KR20210039743A - A Very Low Sulfur Fuel Oil and a method for producing the same - Google Patents

A Very Low Sulfur Fuel Oil and a method for producing the same Download PDF

Info

Publication number
KR20210039743A
KR20210039743A KR1020190122350A KR20190122350A KR20210039743A KR 20210039743 A KR20210039743 A KR 20210039743A KR 1020190122350 A KR1020190122350 A KR 1020190122350A KR 20190122350 A KR20190122350 A KR 20190122350A KR 20210039743 A KR20210039743 A KR 20210039743A
Authority
KR
South Korea
Prior art keywords
oil
mixture
low sulfur
ultra
hydrocarbon solvent
Prior art date
Application number
KR1020190122350A
Other languages
Korean (ko)
Inventor
정해원
김철현
신웅철
Original Assignee
현대오일뱅크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대오일뱅크 주식회사 filed Critical 현대오일뱅크 주식회사
Priority to KR1020190122350A priority Critical patent/KR20210039743A/en
Priority to US17/763,826 priority patent/US20220403256A1/en
Priority to PCT/KR2020/003307 priority patent/WO2021066265A1/en
Publication of KR20210039743A publication Critical patent/KR20210039743A/en
Priority to KR1020210181908A priority patent/KR20210157454A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/14Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/28Recovery of used solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The present invention provides a production method of ultra low sulfur fuel oil capable of producing high-quality ultra low sulfur fuel oil having high stability, and ultra low sulfur fuel oil produced by the production method. The production method of ultra low sulfur fuel oil having high compatibility and high stability comprises the steps of: mixing petroleum residua obtained from at least two different petroleum refining processes, adding a hydrocarbon solvent to the residual petroleum mixture, heating the mixture of the petroleum residua mixture and hydrocarbon solvent to extract and recover a mixture of oil fractions and the hydrocarbon solvent from the mixture of the petroleum residua mixture and hydrocarbon solvent with raffinate having asphaltenes therein being left, and removing the hydrocarbon solvent from the mixture of the oil fractions and the hydrocarbon solvent, thereby obtaining ultra low sulfur fuel oil, wherein the ultra low sulfur fuel oil has a sulfur content of 0.5 wt% or less based on the total weight of the ultra low sulfur fuel oil, and ultra low sulfur fuel oil produced by the production method.

Description

초저황 연료유의 제조방법 및 그로부터 얻어지는 초저황 연료유{A Very Low Sulfur Fuel Oil and a method for producing the same}A Very Low Sulfur Fuel Oil and a Method for Producing the Same}

본 발명은 초저황 연료유를 제조함에 있어서, 석유 정제 공정에서 고품질 유류를 생산하고 남은 유분 중 적어도 2종의 혼합에 의해 얻어지는 유분 혼합물에 탄소수 3, 4 또는 5의 탄화수소 용제를 첨가하고 가열하여, 그 유분 혼합물로부터 유분과 탄화수소 용제의 혼합물을 회수하고, 아스팔텐을 라피네이트 중에 잔류시켜서 제거하고, 유분과 탄화수소 용제의 혼합물로부터 탄화수소 용제를 제거하여 제조되고, 총 중량을 기준으로 0.5중량% 이하의 황 함량을 가지는 초저황 연료유의 제조방법 및 그 초저황 연료유, 특히 선박유에 관한 것이다.In the present invention, in the production of ultra-low sulfur fuel oil, a hydrocarbon solvent having 3, 4 or 5 carbon atoms is added and heated to an oil mixture obtained by mixing at least two types of oil remaining after producing high quality oil in a petroleum refining process, Prepared by recovering a mixture of oil and hydrocarbon solvent from the oil mixture, removing asphaltene by remaining in the raffinate, removing hydrocarbon solvent from the mixture of oil and hydrocarbon solvent, and not more than 0.5% by weight based on the total weight. The present invention relates to a method for producing ultra-low sulfur fuel oil having a sulfur content and to the ultra-low sulfur fuel oil, in particular, ship oil.

국제해사기구(IMO;International Marine Organization)의 선박유 황 함량 규제가 2020년부터 적용됨에 따라 정유업계는 선박유 생산의 새로운 국면을 맞이하게 되었다. 선박유의 황 함량규제 규격이 기존 황 함량 3.5중량% 이하에서 0.5중량% 이하로 대폭 강화됨에 따라 기존 선박유 제품의 추가적인 탈황공정 처리가 필수적이 되었다.With the application of the regulation on the sulfur content of ship oil by the International Marine Organization (IMO) from 2020, the refinery industry has entered a new phase in the production of ship oil. As the sulfur content regulation standard of ship oil has been greatly strengthened from less than 3.5% by weight of existing sulfur to less than 0.5% by weight, additional desulfurization process treatment of existing ship oil products has become essential.

