacités annuelles de l'ordre de 2 à 4 millions de tonnes.The process which is the subject of the present invention therefore relates to deasphalting with hydrocarbon solvents comprising paraffinic or olefinic hydrocarbons having from 3 to 7 carbon atoms. However, the use of the hydrocarbon solvent is carried out in such a way that it makes it possible to obtain excellent yields of a very good quality oil with a minimum solvent content and that it makes it possible to design industrial extrapolation to units capable of processing annual capacities of around 2 to 4 million tonnes in a single line.
Un premier objet de la présente invention est de réaliser le désasphaltage d'une charge d'hydrocarbures renfermant des asphaltènes notamment d'un résidu ou d'une huile lourde, par un solvant ayant de 3 à 7 atomes de carbone de manière à obtenir une huile contenant moins de 0,05 % d'asphaltènes précipités par l'heptane selon la norme AFNOR NFT 60115.A first object of the present invention is to carry out the deasphalting of a hydrocarbon feed containing asphaltenes, in particular of a residue or of a heavy oil, with a solvent having 3 to 7 carbon atoms so as to obtain a oil containing less than 0.05% of asphaltenes precipitated by heptane according to standard AFNOR NFT 60115.
Un deuxième objet de l'invention est de réaliser sélectivement l'opération, c'est-à-dire d'obtenir concomittamment à la qualité de l'huile désasphaltée un très bon rendement en cette même huile et ceci en mettant oeuvre le minimum de solvant, c'est-à-dire des rapports volu métriques solvantihuile pouvant être aussi bas que 3/1 à 4/1. Un troisième objet_de l'invention consiste à réaliser l'opération en séparant-les opérations physico-chimiques élémentaires qui composent l'opération globale de désasphaltage : mélange-précipitation, décantation de la phase asphaltique, lavage-peptisation de la phase asphaltique.A second object of the invention is to selectively carry out the operation, that is to say to obtain concomitantly with the quality of the deasphalted oil a very good yield in this same oil and this by using the minimum of solvent, i.e. solvent-to-oil metric ratios, which may be as low as 3/1 to 4/1. A third object of the invention consists in carrying out the operation by separating the elementary physicochemical operations which make up the overall deasphalting operation: mixing-precipitation, decantation of the asphalt phase, washing-peptization of the asphalt phase.
Le procédé qui fait l'objet de l'invention permet le traitement de capacités annuelles de résidus ou huiles lourdes très importantes dans un seul décanteur avec respect des critères de qualité et de rendement qui constituent le premier et le second objet de l'invention.The process which is the subject of the invention allows the treatment of very large annual residues or heavy oils in a single decanter with respect for the quality and yield criteria which constitute the first and second subject of the invention.
L'Art antérieur recouvre un très large spectre de techniques de désasphaltage basant leur originalité sur la nature du solvant utilisé, sur la gamme de conditions opératoires préconisées, sur la mise en oeuvre d'additifs spéciaux, sur certaines caractéristiques techniques du procédé ou sur la réalisation de l'opération en plusieurs étapes successives.The prior art covers a very wide spectrum of deasphalting techniques basing their originality on the nature of the solvent used, on the range of operating conditions recommended, on the use of special additives, on certain technical characteristics of the process or on the realization of the operation in several successive stages.
C'est ainsi que le brevet US n 1948296 revendique comme solvant le propane, le n-butane, riso- butane, des fractions pétrolières légères, du naphta, des alcools ou des mélanges de ces divers produits.Thus, US Pat. No. 1948,296 claims propane, n-butane, risobutane, light petroleum fractions, naphtha, alcohols or mixtures of these various products as a solvent.
Le brevet US N° 2081 473 présente le concept général de l'opération de désasphaltage, préconise en conséquence toute la gamme de solvants généralement cités, du méthane au naphta en passant par le propane, butane et l'essence légère, mais il ne spécifie ni la gamme de rapports solvant/huile recommandés, ni à plus forte raison, la dissociation "de facto" de l'opération en ses étapes physico chimiques élémentaires avec application pour chaque étape d'une gamme de conditions opératoires optimales.US Patent No. 2,081,473 presents the general concept of the deasphalting operation, consequently recommends the whole range of solvents generally cited, from methane to naphtha via propane, butane and light gasoline, but it does not specify neither the range of solvent / oil ratios recommended, nor a fortiori, the "de facto" dissociation of the operation into its elementary physico-chemical stages with application for each stage of a range of optimal operating conditions.
Les brevets US N 2587643 et 2882219 revendiquent l'ajoût de modifi cateurs ou additifs soit au solvant, à savoir des carbonates organiques pour le brevet US N°2587643, soit à la charge, à savoir des aromatiques pour le brevet US N°2882219.US Patents No. 2587643 and 2882219 claim the addition of modifiers or additives either with solvent, namely organic carbonates for US Patent No. 2587643, or with charges, namely aromatics for US Patent No. 2882219.
Les brevets US N° 3278415 et 3331394 préconisent également l'adjonction d'additifs au solvant à savoir le phénol et le glycol respectivement.US patents No. 3278415 and 3331394 also recommend the addition of solvent additives, namely phenol and glycol respectively.
Quant aux brevets US N° 2002004, 2101308 et 3074882, ils préconisent de réaliser l'opération de désasphaltage en deux ou plusieurs étapes suces- sives mais les enchaînements d'étapes envisagés sont conceptuellement différents de l'échelonnement d'étapes de la présente invention. C'est ainsi que le brevet US N° 2002004 concerne un procédé de désasphaltage en deux étages avec distillation intermédiaire de la phase hydrocarbonée riche en solvant issue de la première zone d'extraction. L'effluent du fond de colonne de distillation est soumis à une deuxième étape de désasphaltage qui permet d'isoler, en fait, des résines.As for US Pat. Nos. 2002004, 2101308 and 3074882, they recommend carrying out the deasphalting operation in two or more successive stages but the sequences of stages envisaged are conceptually different from the staggering of stages of the present invention. . Thus, US Patent No. 2002004 relates to a two-stage deasphalting process with intermediate distillation of the hydrocarbon phase rich in solvent from the first extraction zone. The effluent from the bottom of the distillation column is subjected to a second deasphalting step which in fact makes it possible to isolate resins.
Le brevet US N° 2101 308 propose une première étape de désasphaltage avec de l'essence légère comme solvant ; le mélange huile-essence légère issu de cette première est traitée au SO2, pour une élimination subséquente des résines et aromatiques.US Patent No. 2101 308 proposes a first step of deasphalting with light gasoline as solvent; the light oil-essence mixture from this first is treated with SO 2 , for a subsequent elimination of resins and aromatics.
Le brevet US N° 3074 882 opère une première précipitation au butane. Le butane est séparé du mélange huile-butane et l'huile résiduelle est traitée au propane dans deux étages sucessifs permettant d'obtenir d'une part des résines et d'autre part une huile désasphaltée et dérésinée.US Patent No. 3,074,882 operates a first butane precipitation. The butane is separated from the oil-butane mixture and the residual oil is treated with propane in two successive stages making it possible, on the one hand, to obtain resins and, on the other hand, a deasphalted and de-resinated oil.
L'emploi de solvants distincts dans deux étapes du procédé est également décrit dans GB 735.333.The use of separate solvents in two stages of the process is also described in GB 735.333.
Quant au brevet US N° 3830_ 732, il préconise également un désasphaltage en deux étapes consistant tout d'abord à précipiter asphaltènes et résines avec un premier solvant dans un rapport volumétrique .solvant/huile inférieur à 4/1 ; dans une deuxième étape la phase asphalténique issue de la première étape est à son tour repeptisée par un solvant ayant au moins un atome de carbone de plus que le solvant préconisé dans la première étape. Cette peptisation de la phase asphaltique permet de redissoudre les résines dans le second solvant. Après récupération de l'un et l'autre solvants qui sont recyclés à leurs étages respectifs, on dispose donc d'une huille désasphaltée et dérésinée, d'une phase résinique et d'une phase asphaltique. Une revendication particulière de ce brevet préconise que l'opération en première étape est réalisée à une température supérieure à celle de là seconde étape.As for US Patent No. 3830_ 732, it recommends also a two-stage deasphalting consisting first of all in precipitating asphaltenes and resins with a first solvent in a volumetric .solvent / oil ratio of less than 4/1; in a second step, the asphaltic phase resulting from the first step is in turn repeptified by a solvent having at least one carbon atom more than the solvent recommended in the first step. This peptization of the asphalt phase makes it possible to redissolve the resins in the second solvent. After recovery of both of the solvents which are recycled to their respective stages, there is therefore a deasphalted and de-resinated oil, a resin phase and an asphalt phase. A particular claim of this patent recommends that the operation in the first step is carried out at a temperature higher than that of the second step.
Si, conceptuellement, la présente invention présente quelque analogie avec le brevet US N° 3830 732, elle en diffère manifestement par trois points essentiels.
- -La repeptisation de la phase asphaltique est réalisée par substantiellement le même solvant que la précipitation de cette même phase asphaltique.
- -Le mélange du solvant avec l'huile, de même que la précipitation, sont réalisés avant le décanteur et non dans le décanteur lui-même.
- -Le fait de n'utiliser qu'un seul solvant permet la mise en oeuvre d'une technique originale pour réaliser de façon optimum l'enchaînement des étapes que sont le méiange-précipitation, la décantation de la phase asphaltique et son lavage. Selon la capacité à traiter, la technique revendiquée dans la présente invention pourra se présenter sous diverses variantes relevant toutes du même principe de base.
- -Les recyclages préconisés dans les diverses variantes du procédé permettent d'accéder à un rendement maximum en une huile désasphaltée . contenant moins de 0,05 % d'asphalténés (Norme AFNOR NFT 60115).
- -The repeptisation of the asphalt phase is carried out by substantially the same solvent as the precipitation of this same asphalt phase.
- -The mixing of the solvent with the oil, as well as the precipitation, are carried out before the decanter and not in the decanter itself.
- -The fact of using only one solvent allows the implementation of an original technique to achieve optimally the sequence of steps that are the méiange-precipitation, decantation of the asphalt phase and washing. Depending on the capacity to be treated, the technique claimed in the present invention may be presented in various variants, all relating to the same basic principle.
- -Recycling recommended in the various process variants allows access to maximum yield of a deasphalted oil. containing less than 0.05% of asphaltenes (AFNOR Standard NFT 60115).
Le procédé de l'invention peut mettre en oeuvre les caractéristiques préférées suivantes :
- Le solvant de lavage de la phase asphalténique est le même que celui mis en oeuvre pour la précipitation.
- The asphaltic phase washing solvent is the same as that used for the precipitation.
Le mélange entre charge à désasphalter et solvant de désasphaltage est réalisé en amont de l'échangeur qui élève la température de mélange à la valeur requise pour réaliser une bonne précipitation et une bonne décantation.The mixture between the charge to be deasphalted and the deasphalting solvent is produced upstream of the exchanger which raises the mixing temperature to the value required to achieve good precipitation and good decantation.
Le mélange charge-solvant passe dans les tubes de l'échangeur et non côté calandre.The charge-solvent mixture passes through the tubes of the exchanger and not on the shell side.
Le temps de résidence du mélange charge-solvant dans la zone de mélange précipitation est compris entre 5 sec et 5 min, de préférence entre 20 secondes et 120 secondes.The residence time of the charge-solvent mixture in the precipitation mixing zone is between 5 sec and 5 min, preferably between 20 seconds and 120 seconds.
Le temps de résidence du mélange dans la zone de décantation est compris entre 4 et 20 minutes.The residence time of the mixture in the settling zone is between 4 and 20 minutes.
Le temps de résidence du mélange huile-solvant dans la zone de lavage reste également compris entre 4 et 20 minutes.The residence time of the oil-solvent mixture in the washing zone also remains between 4 and 20 minutes.
Les vitesses ascensionnelles des mélanges huile-solvant tant dans la zone de décantation que dans la zone de lavage resteront utilement inférieures à 1 cm/s* et de préférence inférieure à 0,5 cm/s.The upward speeds of the oil-solvent mixtures both in the settling zone and in the washing zone will usefully remain less than 1 cm / s * and preferably less than 0.5 cm / s.
La température appliquée dans la zone de lavage sera inférieure de 5 à 50°C à la température appliquée dans la zone de décantation.The temperature applied in the washing zone will be 5 to 50 ° C lower than the temperature applied in the decanting zone.
Le mélange huile-solvant issu de la zone de lavage sera recyclé dans le décanteur et de façon plus avantageuse encore en amont de l'échangeur situé à l'entrée de la zone de décantation.The oil-solvent mixture from the washing zone will be recycled in the decanter and even more advantageously upstream from the exchanger located at the entrance to the decantation zone.
Le rapport solvant/phase asphaltique préconisé dans la zone de lavage sera compris entre 0,5 et 8 et de préférence entre 1 et 5.The solvent / asphalt phase ratio recommended in the washing zone will be between 0.5 and 8 and preferably between 1 and 5.