기존 문헌에서 낮은 아스팔텐 함량과 높은 방향족 화합물 함량을 유분의 안정도를 확보하는 기준으로 제시하고 있는데, 성분간 함량 밸런스를 맞추기 위해 생산공정이 상이한 유분들을 배합하거나(예를 들어, 1차 정제 연료유(Straight-run fuel oil)와 크래킹 오일(cracked oil)의 배합), 점도와 밀도 차이가 큰 유분들이 혼합될 경우(예를 들어, FCC 슬러리 오일(FCC Slurry Oil: Fluidized Catalytic Cracker Slurry Oil)과 디젤 오일의 배합), 아스팔텐 응집으로 인한 혼합유의 불안정성(incompatibiliy)이 상승하게 된다고 알려져 있다. 포화 탄화수소 화합물과 아스팔텐을 많이 포함한 유분은 상대적으로 적은 방향족 화합물로 인해 유분 내 아스팔텐이 마이셀(micelle) 형태로 완전히 분산되어 존재하지 못하고, 시간의 경과에 따라 응집 및 석출이 일어나게 되는 것이다. 시간의 경과에 따라 위와 같은 거동을 하는 단일 공정 생산 유분을 안정성(stability)이 낮은 것으로 판단한다. 개별 상태로 충분한 안정도를 갖는 유분일지라도 원유 정제의 다른 공정 유래의 타 유분과 배합되면서 슬러지와 침전물과 같은 불순물의 생성 경향이 가속화될 수 있으며, 이 경우에는 혼화성(compatibility)이 부족한 것으로 판단한다. In the existing literature, low asphaltene content and high aromatic compound content are suggested as criteria for securing oil stability.In order to balance the content between components, oils with different production processes are mixed (e.g., primary refined fuel oil). (Straight-run fuel oil and cracked oil), when oils with a large difference in viscosity and density are mixed (e.g. FCC Slurry Oil: Fluidized Catalytic Cracker Slurry Oil) and diesel It is known that the incompatibiliy of the mixed oil is increased due to the combination of oil) and asphaltene agglomeration. In the oil containing a large amount of saturated hydrocarbon compounds and asphaltenes, due to relatively few aromatic compounds, asphaltenes in the oil are not completely dispersed in the form of micelles, and aggregation and precipitation occur over time. It is judged that the oil produced by a single process that behaves as above over time has low stability. Even if the oil has sufficient stability in its individual state, the tendency to generate impurities such as sludge and sediment may accelerate as it is mixed with other oils derived from other processes of crude oil refining, and in this case, it is judged that compatibility is insufficient.

이와 같이, 황 함량 규제가 대폭 강화됨에 따라 기존 선박유와 같이 단일 공정에서 생산되는 유분으로는 가격 경쟁력을 갖는 제품을 생산하기 어렵게 되었고, 대부분의 제품이 기존 고유황 유분에 초저유황 유분을 배합하는 방식으로 생산이 이루어지는 것을 생각할 수 있다. 또한, 정유 공정의 수익성이 지속 악화됨에 따라 많은 정유사들은 산도가 높고, 황, 질소, 금속분 등 불순물을 과량 포함하지만, 가격이 낮은 저품질 원유의 투입량을 늘리는 방향으로 운영되는데, 이러한 경향이 강화될수록 잔사유를 원료로 사용하는 선박유의 품질 저하가 우려된다. 그에 따라, 0.5중량% 이하의 황 함량 기준을 만족시키기 위해 미량 배합하던 초저유황 유분의 비율이 급격히 늘어나야 하게 되며, 경우에 따라서는 2개 이상의 생산공정을 통해 각기 생산된 상이한 잔사유들의 배합이 시도될 수도 있다. 이러한 시도들은 앞서 지적한 유분의 안정성에 심각한 영향을 미칠 수 있게 된다.As such, as the sulfur content regulations have been greatly strengthened, it has become difficult to produce products with price competitiveness with oil produced in a single process, such as existing marine oil, and most of the products blend ultra-low sulfur oil with the existing high sulfur oil. You can think of production in a way. In addition, as the profitability of the refinery process continues to deteriorate, many refiners have high acidity and contain excessive amounts of impurities such as sulfur, nitrogen, and metals, but operate in the direction of increasing the input amount of low-quality crude oil. There is concern about deterioration of the quality of ship oil using private oil as a raw material. Accordingly, in order to satisfy the sulfur content standard of 0.5% by weight or less, the ratio of the ultra-low sulfur oil, which was mixed in trace amounts, must be rapidly increased, and in some cases, mixing of different residual oils produced through two or more production processes is attempted. It could be. These attempts can have a serious impact on the stability of the oils mentioned above.

오일의 안정성 및 혼화성(즉, stability와 compatibility)을 측정하는 방법으로 많은 분석법이 제시되고 있으며, 이 중 직관적으로 판단할 수 있는 방법 중의 하나가 Spot Test(ASTM D4740)이며, 그 판단 기준이 도 1에 나타나 있는데, Spot Test의 판단 기준을 Spot Rating이라 하며, 1 내지 5로 등급이 구분될 수 있다.Many analysis methods have been suggested as a method of measuring the stability and miscibility of oil (i.e., stability and compatibility), and one of the methods that can be intuitively judged is the Spot Test (ASTM D4740), and its criteria are It is shown in 1, and the criterion for determining the spot test is called the Spot Rating, and the rating can be classified into 1 to 5.

포화물과 아스팔텐이 많이 포함된 오일은 단일유일지라도 시간의 경과에 따라 아스팔텐의 응집에 의한 고형분 및 슬러지의 증가에 따라 Spot Rating이 악화될 수 있다. 상이한 생산공정의 유분의 배합에 의한 혼합유는 단일유의 경우에 비해 즉각적으로 Spot Rating의 변화를 관찰할 수 있으며, Spot Rating 3 이상에서는 오일이 매우 불안정하여 선박 유창에서의 장기 보관 시 추가적인 안정성의 악화를 피할 수 없고, 이 경우, 선박 연료 시스템 내의 청정기와 엔진의 정상 운전에 심각한 영향을 미치게 된다. 잔사유를 원료로 하는 안정적인 선박유 제조는 매우 고도화되고 운전비가 과도한(과도한 수소사용으로 인한) 제조설비의 제한적인 공정(VRDS: Vacuum Residue Desulfurization)의 추가 처리를 통해 달성될 수 있으나, 이는 수익성이 떨어지며, 다양한 상위공정으로부터의 유분을 원료로 확보할 수 없기 때문에 제한적인 물량의 유분 생산만 가능한 실정이다. 모든 공해상에서 사용되어 왔던 막대한 양의 고유황 선박유가 초저황 연료유로 대체 되어야 하는 상황에서 제한적인 공정만을 통해 생산될 경우, 충분한 수요를 맞추기 힘들고, 원가경쟁력 측면에서 불리한 환경에 처할 수 밖에 없다.Even if the oil containing a lot of saturated and asphaltenes is a single oil, the spot rating may deteriorate with the increase of solids and sludge due to agglomeration of asphaltenes over time. Mixed oils due to the blending of oils from different production processes can immediately observe the change in the spot rating compared to the case of single oil, and the oil is very unstable in the case of a spot rating of 3 or higher, further deteriorating stability during long-term storage at the ship's fluency. Is inevitable, and in this case, it will seriously affect the normal operation of the purifier and engine in the ship's fuel system. Stable production of marine oil using residual oil as a raw material can be achieved through the additional treatment of a limited process (VRDS: Vacuum Residue Desulfurization) in the manufacturing facility, which is very advanced and has an excessive operating cost (due to excessive hydrogen use), but this is profitable. It is not possible to secure oil from various upper processes as raw materials, so it is possible to produce only a limited amount of oil. If the vast amount of high-sulfur ship oil that has been used in all high seas has to be replaced with ultra-low sulfur fuel oil, if it is produced only through a limited process, it is difficult to meet sufficient demand and face an unfavorable environment in terms of cost competitiveness.

본 발명은, 상기 설명한 상이한 종류의 복수 유분 배합 시 야기되는 문제점과 종래의 기술의 단점을 극복하기 위하여 제조 공정이 비교적 간단하여 이에 대한 투자에 많은 비용이 필요하지 않고, 나아가 다양한 상위공정으로부터의 유분의 원료, 특히 고품질 유류를 생산하고 남은 유분들을 활용할 수 있으며, 제조 비용 또한 획기적으로 절감할 수 있는 VLSFO의 제조, 즉, 정유 공정에서 생산되는 선박유 제조에 활용 가능한 유분 및 소정의 배합비로 혼합된 유분 혼합물을 원료로 하여 높은 안정성(Spot Rating 1)을 갖는 VLSFO를 제공함을 목적으로 한다.In the present invention, in order to overcome the problems caused by mixing different types of oils as described above and the disadvantages of the conventional technology, the manufacturing process is relatively simple, so that a large amount of investment is not required. Raw materials, especially oils remaining after producing high-quality oil, can be utilized, and manufacturing costs can also be drastically reduced, that is, oils that can be used in the production of ship oil produced in the refinery process and mixed with a predetermined blending ratio. The purpose is to provide VLSFO with high stability (Spot Rating 1) using an oily mixture as a raw material.

본 발명에 따른 초저황 연료유의 제조방법은, (1) 석유 정제 공정에서 고품질 유류를 생산하고 남은 적어도 2종의 유분들을 혼합하여 유분 혼합물을 얻는 혼합 단계; (2) 상기 유분 혼합물에 탄소수 3, 4 또는 5의 탄화수소 용제를 첨가하고 가열하여, 그 유분 혼합물로부터 유분과 탄화수소 용제의 혼합물을 회수하고, 아스팔텐을 라피네이트 중에 잔류시켜서 제거하는 아스팔텐 분리단계; 및 (3) 유분과 탄화수소 용제의 혼합물로부터 탄화수소 용제를 제거하여 초저황 연료유를 얻는 정유 단계;를 포함하여 구성되고, 총 중량을 기준으로 0.5중량% 이하의 황 함량을 가지는 초저황 연료유를 얻는다.The manufacturing method of ultra-low sulfur fuel oil according to the present invention comprises: (1) a mixing step of producing a high-quality oil in a petroleum refining process and mixing the remaining at least two types of oil to obtain an oil mixture; (2) An asphaltene separation step of adding and heating a hydrocarbon solvent having 3, 4 or 5 carbon atoms to the oil mixture to recover a mixture of oil and hydrocarbon solvent from the oil mixture, and to remove asphaltene by remaining in the raffinate. ; And (3) a refining step of removing the hydrocarbon solvent from the mixture of the oil component and the hydrocarbon solvent to obtain an ultra-low sulfur fuel oil, and having a sulfur content of 0.5% by weight or less based on the total weight. Get

상기 혼합단계에서 사용되는 유분은 AR(Atmospheric Residue ; 상압 잔사유), VR(Vacuum Residue ; 감압 잔사유), t-AR(hydrotreated Atmospheric Residue ; 탈황 상압 잔사유), t-VR(hydrotreated Vacuum Residue ; 탈황 감압 잔사유), DAO(Deasphalted Oil ; 탈아스팔트유), t-DAO(hydrotreated Deasphalted Oil; 탈황 탈아스팔트유), UCO(Unconverted Oil ; 미전환유(또는 HCR 공정 잔사유), VGO(Vacuum Gas Oil ; 감압 가스유), t-VGO(hydrotreated VGO, 탈황 감압 가스유), HSD(High sulfur Diesel ; 고황 디젤유), ULSD(Ultra Low Sulfur Diesel ; 초저황 디젤유)로 이루어지는 군으로부터 선택될 수 있다.The oil used in the mixing step is AR (Atmospheric Residue; atmospheric pressure residual oil), VR (Vacuum Residue; decompression residual oil), t-AR (hydrotreated Atmospheric Residue; desulfurization atmospheric pressure residual oil), t-VR (hydrotreated Vacuum Residue; Desulfurization and reduced pressure residue), DAO (Deasphalted Oil; deasphalted oil), t-DAO (hydrotreated Deasphalted Oil; desulfurized and deasphalted oil), UCO (Unconverted Oil; unconverted oil (or HCR process residue), VGO (Vacuum Gas Oil) ; Decompression gas oil), t-VGO (hydrotreated VGO, desulfurization decompression gas oil), HSD (High sulfur Diesel; high sulfur diesel oil), ULSD (Ultra Low Sulfur Diesel; ultra low sulfur diesel oil) can be selected from the group consisting of). .