Selon l'une de ses variantes le procédé peut comporter deux étages, chaque étage incluant les trois étapes élémentaires de précipitation, décantation et lavage. Dans ce cas précis, la température préconisée dans chaque étape du premier étape est de préférence en moyenne inférieure de 10 à 40 °C à la température de chaque étape correspondante du second étage. Le procédé qui fait l'objet de l'invention peut utiliser les solvants hydrocarbonés ayant de 3 à 7 atomes 'de carbones, paraffiniques, oléfiniques ou cyclani- ques, seuls, mélangés entre eux en proportions diverses ou additionnés d'additifs, par exemple, du type phénol, glycol, alcools de C1 à C6. Le procédé de la présente invention se prête plus avantageusement à l'utilisation de solvants paraffiniques et (ou) oléfiniques. ayant de 4 à 6 atomes de carbone.According to one of its variants, the process can comprise two stages, each stage including the three basic stages of precipitation, decantation and washing. In this specific case, the temperature recommended in each stage of the first stage is preferably on average 10 to 40 ° C lower than the temperature of each corresponding stage of the second stage. The process which is the subject of the invention can use hydrocarbon solvents having from 3 to 7 carbon atoms, paraffinic, olefinic or cyclanic, alone, mixed together in various proportions or added with additives, for example , of the phenol, glycol type, alcohols from C1 to C6. The process of the present invention lends itself more advantageously to the use of paraffinic and / or olefinic solvents. having 4 to 6 carbon atoms.
La figure 1 présente les caractéristiques essentielles du procédé correspondant à l'invention. La charge à traiter est introduite par la conduite (1) jusqu'à la vanne de mélange (2), où l'on introduit le solvant S1 et S"1 provenant de la récupération du solvant (23) contenu respectivement dans le mélange solvant-huile ou dans le mélange solvantphase asphaltique (conduites 3 et 4). Le mélange charge-solvant passe dans un échangeur (5) où il est porté à la température requise pour l'opération de désasphaltage considérée ; cette température variera entre 100 et 200°C selon le solvant considéré (par exemple isobutane, butane, isopen- tane, pentane, essence légère) selon le type de charge à traiter (brut étêté, résidu atmosphérique, résidu sous vide), selon l'origine du pétrole brut considéré et selon le rapport solvant/huile mis en oeuvre. A titre d'exemple dans le cas d'un résidu sous vide du type SAFANYA, pour un rapport solvant/huile allant de 3/1 à 5/1, la température à la sortie de l'échangeur sera comprise entre 190 et 170°C et la pression comprise entre 4 et 5 M Pascals dans la mesure où l'on vise d'obtenir une huile désasphaltée contenant moins de 0,05 % d'asphaltes selon la NORME AFNOR NFT 60115. Il importe de spécifier que selon une des caractéristiques préférées du procédé, le mélange charge-solvant passe dans les tubes de l'échangeur et non côté calandre, de plus, il est recommandé de réaliser dans cet échangeur un écoulement gravitaire c'est-à-dire que le mélange charge-solvant parcourt de haut en bas les tubes de l'échangeur.FIG. 1 presents the essential characteristics of the method corresponding to the invention. The load to be treated is introduced via line (1) to the mixing valve (2), where the solvent S1 and S "1 is introduced, originating from the recovery of the solvent (23) contained respectively in the solvent mixture. -Oil or in the asphaltic solvent-phase mixture (lines 3 and 4). charge-solvent passes through an exchanger (5) where it is brought to the temperature required for the deasphalting operation considered; this temperature will vary between 100 and 200 ° C depending on the solvent considered (for example isobutane, butane, isopentane, pentane, light gasoline) depending on the type of feed to be treated (headless crude, atmospheric residue, vacuum residue), depending on the origin of the crude oil considered and according to the solvent / oil ratio used. For example, in the case of a vacuum residue of the SAFANYA type, for a solvent / oil ratio ranging from 3/1 to 5/1, the temperature at the outlet of the exchanger will be between 190 and 170 °. C and the pressure between 4 and 5 M Pascals insofar as the aim is to obtain a deasphalted oil containing less than 0.05% of asphalts according to the AFNOR NFT 60115 STANDARD. It is important to specify that according to one of the preferred characteristics of the process, the charge-solvent mixture passes through the tubes of the exchanger and not on the shell side, moreover, it is recommended to carry out a gravity flow in this exchanger, that is to say that the charge-solvent mixture runs up and down the heat exchanger tubes.
A la sortie de l'échangeur, le mélange porté à la température requise est introduit par la conduite (6) dans le ballon extracteur (7) où s'opère la décantation. La précipation de la phase asphaltique commence quasi instantanément au niveau de la vanne de mélange pour se pour suivre dans l'échangeur (5) au fur et à mesure que s'élève la température. Pour assurer une bonne précipitation et une bonne coagulation des miscelles asphaltiques avant l'entrée du ballon décanteur, on préfère que le temps de résidence du mélange entre la vanne de mélange et l'entrée du décanteur soit compris entre 5 secondes et 5 minutes et de préférence entre 20 secondes et 120 secondes. De même la turbulence dans la canalisation 6 est utilement contrôlée pour éviter l'éclatement en trop petites particules des miscelles de phase asphaltique en suspension dans le milieu huile-solvant ; en pratique, il est recommandé qu'à la sortie de l'échangeur le nombre de REYNOLDS du mélange soit compris entre 2.10° et 106 et de préférence entre 5.10* et 5.105. Dans cette gamme de valeurs on constate en outre qu'on initie l'agglomération des micelles rendant ainsi plus aisée et plus rapide la décantation ultérieure dans le ballon décanteur.At the outlet of the exchanger, the mixture brought to the required temperature is introduced via line (6) into the extractor flask (7) where the decantation takes place. The precipitation of the asphalt phase begins almost instantaneously at the level of the mixing valve and is followed in the exchanger (5) as the temperature rises. To ensure good precipitation and good coagulation of the asphaltic miscelles before the entry of the settling tank, it is preferred that the residence time of the mixture between the mixing valve and the entry of the settling tank is between 5 seconds and 5 minutes and preferably between 20 seconds and 120 seconds. Similarly, the turbulence in
Dans le ballon décanteur (7) s'effectue l'agglomération des micelles de phase asphaltique et leur décantation. Le volume et la géométrie du décanteur sont calculés pour que le temps de résidence du mélange solvant-huile soit compris entre 4 et 20 minutes et de préférence entre 8 et 15 minutes et pour que la vitesse ascensionnelle du mélange solvant-huile soit toujours inférieure à 1 cm par seconde. Le ballon décanteur fonctionne de préférence de façon isotherme, c'est-à-dire à une température sensiblement égale à la température d'entrée du mélange, aux pertes thermiques près. La phase asphaltique est recueillie dans une botte sous jacente (8) où une régulation de niveau provoque son soutirage par la pompe - (10) via les conduites (9 et 11) jusqu'à la colonne (12) où s'opèrent le lavage de la phase asphaltique et la repeptisation sélective d'une partie des résines par le solvant S'1 recyclé à partir de l'unité de fractionnement (23) par la conduite (14). L'échangeur (15) permet d'ajuster la température du solvant de lavage à la température optimum pour l'opération envisagée.In the settling tank (7), the asphaltic phase micelles are agglomerated and decanted. The volume and the geometry of the decanter are calculated so that the residence time of the solvent-oil mixture is between 4 and 20 minutes and preferably between 8 and 15 minutes and so that the rate of rise of the solvent-oil mixture is always less than 1 cm per second. The settling tank preferably operates isothermally, that is to say at a temperature substantially equal to the inlet temperature of the mixture, apart from the heat losses. The asphalt phase is collected in an underlying boot (8) where a level control causes it to be drawn off by the pump - (10) via the pipes (9 and 11) up to the column (12) where the washing takes place of the asphaltic phase and the selective repeptisation of a part of the resins by the solvent S'1 recycled from the fractionation unit (23) via the pipe (14). The exchanger (15) makes it possible to adjust the temperature of the washing solvent to the optimum temperature for the envisaged operation.
La pression appliquée dans la tour de lavage est de préférence très proche de la pression de décanteur en amont ; la température du solvant S'1 à l'entrée de la tour sera de préférence inférieure de 5 à 50°C à la température de la phase asphaltique introduite par la conduite (11) au sommet de la zone de lavage. Le gradient de température s'établissant entre les entrées des conduites (11) et (14) permet de régler pour un débit de solvant S'1 donné et une phase asphaltique de nature donnée le taux de repeptisation des résines, c'est-à-dire permet de régler le rendement en asphalte et le point de ramollissement de l'asphalte. Le débit de solvant influe également sur le rendement en asphalte et sur son point de ramollissement. Selon le procédé qui fait l'objet de l'invention ce débit est réglé de façon à ce que le rapport volumique solvant/phase asphaltique soit compris entre 0,5 et 8 et de préférence entre 1 et 5.The pressure applied in the washing tower is preferably very close to the upstream decanter pressure; the temperature of the solvent S'1 at the entrance to the tower will preferably be 5 to 50 ° C lower than the temperature of the asphalt phase introduced by line (11) at the top of the washing zone. The temperature gradient established between the inlets of the pipes (11) and (14) makes it possible to adjust for a given solvent flow rate S'1 and an asphaltic phase of a given nature the rate of repeptation of the resins, that is to say -dith allows to regulate the asphalt yield and the softening point of the asphalt. The solvent flow rate also affects the asphalt yield and its softening point. According to the process which is the subject of the invention, this flow rate is adjusted so that the volume ratio of solvent / asphalt phase is between 0.5 and 8 and preferably between 1 and 5.
La colonne est avantageusement opérée de façon à ce que le niveau de décantation de la phase asphaltique (17) soit réglé au dessous de la conduite d'injection (14) du solvant S'1 et plus précisément au-dessous du dispositif de distribution (16) de ce même solvant dans le milieu continu solvant-huile bien qu'un réglage à un niveau supérieur donne quand même de bonne performances. La colonne est de préférence équipée de plateaux en chicanes (13) qui permettent un meilleur contact entre les micelles de phase asphaltique et le courant ascendant de solvant. Ces chicanes sont de préférence, calculées de telle façon que la vitesse ascensionnelle du solvant ou plus précisément de la phase solvant additionnée de l'huile lavée et des résines peptisées reste inférieure à 36 m/heure. De toute manière la tête de colonne est de préférence dépourvue de chicanes pour réduire cette vitesse ascensionnelle et peut être conçue d'un diamètre légèrement supérieur pour éviter tout entraînement des particules colloidales de phase asphaltique de diamètre inférieur au micron. Dans un mode de réalisation du procédé, le produit issu du sommet de colonne est recyclé en phase liquide via la conduite (18) dans le solvant S1 légèrement en amont de la vanne de mélange (2).The column is advantageously operated so that the level of settling of the asphalt phase (17) is adjusted below the injection pipe (14) of the solvent S'1 and more precisely below the distribution device ( 16) of this same solvent in the continuous solvent-oil medium although a setting at a higher level still gives good performance. The column is preferably equipped with baffle plates (13) which allow better contact between the micelles of the asphalt phase and the upward flow of solvent. These baffles are preferably calculated in such a way that the rate of rise of the solvent or more precisely of the solvent phase added with the washed oil and the peptized resins remains less than 36 m / hour. In any case, the column head is preferably devoid of baffles to reduce this rate of rise and can be designed with a diameter slightly higher to avoid any entrainment of the colloidal particles of asphaltic phase of diameter lower than the micron. In one embodiment of the process, the product from the top of the column is recycled in the liquid phase via the line (18) in the solvent S1 slightly upstream of the mixing valve (2).
La phase asphaltique gonflée de solvant quasiment pur est soutirée du fond de la colonne de lavage grâce à la pompe (20) via la conduite (19) jusqu'à la tour de vaporisation (21) où l'on sépare l'asphalte, soutiré par la ligne (22), du solvant qui est recyclé par la. conduite (4), soit en tête du décanteur, soit en amont de ce décanteur et de préférence au niveau de la vanne de mélange. Quant à la récupération du solvant associé à l'huile désasphaltée, elle est schématisée par le rectangle (23) et peut par exemple être réalisée dans le procédé relevant de l'invention par vaporisation du solvant dans une cascade d'évaporateurs soit du type échangeur classique, soit de préférence du type échangeur à film tombant ou par séparation de la phase solvant de la phase huile dans un décanteur opérant dans les conditions supercritiques ou par ultrafiltration du solvant sur des membranes minérales appropriées. L'huile désasphaltée sort par la ligne (27).The asphalt phase swollen with almost pure solvent is withdrawn from the bottom of the washing column by means of the pump (20) via the line (19) up to the vaporization tower (21) where the asphalt, which has been withdrawn, is separated. via line (22), solvent which is recycled through the. line (4), either at the head of the decanter, or upstream of this decanter and preferably at the level of the mixing valve. As for the recovery of the solvent associated with the deasphalted oil, it is shown diagrammatically by the rectangle (23) and can for example be carried out in the process relating to the invention by vaporization of the solvent in a cascade of evaporators or of the exchanger type. conventional, either preferably of the falling film exchanger type or by separation of the solvent phase from the oil phase in a decanter operating under supercritical conditions or by ultrafiltration of the solvent on appropriate mineral membranes. The deasphalted oil leaves through the line (27).