상기 아스팔텐 분리 단계에서 사용되는 탄소수 3, 4 또는 5의 탄화수소 용제는 바람직하게는 n-프로판, n-부탄, i-부탄, n-펜탄, i-펜탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택되는 것이고, 보다 바람직하게는 n-펜탄, i-펜탄 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것이고, 가장 바람직하게는 n-펜탄일 수 있다.The hydrocarbon solvent having 3, 4 or 5 carbon atoms used in the asphaltene separation step is preferably from the group consisting of n-propane, n-butane, i-butane, n-pentane, i-pentane, and mixtures of two or more thereof. It is selected, more preferably selected from the group consisting of n-pentane, i-pentane, and mixtures thereof, and most preferably n-pentane.

상기 아스팔텐 분리 단계는 추출탑 내에서 30 내지 50 barg(계기 압력)의 범위의 압력 및 100 내지 230℃의 범위의 온도에서 탄소수 3, 4 또는 5의 탄화수소 용제를 유분 혼합물 용적 대비 1 내지 4 배량 첨가(탄화수소 용제 : 유분 혼합물 = 1 내지 4 : 1)하여 아스팔텐을 분리하고 혼합 유분을 분리 회수하여 혼합 유분 즉, 제조된 초저황 연료유 중의 아스팔텐 함량을 저감시킨다.In the asphaltene separation step, a hydrocarbon solvent having 3, 4 or 5 carbon atoms at a pressure in the range of 30 to 50 barg (instrument pressure) and a temperature in the range of 100 to 230°C is used in an amount of 1 to 4 times the volume of the oil mixture. The asphaltene is separated by addition (hydrocarbon solvent: oil mixture = 1 to 4: 1), and the mixed oil is separated and recovered to reduce the mixed oil, that is, the asphaltene content in the prepared ultra-low sulfur fuel oil.

본 발명에 따른 초저황 연료유는, 석유 정제 공정에서 고품질 유류를 생산하고 남은 유분 중 적어도 2종의 혼합에 의해 얻어지는 유분 혼합물에 탄소수 3, 4 또는 5의 탄화수소 용제를 첨가하고 가열하여, 그 유분 혼합물로부터 유분과 탄화수소 용제의 혼합물을 회수하고, 아스팔텐을 라피네이트 중에 잔류시켜서 제거하고, 유분과 탄화수소 용제의 혼합물로부터 탄화수소 용제를 제거하여 얻으며, 그 황 함량은 총 중량을 기준으로 0.5중량% 이하 본 발명의 초저황 연료유는 총 중량을 기준으로 바람직하게는 0.1 내지 0.6중량%의 범위 이내, 보다 바람직하게는 0.05 내지 0.55중량%의 범위 이내, 가장 바람직하게는 0.01 내지 0.50중량%의 범위 이내의 아스팔텐 함량을 가질 수 있다. The ultra-low sulfur fuel oil according to the present invention is produced by producing high-quality oil in a petroleum refining process and adding a hydrocarbon solvent having 3, 4 or 5 carbon atoms to an oil mixture obtained by mixing at least two of the remaining oils and heating the oil. Obtained by recovering a mixture of oil and hydrocarbon solvent from the mixture, removing asphaltene by remaining in the raffinate, and removing the hydrocarbon solvent from the mixture of oil and hydrocarbon solvent, the sulfur content of which is 0.5% by weight or less based on the total weight The ultra-low sulfur fuel oil of the present invention is preferably within the range of 0.1 to 0.6% by weight, more preferably within the range of 0.05 to 0.55% by weight, and most preferably within the range of 0.01 to 0.50% by weight based on the total weight. It may have an asphaltene content of.

본 발명에 의해, 석유 정제의 여러 공정에서 고품질 유류를 생산하고 남는 다양한 유분들을 원료로 하여 높은 안정성을 갖는 고품질의 초저황 연료유를 생산할 수 있으며, 석유 정제 공정의 가동상황과 연계하여 유연한 배합비를 선택할 수 있으며, 수첨 탈황 등 제한적 원료를 사용하며, 높은 운전비가 필요한 고도화 공정에 비해 생산제조 비용을 획기적으로 절감할 수 있다.According to the present invention, it is possible to produce high-quality oil in various processes of petroleum refining, and to produce high-quality ultra-low sulfur fuel oil with high stability by using various oils remaining as raw materials. It can be selected, and limited raw materials such as hydrodesulfurization are used, and production and manufacturing costs can be drastically reduced compared to an advanced process that requires high operating costs.

이러한 효과는, 본 발명에 의해 생산된 초저황 연료유(VLSFO: Very Low Sulfur Fuel Oil)는 선박 내 청정기 및 엔진에 투입 시 그 거동 및 안정도가 기존 선박유와 차이를 보이며, 이는 유분에 불가결적으로 함유되는 유분 내 성분들(주로, 포화물(Saturates), 방향족 화합물(Aromatics), 레진(Resin) 및 아스팔텐(Asphaltene)의 변화에 기인하는 것으로 분석된다.This effect is that the very low sulfur fuel oil (VLSFO) produced by the present invention shows a difference in behavior and stability from the existing marine oil when it is put into a purifier and engine in a ship, which is indispensable to oil. It is analyzed to be due to changes in components (mainly, saturates, aromatics, resins, and asphaltenes) contained in the oil.

도 1은 연료유의 안정성을 평가하는 Spot Test(ASTM D4740)의 Spot Rating을 나타내는 사진이다.
도 2는 본 발명에 따라 유분 혼합물로부터 아스팔텐을 분리 제거하여 초저황 연료유를 제조하는 공정을 도시한 공정 모식도이다.
1 is a photograph showing the Spot Rating of the Spot Test (ASTM D4740) for evaluating the stability of fuel oil.
FIG. 2 is a schematic diagram illustrating a process of preparing ultra-low sulfur fuel oil by separating and removing asphaltene from an oil mixture according to the present invention.

본 발명에 의한 초저황 연료유의 제조방법은, (1) 석유 정제 공정에서 고품질 유류를 생산하고 남은 적어도 2종의 유분들을 혼합하여 유분 혼합물을 얻는 혼합 단계; (2) 상기 유분 혼합물에 탄소수 3, 4 또는 5의 탄화수소 용제를 첨가하고 가열하여 유분 혼합물로부터 아스팔텐을 추출 분리하여 라피네이트와 함께 잔류시키고, 유분을 탄화수소 용제와 함께 휘발시켜 분리하여 유분과 탄화수소 용제의 혼합물로서 회수하는 아스팔텐 분리 단계; 및 (3) 상기 유분과 탄화수소 용제의 혼합물로부터 상기 탄화수소 용제를 제거하여 초저황 연료유를 얻는 정유 단계;를 포함하여 구성되고, 총 중량을 기준으로 0.5중량% 이하의 황 함량을 가지는 초저황 연료유를 제공하며, 상기 혼합단계에서 사용되는 유분은 AR(Atmospheric Residue ; 상압 잔사유), VR(Vacuum Residue ; 감압 잔사유), t-AR(hydrotreated Atmospheric Residue ; 탈황 상압 잔사유), t-VR(hydrotreated Vacuum Residue ; 탈황 감압 잔사유), DAO(Deasphalted Oil ; 탈아스팔트유), t-DAO(hydrotreated Deasphalted Oil; 탈황 탈아스팔트유), UCO(Unconverted Oil ; 미전환유(또는 HCR 공정 잔사유), VGO(Vacuum Gas Oil ; 감압 가스유), t-VGO(hydrotreated VGO, 탈황 감압 가스유), HSD(High sulfur Diesel ; 고황 디젤유), ULSD(Ultra Low Sulfur Diesel ; 초저황 디젤유)로 이루어지는 군으로부터 선택될 수 있다.The manufacturing method of ultra-low sulfur fuel oil according to the present invention comprises: (1) a mixing step of producing a high-quality oil in a petroleum refining process and mixing the remaining at least two types of oil to obtain an oil mixture; (2) A hydrocarbon solvent having 3, 4 or 5 carbon atoms is added to the oil mixture and heated to extract and separate asphaltene from the oil mixture and remain with raffinate, and the oil component is volatilized with a hydrocarbon solvent to separate oil and hydrocarbons. An asphaltene separation step of recovering as a mixture of solvents; And (3) a refining step of removing the hydrocarbon solvent from the mixture of the oil component and the hydrocarbon solvent to obtain an ultra-low sulfur fuel oil; and an ultra-low sulfur fuel having a sulfur content of 0.5% by weight or less based on the total weight. Oil is provided, and the oil used in the mixing step is AR (Atmospheric Residue), VR (Vacuum Residue), t-AR (hydrotreated Atmospheric Residue; desulfurization atmospheric residual oil), t-VR (hydrotreated Vacuum Residue; desulfurized vacuum residue), DAO (Deasphalted Oil; deasphalted oil), t-DAO (hydrotreated Deasphalted Oil; desulfurized and deasphalted oil), UCO (Unconverted Oil; unconverted oil (or HCR process residue), Group consisting of VGO (Vacuum Gas Oil), t-VGO (hydrotreated VGO, desulfurized decompression gas oil), HSD (High sulfur Diesel), ULSD (Ultra Low Sulfur Diesel). Can be selected from

본 명세서에서 “고품질 유류”라 함은 항공유, 휘발유 등 비점이 낮고, 경제적인 가치가 높은 유류를 의미하며, 본 발명의 적용의 대상이 되는 “고품질 유류를 생산하고 남은 유분”은 황 함량이나 아스팔텐 함량이 높으며, 주로 잔사유 등의 형태로 부산물로 수득되는 유분들을 의미한다.In this specification, “high-quality oil” refers to oil having a low boiling point and high economic value, such as jet fuel and gasoline, and the “oil remaining after producing high-quality oil” to which the present invention is applied refers to the sulfur content or ash. It has a high palten content and refers to oils mainly obtained as a by-product in the form of residual oil.

즉, 본 발명에서는 상이한 종류의 유분들을 소정의 배합비로 혼합한 유분 혼합물에 탄소수 3, 4 또는 5의 탄화수소 용제, 바람직하게는 n-프로판, n-부탄, i-부탄, n-펜탄, i-펜탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택되는 탄화수소 용제, 보다 바람직하게는 n-펜탄 또는 i-펜탄, 가장 바람직하게는 n-펜탄을 첨가하여 혼합유로부터 응집, 석출을 유발하는 원천 물질로서의 아스팔텐을 분리하여 초저황 연료유를 제조할 수 있다.That is, in the present invention, a hydrocarbon solvent having 3, 4 or 5 carbon atoms, preferably n-propane, n-butane, i-butane, n-pentane, i- A hydrocarbon solvent selected from the group consisting of pentane and a mixture of two or more thereof, more preferably n-pentane or i-pentane, most preferably n-pentane, is added as a source material causing aggregation and precipitation from mixed oil. By separating asphaltene, ultra-low sulfur fuel oil can be produced.