Dans le mode de réalisation décrit plus haut, le décanteur se présentait sous forme allongée, était muni d'une botte et était de préférence incliné de 5 à 10° par rapport au plan horizontal pour permettre à la phase asphaltique de couler librement vers la botte sous jacente. L'invention ne stipule cependant pas que ce décanteur soit nécessairement allongé ; il peut également être vertical ainsi que présenté dans la figure 2, dans la mesure où cette géométrie permet de respecter les contraintes de vitesse ascensionnelle et de temps de décantation préconisées ci-dessus. Cette géométrie qui nécessite une moins grande surface au sol sera donc recommandée pour le traitement de capacités annuelles inférieures à 2 millions de tonnes : Bien que le décanteur soit, pour des conditions de procédé, disposé verticalement, l'agencement des étapes et les conditions opératoires préconisées sont strictement celles qui font l'objet de la présente invention.In the embodiment described above, the decanter was in elongated form, was provided with a boot and was preferably inclined by 5 to 10 ° relative to the horizontal plane to allow the asphalt phase to flow freely towards the boot underlying. The invention does not however stipulate that this decanter is necessarily elongated; it can also be vertical as shown in FIG. 2, insofar as this geometry makes it possible to comply with the constraints of rising speed and of settling time recommended above. This geometry which requires less floor space will therefore be recommended for the treatment of annual capacities of less than 2 million tonnes: Although the decanter is, for process conditions, arranged vertically, the arrangement of the stages and the operating conditions recommended are strictly those which are the subject of the present invention.
Le procédé dans une dernière variante peut également être appliqué au, cas où l'opération est réalisée en deux étages avec précipitation d'une phase asphaltique dure dans un premier étage et précipitation d'une phase résinique dans un second étage. La simple idée de production séparée d'une phase asphaltique et d'une phase résinique est connue et pratiquée industriellement depuis très longtemps et ne fait pas partie du corps de l'invention. L'objet de l'invention a trait au fait que chaque étage, ainsi que le schématise la figure 3, comporte un échelonnement des 3 étapes élémentaires : mélange-précipitation, décantation, lavage-repeptisation, tout à fait analogue à celui décrit dans les variantes précédentes où les asphaltes et résines étaient précipités en une seule phase.The method in a last variant can also be applied to the case where the operation is carried out in two stages with precipitation of a hard asphalt phase in a first stage and precipitation of a resin phase in a second stage. The simple idea of separate production of an asphalt phase and a resin phase has been known and practiced industrially for a very long time and is not part of the body of the invention. The object of the invention relates to the fact that each stage, as shown in FIG. 3, comprises a staggering of the 3 elementary stages: mixing-precipitation, decantation, washing-repeping, completely similar to that described in the previous variants where the asphalts and resins were precipitated in a single phase.
Conformément à cette variante la précipitation et la décantation sont dans le premier étage réalisés à une température de 20 à 60°C inférieure à celle que l'on applique lorsque l'on opère la précipitation en une seule fois, c'est-à-dire à la température minimum pour que la phase asphaltique reste liquide et et suffisamment fluide à la sortie du décanteur pour pouvoir être manipulée sans problème. L'étape de lavage de la phase asphaltique dans cette variante est réalisée à une température égale ou iégèrement supérieure à celle du décanteur. Le mélange solvant-huile-résines issu du lavage par la conduite 18 est mélangé avec le mélange solvant-huile-résines issu du premier décanteur (24).In accordance with this variant, the precipitation and decantation are carried out in the first stage at a temperature of 20 to 60 ° C lower than that which is applied when the precipitation is carried out in one go, that is to say say at the minimum temperature so that the asphalt phase remains liquid and sufficiently fluid at the outlet of the decanter to be able to be handled without problem. The step of washing the asphalt phase in this variant is carried out at a temperature equal to or slightly higher than that of the decanter. The solvent-oil-resin mixture from washing through
Dans le second étage le mélange solvant huile-résines est réchauffé (35) à une température supérieure de 30 à 70°C à celle appliquée dans le premier décanteur. Comme dans le premier étage, le mélange solvant-huile-résines passe de préférence dans les tubes de l'échangeur et non côté calandre ; de plus l'écoulement du mélange solvant-huile-résines sera un écoulement gravitaire ; l'extrait est séparé par la ligne (38) pour fractionnement dans le séparateur (23). Le raffinat est envoyé par la ligne (39) dans le laveur (40). Les vitesses ascensionnelles et les temps de résidence dans le ballon décanteur (37) et la colonne (40) sont compris dans les fourchettes préconisées ci-dessus pour le ballon (7) et la colonne (12). Le rapport solvant/phase résinique en (40) est compris entre 2 et 4. Le mélange solvant-huile est recyclé par la conduite (43) en amont de l'échangeur (35). Le solvant de lavage de la phase résinique est injecté par la conduite (41) au bas de la colonne - (40) de lavage de la phase résinique après être passé dans l'échangeur (42) de façon à ajuster la température du dit solvant à une valeur inférieure à celle du décanteur (37) de 5 à 30°C.In the second stage, the oil-resin solvent mixture is heated (35) to a temperature 30 to 70 ° C higher than that applied in the first decanter. As in the first stage, the solvent-oil-resins mixture preferably passes through the tubes of the exchanger and not on the shell side; moreover the flow of the solvent-oil-resins mixture will be a gravity flow; the extract is separated by the line (38) for fractionation in the separator (23). The raffinate is sent by line (39) to the washer (40). The ascending speeds and the residence times in the settling tank (37) and the column (40) are included in the ranges recommended above for the tank (7) and the column (12). The solvent / resin phase ratio at (40) is between 2 and 4. The solvent-oil mixture is recycled via line (43) upstream of the exchanger (35). The solvent for washing the resin phase is injected through line (41) at the bottom of the column - (40) for washing the resin phase after passing through the exchanger (42) so as to adjust the temperature of said solvent at a value lower than that of the decanter (37) from 5 to 30 ° C.
La phase résinique (44) est libérée du solvant entraîné en (45) par "flash" et (ou) entraînement à la vapeur. La phase résinique (46) est récupérée. Le solvant récupéré est envoyé par la conduite - (47) jusqu'en la canalisation (4). Le procédé permet donc en deux étages de conceptions analogues d'assurer de façon très flexible la production d'une phase huile (27) dépourvue d'asphaltènes et très pauvre en résines ainsi que la production simultanée d'une phase asphaltique et d'une phase résinique, les proportions de ces deux dernières phases pouvant être ajustées à volonté, pour une charge ddnnée, un solvant et des taux de solvant donnés, par le choix des températures appliquées en (7) et (37) d'une part, en (15) et (42) d'autre part.The resin phase (44) is released from the solvent entrained in (45) by "flash" and / or steam entrainment. The resin phase (46) is recovered. The recovered solvent is sent via line - (47) to line (4). The process therefore makes it possible, in two stages of similar designs, to ensure very flexibly the production of an oil phase (27) devoid of asphaltenes and very poor in resins as well as the simul tan of an asphalt phase and a resin phase, the proportions of these last two phases can be adjusted at will, for a given load, a solvent and given solvent levels, by the choice of temperatures applied in ( 7 ) and (37) on the one hand, in (15) and (42) on the other hand.