아스팔텐의 분리를 위하여는, 탄소수 3, 4 또는 5의 탄화수소 용제와 혼합유의 비율(탄화수소 용제 : 유분 혼합물)은 1 내지 4 : 1, 보다 바람직하게는 2 내지 3 : 1의 용적비이고, 압력은 30 내지 50 barg, 보다 바람직하게는 35 내지 46 barg, 가장 바람직하게는 38 내지 43 barg이고, 그리고 온도는 사용되는 탄화수소 용제의 임계온도를 기준으로 -20 내지 +20℃, 보다 바람직하게는 -15 내지 +15℃, 가장 바람직하게는 -10 내지 +10℃의 범위이며, 이는 100 내지 230℃의 범위의 온도가 될 수 있다.For the separation of asphaltene, the ratio of the hydrocarbon solvent having 3, 4 or 5 carbon atoms and the mixed oil (hydrocarbon solvent: oil mixture) is 1 to 4: 1, more preferably 2 to 3: 1 by volume, and the pressure is 30 to 50 barg, more preferably 35 to 46 barg, most preferably 38 to 43 barg, and the temperature is -20 to +20°C, more preferably -15, based on the critical temperature of the hydrocarbon solvent used. To +15°C, most preferably -10 to +10°C, which may be a temperature in the range of 100 to 230°C.

아스팔텐 분리 후, 회수된 유분과 탄화수소 용제 혼합물로부터 탄화수소 용제를 제거하여 초저황 연료유를 얻으며, 회수되는 탄화수소 용제는 재사용될 수 있고, 라피네이트 흐름은 코크 원료의 유동성을 증대시키는 배합 유분으로 활용될 수 있다.After separation of asphaltene, the hydrocarbon solvent is removed from the recovered fraction and the hydrocarbon solvent mixture to obtain ultra-low sulfur fuel oil, the recovered hydrocarbon solvent can be reused, and the raffinate stream is used as a blended fraction to increase the fluidity of the coke raw material. Can be.

본 발명자들은 여러 차례의 반복실험을 통하여 탄화수소 용제의 탄소수가 높을수록 강한 용제 효과를 나타내기는 하나, 탄소수 6의 헥산과 같이 용제 효과가 높은 탄화수소 용제를 사용하면, 혼합유로부터 아스팔텐을 제거하는 효율이 크게 저하되고, 같은 탄소수의 경우에서도 분지형 탄화수소(예를 들어, i-펜탄)에 비해 선형 탄화수소(예를 들어, n-펜탄)가 강한 용제 효과를 나타냄을 확인할 수 있었다. 또한, 아스팔텐 분리 단계에서 추출이 수행되는 추출탑 내에서의 초임계상태의 탄화수소 용제의 밀도 변화 및 열역학적 선호도에 따라 낮은 온도, 높은 압력에서 수율이 상승함을 확인할 수 있었다. 본 발명자들은 유분 손실을 방지함과 동시에 안정도가 개선된 VLSFO의 최대 수율을 확보하기 위해 적절한 탄화수소 용제가 사용되어야 함을 확인하고, 특히 유분 혼합물의 안정성을 높이기에 적절한 탄화수소 용제를 선택하는 것이 필요함을 확인할 수 있었다. The inventors of the present invention have shown a strong solvent effect as the carbon number of the hydrocarbon solvent increases through repeated experiments. However, the efficiency of removing asphaltene from the mixed oil when a hydrocarbon solvent having a high solvent effect such as hexane having 6 carbon atoms is used. This greatly decreased, and it was confirmed that even in the case of the same carbon number, a linear hydrocarbon (eg, n-pentane) exhibited a strong solvent effect compared to a branched hydrocarbon (eg, i-pentane). In addition, it was confirmed that the yield increased at low temperature and high pressure according to the density change and thermodynamic preference of the hydrocarbon solvent in the supercritical state in the extraction column in which the extraction was performed in the asphaltene separation step. The present inventors confirmed that an appropriate hydrocarbon solvent should be used to prevent oil loss and secure the maximum yield of VLSFO with improved stability. In particular, it was necessary to select an appropriate hydrocarbon solvent to increase the stability of the oil mixture. I could confirm.

아스팔텐이 분리된 본 발명의 초저황 연료유는 총 중량을 기준으로 0.001 내지 0.5중량%, 바람직하게는 0.05 내지 0.49중량%, 가장 바람직하게는 0.1 내지 0.48중량%의 범위 이내의 황 함량을 가질 수 있다.The ultra-low sulfur fuel oil of the present invention from which asphaltene is separated has a sulfur content within the range of 0.001 to 0.5% by weight, preferably 0.05 to 0.49% by weight, and most preferably 0.1 to 0.48% by weight, based on the total weight. I can.

본 발명에 의한 초저황 연료유는 석유 정제 공정들에서 고품질 유류를 제조하고 남은 유분들을 혼합하여 제조함에도 불구하고 향상된 경시 안정성을 나타낸다. The ultra-low sulfur fuel oil according to the present invention exhibits improved aging stability despite manufacturing high-quality oil in petroleum refining processes and mixing the remaining oils.

즉, 석유 정제 동안 발생되는 유분은, 포화물 함량이 높거나 아스팔텐의 함량이 높아, 그것을 원료로 사용하여 연료유를 제조할 경우 그 안정성이 낮지만, 본 발명은 AR(Atmospheric Residue ; 상압 잔사유), VR(Vacuum Residue ; 감압 잔사유), t-AR(hydrotreated Atmospheric Residue ; 탈황 상압 잔사유), t-VR(hydrotreated Vacuum Residue ; 탈황 감압 잔사유), DAO(Deasphalted Oil ; 탈아스팔트유), t-DAO(hydrotreated Deasphalted Oil; 탈황 탈아스팔트유), UCO(Unconverted Oil ; 미전환유(또는 HCR 공정 잔사유), VGO(Vacuum Gas Oil ; 감압 가스유), t-VGO(hydrotreated VGO, 탈황 감압 가스유), HSD(High sulfur Diesel ; 고황 디젤유), ULSD(Ultra Low Sulfur Diesel ; 초저황 디젤유)중 2 이상의 유분들을 소정의 성분비로 배합한 혼합물을 탄화수소 용제로 처리하여 아스팔텐을 제거함으로써 초저황 연료유의 황함량 규제를 만족시키면서도 혼합유 중의 아스팔텐 함량을 저감시켜 높은 안정성을 갖는 초저황 연료유를 제공하는 것을 특징으로 한다.That is, the oil generated during petroleum refining has a high saturation content or a high content of asphaltene, and thus its stability is low when a fuel oil is manufactured using it as a raw material. However, the present invention relates to an AR (Atmospheric Residue); Reason), VR (Vacuum Residue; Deasphalted Residue), t-AR (hydrotreated Atmospheric Residue; Desulfurized Atmospheric Residue), t-VR (hydrotreated Vacuum Residue; Desulfurized Decompression Residue), DAO (Deasphalted Oil; deasphalted oil) , t-DAO (hydrotreated Deasphalted Oil), UCO (Unconverted Oil; unconverted oil (or HCR process residue), VGO (Vacuum Gas Oil), t-VGO (hydrotreated VGO, desulfurization decompression) Gas oil), HSD (High sulfur Diesel; High sulfur diesel oil), ULSD (Ultra Low Sulfur Diesel; Ultra Low Sulfur Diesel), a mixture of two or more oils in a predetermined component ratio is treated with a hydrocarbon solvent to remove asphaltene. It is characterized by providing ultra-low sulfur fuel oil having high stability by reducing the asphaltene content in mixed oil while satisfying the sulfur content regulation of ultra-low sulfur fuel oil.

이하 본 발명의 제조방법을 실시예에 의하여 상세히 설명하기로 한다.Hereinafter, the manufacturing method of the present invention will be described in detail by examples.

[실시예 1][Example 1]

t-AR : t-DAO를 용적비 1 : 1로 혼합한 유분 혼합물 1,457,000ℓ를 42 barg, 205℃의 조건에서 용제로서 n-펜탄을 용제/유분 혼합물 용적비 2의 비율로 첨가하여 60 분(추출탑 체류시간) 동안 추출처리하여(추출 공정 총 운전시간: 660 분) 라피네이트에 잔류되게 아스팔텐을 제거하고 유분과 용제 혼합물을 휘발시켜 회수한 후, 회수된 유분과 용제 혼합물로부터 용제를 분리하여 초저황 연료유 1,394,000ℓ를 얻었다. 수득된 초저황 연료유의 황 함량, 아스팔텐 함량, 수율, 아스팔텐 제거 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 1에 나타내었다. 황 함량 분석은 ASTM D4294로 측정하였고, 아스팔텐 함량 분석은 ASTM D6560으로 측정하였다.t-AR: 1,457,000ℓ of an oily mixture of t-DAO in a volume ratio of 1:1 was added at 42 barg and n-pentane as a solvent at 205℃ in a ratio of 2 by volume ratio of the solvent/oil mixture for 60 minutes (extraction column Residence time) during extraction treatment (total operation time of the extraction process: 660 minutes) to remove asphaltene to remain in the raffinate, and recover the oil and solvent mixture by volatilization, and then separate the solvent from the recovered oil and solvent mixture. 1,394,000 liters of low sulfur fuel oil were obtained. The sulfur content, asphaltene content, yield, spot rating by the spot test immediately after removal of asphaltene, and the spot rating with time change by the spot test were measured in the obtained ultra-low sulfur fuel oil, and these results are shown in Table 1. Sulfur content analysis was measured by ASTM D4294, asphaltene content analysis was measured by ASTM D6560.

[실시예 2][Example 2]

t-AR : t-DAO를 용적비 1 : 1로 혼합한 유분 혼합물 1,643,000ℓ를 42 barg, 185℃의 조건에서 용제로서 n-펜탄을 용제/유분 혼합물 용적비 2의 비율로 첨가하여 40 분(추출탑 체류시간) 동안 추출처리하여(추출 공정 총 운전시간: 480 분) 라피네이트에 잔류되게 아스팔텐을 제거하고 유분과 용제 혼합물을 휘발시켜 회수한 후, 회수된 유분과 용제 혼합물로부터 용제를 분리하여 초저황 연료유 1,615,000ℓ를 얻었다. 수득된 초저황 연료유의 황 함량, 아스팔텐 함량, 수율, 아스팔텐 제거 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 1에 나타내었다.t-AR: 1,643,000ℓ of an oily mixture of t-DAO in a volume ratio of 1: 1 was added at 42 barg and n-pentane as a solvent at 185℃ in a ratio of 2 by volume ratio of the solvent/oil mixture for 40 minutes (extraction column Residence time) during extraction treatment (total operation time of the extraction process: 480 minutes) to remove asphaltene to remain in the raffinate, and recover the oil and solvent mixture by volatilization, and then separate the solvent from the recovered oil and solvent mixture. 1,615,000 liters of low sulfur fuel oil were obtained. The sulfur content, asphaltene content, yield, spot rating by the spot test immediately after removal of asphaltene, and the spot rating with time change by the spot test were measured in the obtained ultra-low sulfur fuel oil, and these results are shown in Table 1.

[실시예 3][Example 3]

t-AR : t-DAO를 용적비 1 : 1로 혼합한 유분 혼합물 1,325,000ℓ를 42 barg, 220℃의 조건에서 용제로서 i-펜탄을 용제/유분 혼합물 용적비 1의 비율로 첨가하여 90 분(추출탑 체류시간) 동안 추출처리하여(추출 공정 총 운전시간: 600 분) 라피네이트에 잔류되게 아스팔텐을 제거하고 유분과 용제 혼합물을 휘발시켜 회수한 후, 회수된 유분과 용제 혼합물로부터 용제를 분리하여 초저황 연료유 958,000ℓ를 얻었다. 수득된 초저황 연료유의 황 함량, 아스팔텐 함량, 수율, 아스팔텐 제거 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 1에 나타내었다.t-AR: 1,325,000ℓ of an oily mixture of t-DAO in a volume ratio of 1: 1 was added as a solvent under the condition of 42 barg and 220℃, and i-pentane was added in a ratio of 1 to the volume ratio of the solvent/oil mixture for 90 minutes (extraction tower Residence time) during extraction treatment (total operation time of the extraction process: 600 minutes) to remove asphaltene to remain in the raffinate, and to recover the oil and solvent mixture by volatilization, and then to separate the solvent from the recovered oil and solvent mixture. 958,000 L of low sulfur fuel oil was obtained. The sulfur content, asphaltene content, yield, spot rating by the spot test immediately after removal of asphaltene, and the spot rating with time change by the spot test were measured in the obtained ultra-low sulfur fuel oil, and these results are shown in Table 1.