On désasphalte un résidu sous vide SAFANIYA par addition d'un solvant essentiellement constitué par un mélange de pentane et d'isopentane. Les caractéristiques du résidu sont présentées dans le tableau 1 et la composition de la coupe C5 dans le tableau 2.
L'opération est réalisée dans une unité capable de traiter de 1 t/h à 3 t/h de résidu et dont les caractéristiques sur le plan du procédé sont analogues à celles qui font l'objet de l'invention précédemment décrite. L'échangeur tubulaire est disposé verticalement. La colonne de lavage-répep- tisation est équipée de chicanes horizontales entrecroisées de façon de réaliser l'équivalent de 2 étages théoriques tant pour le transfert de masse que de chaleur. Une série de 10 essais ont été réalisés conformément au schéma de la figure 1. Les conditions opératoires appliquées sont présentées dans le tableau 3. Dans cette série d'essais le solvant du mélange huile-solvant était récupéré pour 90 % dans un cascade dévaporateursà film tombant et pour les 10 derniers pour cent par stripping de la phase huileuse dans des conditions de pression inférieures à celles appliquées dans l'opération de décantation. Après élimination du solvant tant dans la phase huile que dans la phase asphaltique respectivement en (23) et (21) comme indiqué dans la figure 1, les phases huileuse et asphaltique sont stockées et analysées. Le tableau 4 donne les rendements et quelques caractéristiques des produits obtenus.The operation is carried out in a unit capable of treating from 1 t / h to 3 t / h of residue and whose process characteristics are similar to those which are the subject of the invention described above. The tubular exchanger is arranged vertically. The washing-repeating column is fitted with interwoven horizontal baffles so as to achieve the equivalent of 2 theoretical stages for both mass and heat transfer. A series of 10 tests were carried out in accordance with the diagram in FIG. 1. The operating conditions applied are presented in table 3. In this series of tests the solvent of the oil-solvent mixture was recovered for 90% in a cascade of film evaporators falling and for the last 10 percent by stripping of the oily phase under pressure conditions lower than those applied in the decanting operation. After removal of the solvent both in the oil phase and in the asphalt phase respectively in (23) and (21) as indicated in FIG. 1, the oily and asphalt phases are stored and analyzed. Table 4 gives the yields and some characteristics of the products obtained.
Cette série d'essais confirme le bien fondé du - schéma de procédé et des conditions opératoires préconisées. On voit que la qualité de l'huile augmente lorsque croit la température de précipitation et (ou) de décantation et, pour une température donnée, lorsque croit le rapport solvant/charge. Les quatre derniers essais montrent plus particulièrement l'importance de l'étape de lavage et des conditions opératoires appliquées dans cette étape sur les rendements en huile d'une part et sur les caractéristiques de l'asphalte d'autre part : le rendement en huile désasphaltée augmente lorsque croit le débit de solvant de lavage et lorsque diminue la température du fond de la colonne de lavage.This series of tests confirms the validity of the - process diagram and recommended operating conditions. It can be seen that the quality of the oil increases when the precipitation and / or settling temperature increases and, for a given temperature, when the solvent / charge ratio increases. The last four tests show more particularly the importance of the washing step and the operating conditions applied in this step on the oil yields on the one hand and on the characteristics of the asphalt on the other hand: the oil yield deasphalted increases when the flow of washing solvent increases and when the temperature of the bottom of the washing column decreases.
On opère le désasphaltage d'un résidu atmosphérique BOSCAN par addition du même solvant du type coupe C5 que celui utilisé dans l'exemple 1. L'opération est réalisée dans la même unité que celle décrite à prôpos de l'exemple 1. Les conditions opératoires appliquées dans les essais sélectionnés pour illustrer l'intérêt du procédé de l'invention sont présentées dans le tableau 6. Le tableau 5 donne les caractéristiques essentielles de la charge traitée et le tableau 7 les rendements et caractéristiques des produits obtenus. Cet exemple a été plus particulèrement choisi pour illustrer l'importance de l'étape de lavage sur les rendements en huile désasphaltée. Cette série d'essais fait encore ressortir l'importance des conditions appliquées dans l'étape de lavage. Les rendements en huile sont d'autant plus élevés que la température de lavage est basse et que le rapport solvant/phase asphaltique qui, à la sortie de décanteur, est composée de l'asphalte gonflé de solvant et d'huile, est compris entre 1.6 et 2 fois le volume de l'asphalte final qui sort de la tour de lavage. Ceci implique que le rapport du solvant à la phase asphaltique entrant dans la tour de lavage dans les essais précédents reste bien compris entre 0,5 et 8.The deasphalting of a BOSCAN atmospheric residue is carried out by adding the same solvent of the C5 cut type as that used in Example 1. The operation is carried out in the same unit as that described in the context of Example 1. The conditions The procedures applied in the tests selected to illustrate the advantage of the process of the invention are presented in Table 6. Table 5 gives the essential characteristics of the charge treated and Table 7 the yields and characteristics of the products obtained. This example was more particularly chosen to illustrate the importance of the washing step on the yields of deasphalted oil. This series of tests further highlights the importance of the conditions applied in the washing step. The oil yields are higher the lower the washing temperature and the solvent / asphalt phase ratio which, at the outlet of the settling tank, is composed of the asphalt swollen with solvent and oil, is between 1.6 and 2 times the volume of the final asphalt coming out of the washing tower. This implies that the ratio of the solvent to the asphalt phase entering the washing tower in the previous tests remains well between 0.5 and 8.
On opère le désasphaltage du résidu sous vide SAFANIYA dont les caractéristiques sont présentées dans le tableau 1 mais en utilisant pour la précipitation une coupe C4 contentant en poids 3 % de propane, 35 % d'isobutane, 61 % de butane et 1 % d'isopentane. Les essais sont réalisés dans la même unité que celle décrite dans les précédents exemples. Les conditions opératoires de la série d'essais sont résumées dans le tableau 8, les rendements et caractéristiques des produits obtenus sont présentés dans le tableau 9.The deasphalting of the SAFANIYA vacuum residue is carried out, the characteristics of which are presented in Table 1 but using for the precipitation a C4 cut containing by weight 3% of propane, 35% of isobutane, 61% of butane and 1% of isopentane. The tests are carried out in the same unit as that described in the previous examples. The operating conditions of the series of tests are summarized in Table 8, the yields and characteristics of the products obtained are presented in Table 9.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8505350 | 1985-04-05 | ||
FR8505350A FR2579985B1 (en) | 1985-04-05 | 1985-04-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0201364A1 true EP0201364A1 (en) | 1986-11-12 |
EP0201364B1 EP0201364B1 (en) | 1989-01-18 |
Family
ID=9318079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86400589A Expired EP0201364B1 (en) | 1985-04-05 | 1986-03-19 | Process for de-asphalting a hydrocarbon charge containing asphaltene |
Country Status (10)
Country | Link |
---|---|
US (1) | US4715946A (en) |
EP (1) | EP0201364B1 (en) |
JP (1) | JPH0613714B2 (en) |
KR (1) | KR930005527B1 (en) |
CN (1) | CN1016965B (en) |
CA (1) | CA1280990C (en) |
DE (1) | DE3661840D1 (en) |
ES (1) | ES8703508A1 (en) |
FR (1) | FR2579985B1 (en) |
MX (1) | MX168799B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2633935A1 (en) * | 1988-07-11 | 1990-01-12 | Inst Francais Du Petrole | Heavy fuel oil compositions exhibiting improved stability |
DE19644600A1 (en) * | 1996-10-26 | 1998-05-07 | Inst Erdoel Und Erdgasforschun | Apparatus for completely deasphalting crude oils |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2791354B1 (en) | 1999-03-25 | 2003-06-13 | Inst Francais Du Petrole | PROCESS FOR THE CONVERSION OF HEAVY PETROLEUM FRACTIONS COMPRISING A STAGE OF HYDROCONVERSION IN BUBBLING BEDS AND A STAGE OF HYDROTREATMENT |
US7594990B2 (en) | 2005-11-14 | 2009-09-29 | The Boc Group, Inc. | Hydrogen donor solvent production and use in resid hydrocracking processes |
US7854836B2 (en) * | 2006-06-27 | 2010-12-21 | Intevep, S.A. | Process for improving and recuperating waste, heavy and extra heavy hydrocarbons |
US20100264067A1 (en) * | 2009-04-16 | 2010-10-21 | General Electric Company | Method for removing impurities from hydrocarbon oils |
US8790508B2 (en) * | 2010-09-29 | 2014-07-29 | Saudi Arabian Oil Company | Integrated deasphalting and oxidative removal of heteroatom hydrocarbon compounds from liquid hydrocarbon feedstocks |
US9238780B2 (en) | 2012-02-17 | 2016-01-19 | Reliance Industries Limited | Solvent extraction process for removal of naphthenic acids and calcium from low asphaltic crude oil |
US10590360B2 (en) | 2015-12-28 | 2020-03-17 | Exxonmobil Research And Engineering Company | Bright stock production from deasphalted oil |
US10550335B2 (en) | 2015-12-28 | 2020-02-04 | Exxonmobil Research And Engineering Company | Fluxed deasphalter rock fuel oil blend component oils |
US10947464B2 (en) | 2015-12-28 | 2021-03-16 | Exxonmobil Research And Engineering Company | Integrated resid deasphalting and gasification |
US10494579B2 (en) | 2016-04-26 | 2019-12-03 | Exxonmobil Research And Engineering Company | Naphthene-containing distillate stream compositions and uses thereof |
IT201700035782A1 (en) | 2017-03-31 | 2018-10-01 | Eni Spa | METHOD FOR PHYSICAL SEPARATION OF CURRENTS OF PURGE FROM REFINERY. |
FR3075809B1 (en) | 2017-12-21 | 2020-09-11 | Ifp Energies Now | PROCESS FOR CONVERTING HEAVY LOADS OF HYDROCARBONS WITH RECYCLE OF A DESASPHALTED OIL |
EP3802742A1 (en) * | 2018-06-01 | 2021-04-14 | ExxonMobil Research and Engineering Company | Boiling free fractionation of hydrocarbon steams utilizing a membrane cascade |
KR20210039743A (en) * | 2019-10-02 | 2021-04-12 | 현대오일뱅크 주식회사 | A Very Low Sulfur Fuel Oil and a method for producing the same |
FR3113062B1 (en) | 2020-07-30 | 2023-11-03 | Ifp Energies Now | Residue hydroconversion process with several hydroconversion stages integrating a deasphalting step |
FR3113678B1 (en) | 2020-08-31 | 2022-08-12 | Ifp Energies Now | BITUMEN CONTAINING UNCONVENTIONAL BITUMEN BASES |
FR3130836A1 (en) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | HYDROCONVERSION IN BUBBLE BED OR BUBBLE-ENCOURAGED HYBRID OF A FEED COMPRISING A PLASTIC FRACTION |
FR3133197A1 (en) | 2022-03-01 | 2023-09-08 | IFP Energies Nouvelles | HYDROCONVERSION IN A BOILING BED OR BOILING-DRIVEN HYBRID OF A FEED COMPRISING A FRACTION OF VEGETABLE OR ANIMAL OIL |
FR3133618A1 (en) | 2022-03-17 | 2023-09-22 | IFP Energies Nouvelles | HYDROCONVERSION IN A BUBBLING BED OR BOILING-DRIVEN HYBRID WITH A FEED COMPRISING A FRACTION OF OIL FOR PYROLYSIS OF PLASTICS AND/OR RECOVERY SOLID FUELS |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB735333A (en) * | 1952-01-03 | 1955-08-17 | Foster Wheeler Ltd | Improvements in and relating to the refining of hydrocarbon oils |
US3830732A (en) * | 1972-09-18 | 1974-08-20 | Universal Oil Prod Co | Solvent deasphalting process |
US4094770A (en) * | 1977-06-22 | 1978-06-13 | Chevron Research Company | Process for removing unfilterable solids from an oil |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2729589A (en) * | 1952-06-12 | 1956-01-03 | Exxon Research Engineering Co | Deasphalting with propane and butane |
GB735833A (en) * | 1952-10-14 | 1955-08-31 | Rca Corp | Green body from which a ferrospinel composition having ferromagnetic properties can be produced |
US3202605A (en) * | 1962-06-06 | 1965-08-24 | Badger Co | Propane deaspihalting process |
US3278415A (en) * | 1963-05-15 | 1966-10-11 | Chevron Res | Solvent deasphalting process |
US3311551A (en) * | 1964-09-11 | 1967-03-28 | Phillips Petroleum Co | Propane treating of top crude to produce asphalt and gas oil |
US4101415A (en) * | 1977-03-14 | 1978-07-18 | Phillips Petroleum Company | Solvent deasphalting |
US4239616A (en) * | 1979-07-23 | 1980-12-16 | Kerr-Mcgee Refining Corporation | Solvent deasphalting |
JPS5948215U (en) * | 1982-09-25 | 1984-03-30 | 日本ノ−シヨン工業株式会社 | clothing button |
US4554055A (en) * | 1983-03-07 | 1985-11-19 | Phillips Petroleum Company | Solvent recovery |
-
1985
- 1985-04-05 FR FR8505350A patent/FR2579985B1/fr not_active Expired
-
1986
- 1986-03-19 DE DE8686400589T patent/DE3661840D1/en not_active Expired
- 1986-03-19 EP EP86400589A patent/EP0201364B1/en not_active Expired
- 1986-04-04 CA CA000505889A patent/CA1280990C/en not_active Expired - Lifetime
- 1986-04-04 ES ES553737A patent/ES8703508A1/en not_active Expired
- 1986-04-04 KR KR1019860002560A patent/KR930005527B1/en not_active IP Right Cessation
- 1986-04-04 US US06/848,083 patent/US4715946A/en not_active Expired - Lifetime
- 1986-04-04 JP JP61079039A patent/JPH0613714B2/en not_active Expired - Lifetime
- 1986-04-05 CN CN86102355A patent/CN1016965B/en not_active Expired
- 1986-04-07 MX MX026897A patent/MX168799B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB735333A (en) * | 1952-01-03 | 1955-08-17 | Foster Wheeler Ltd | Improvements in and relating to the refining of hydrocarbon oils |
US3830732A (en) * | 1972-09-18 | 1974-08-20 | Universal Oil Prod Co | Solvent deasphalting process |
US4094770A (en) * | 1977-06-22 | 1978-06-13 | Chevron Research Company | Process for removing unfilterable solids from an oil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2633935A1 (en) * | 1988-07-11 | 1990-01-12 | Inst Francais Du Petrole | Heavy fuel oil compositions exhibiting improved stability |
DE19644600A1 (en) * | 1996-10-26 | 1998-05-07 | Inst Erdoel Und Erdgasforschun | Apparatus for completely deasphalting crude oils |
Also Published As
Publication number | Publication date |
---|---|
ES8703508A1 (en) | 1987-02-16 |
US4715946A (en) | 1987-12-29 |
DE3661840D1 (en) | 1989-02-23 |
FR2579985A1 (en) | 1986-10-10 |
ES553737A0 (en) | 1987-02-16 |
MX168799B (en) | 1993-06-08 |
CN86102355A (en) | 1986-10-01 |
CA1280990C (en) | 1991-03-05 |
JPH0613714B2 (en) | 1994-02-23 |
KR860008254A (en) | 1986-11-14 |
KR930005527B1 (en) | 1993-06-22 |
JPS61246285A (en) | 1986-11-01 |
CN1016965B (en) | 1992-06-10 |
EP0201364B1 (en) | 1989-01-18 |
FR2579985B1 (en) | 1988-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0201364B1 (en) | Process for de-asphalting a hydrocarbon charge containing asphaltene | |
EP0244277B1 (en) | Process for deasphalting a hydrocarbon oil | |
US4428824A (en) | Process for visbreaking resid deasphaltenes | |
FR2999190A1 (en) | PROCESS FOR OBTAINING HYDROCARBON SOLVENTS WITH A BOILING TEMPERATURE EXCEEDING 300 ° C AND A FLOW POINT LESS THAN OR EQUAL TO -25 ° C | |
CA2890371C (en) | Method for the selective deasphalting of heavy feedstocks | |
CA2615197A1 (en) | Residue conversion process including two deasphaltings in a row | |
WO2015082314A1 (en) | Method for converting a heavy hydrocarbon feedstock incorporating selective deasphalting in series with recycling of a deasphalted cut | |
FR2964387A1 (en) | METHOD OF CONVERTING RESIDUE INTEGRATING A DISASPHALTAGE STEP AND A HYDROCONVERSION STEP WITH RECYCLE OF DESASPHALTEE OIL | |
EP0354826B1 (en) | Hydrocarbon fractionation and extraction process to obtain a petrol with a high octane number and a kerosene with an altered smoke point | |
JP2019500447A (en) | Method for producing high quality feedstock for steam cracking process | |
EP3077482A1 (en) | Method of selective deasphalting in series | |
JP2003523451A (en) | Quality improvement of heavy materials based on slurry dehydrogenation and subsequent slurry dehydrogenation of asphalt from solvent deprivation | |
WO2021069330A1 (en) | Process for the preparation of olefins, involving de-asphalting, hydroconversion, hydrocracking and steam cracking | |
WO2021008924A1 (en) | Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking | |
US5346615A (en) | Process for deasphalting and demetalating crude petroleum or its fractions | |
EP0064447B1 (en) | Process for producing synthetic crude oil | |
EP1699905A1 (en) | Method for treating a hydrocarbon feedstock including resin removal | |
JP2007513244A (en) | Method for reducing the nitrogen content of petroleum streams with reduced sulfuric acid consumption | |
BE1019627A3 (en) | PROCESS FOR THE VALORISATION OF HEAVY BURNS AND PETROLEUM RESIDUES | |
WO2004016715A2 (en) | Method and device for purifying a petroleum fraction | |
FR2970478A1 (en) | Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent | |
WO2021089477A1 (en) | Process for the preparation of olefins, comprising de-asphalting, hydrocracking and steam cracking | |
FR2475569A1 (en) | Upgrading of heavy oils by visbreaking and deasphalting - with visbreaking effected in presence of hydrogen and steam | |
WO2020249498A1 (en) | Process for the production of olefins, comprising hydrotreatment, deasphalting, hydrocracking and steam cracking | |
FR2480773A1 (en) | Upgrading of asphaltenic oils - by deasphalting, hydro:visbreaking and catalytic hydrotreating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE GB IT NL |
|
PUAB | Information related to the publication of an a document modified or deleted |
Free format text: ORIGINAL CODE: 0009199EPPU |
|
PUAF | Information related to the publication of a search report (a3 document) modified or deleted |
Free format text: ORIGINAL CODE: 0009199SEPU |
|
17P | Request for examination filed |
Effective date: 19861205 |
|
R17D | Deferred search report published (corrected) |
Effective date: 19861217 |
|
RA1 | Application published (corrected) |
Date of ref document: 19861217 Kind code of ref document: A1 |
|
17Q | First examination report despatched |
Effective date: 19871125 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE GB IT NL |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3661840 Country of ref document: DE Date of ref document: 19890223 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020227 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020329 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020402 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030319 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030321 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031001 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030319 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
BERE | Be: lapsed |
Owner name: *INSTITUT FRANCAIS DU PETROLE Effective date: 20040331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050319 |