[실시예 4][Example 4]

t-AR : t-DAO를 용적비 1 : 1로 혼합한 유분 혼합물 1,656,000ℓ를 42 barg, 220℃의 조건에서 용제로서 n-펜탄을 용제/유분 혼합물 용적비 1의 비율로 첨가하여 70 분(추출탑 체류시간) 동안 추출처리하여(추출 공정 총 운전시간: 600 분) 라피네이트에 잔류되게 아스팔텐을 제거하고 유분과 용제 혼합물을 휘발시켜 회수한 후, 회수된 유분과 용제 혼합물로부터 용제를 분리하여 초저황 연료유 1,495,000ℓ를 얻었다. 수득된 초저황 연료유의 황 함량, 아스팔텐 함량, 수율, 아스팔텐 제거 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 1에 나타내었다.t-AR: t-DAO 1,656,000ℓ of an oily mixture mixed with a volume ratio of 1: 1 was added to the solvent at 42 barg, 220℃ at a ratio of 1, and n-pentane was added in the ratio of the solvent/oil mixture to a volume ratio of 1 for 70 minutes (extraction tower Residence time) during extraction treatment (total operation time of the extraction process: 600 minutes) to remove asphaltene to remain in the raffinate, and to recover the oil and solvent mixture by volatilization, and then to separate the solvent from the recovered oil and solvent mixture. 1,495,000 liters of low sulfur fuel oil were obtained. The sulfur content, asphaltene content, yield, spot rating by the spot test immediately after removal of asphaltene, and the spot rating with time change by the spot test were measured in the obtained ultra-low sulfur fuel oil, and these results are shown in Table 1.

[비교예 1][Comparative Example 1]

혼합유 대신 t-AR 단일유 1,325,000ℓ를 42 barg, 190℃의 조건에서 용제로서 n-펜탄을 용제/유분 혼합물 용적비 3의 비율로 첨가하여 70 분(추출탑 체류시간) 동안 추출처리하여(추출 공정 총 운전시간: 600 분) 라피네이트에 잔류되게 아스팔텐을 제거하고 유분과 용제 혼합물을 휘발시켜 회수한 후, 회수된 유분과 용제 혼합물로부터 용제를 분리하여 초저황 연료유 1,176,000ℓ를 얻었다. 수득된 초저황 연료유의 황 함량, 아스팔텐 함량, 수율, 아스팔텐 제거 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 2에 나타내었다.Instead of mixed oil, 1,325,000ℓ of t-AR single oil was added as a solvent under the condition of 42 barg, 190℃, and n-pentane was added in the ratio of the solvent/oil mixture volume ratio of 3, followed by extraction treatment for 70 minutes (extraction tower residence time). Total operation time of the process: 600 minutes) After removing asphaltene to remain in the raffinate and recovering the oil and solvent mixture by volatilization, the solvent was separated from the recovered oil and solvent mixture to obtain 1,176,000 L of ultra-low sulfur fuel oil. The sulfur content, asphaltene content, yield, spot rating by the spot test immediately after removal of asphaltene, and the spot rating with time change by the spot test were measured in the obtained ultra-low sulfur fuel oil, and these results are shown in Table 2.

[비교예 2][Comparative Example 2]

아스팔텐 제거를 하지 않은 저황 AR 단일유의 황 함량, 아스팔텐 함량 및 Spot Test에 의한 Spot Rating을 측정하고, 이들 결과들을 표 2에 나타내었다. 여기에서 저황 AR은 탈황처리되지 않았으나, 황 함량이 낮은 상압 잔사유(AR)이다.The sulfur content, asphaltene content, and spot rating of the low-sulfur AR single oil without asphaltene removal were measured, and these results are shown in Table 2. Here, the low sulfur AR is not desulfurized, but is an atmospheric residual oil (AR) with a low sulfur content.

[비교예 3][Comparative Example 3]

저황 AR : ULSD를 용적비 91 : 9로 혼합한 유분 혼합물을 아스팔텐 제거를 하지 않은 채로 황 함량, 아스팔텐 함량, 혼합 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 2에 나타내었다.Low sulfur AR: Measure the sulfur content, asphaltene content, Spot Rating by Spot Test and Spot Rating with time change by Spot Test, without removing asphaltene from the oily mixture mixed with ULSD at a volume ratio of 91:9. These results are shown in Table 2.

[비교예 4][Comparative Example 4]

저황 AR : ULSD를 용적비 76 : 24로 혼합한 유분 혼합물을 아스팔텐 제거를 하지 않은 채로 황 함량, 아스팔텐 함량, 혼합 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 2에 나타내었다.Low sulfur AR: Measure the sulfur content, asphaltene content, Spot Rating by Spot Test and Spot Rating with time change by Spot Test, without removing asphaltene from the oily mixture in which ULSD is mixed at a volume ratio of 76: 24. These results are shown in Table 2.

[비교예 5][Comparative Example 5]

저황 AR : ULSD : UCO를 용적비 91:4.5:4.5로 혼합한 유분 혼합물을 아스팔텐 제거를 하지 않은 채로 황 함량, 아스팔텐 함량, 혼합 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 2에 나타내었다.Low sulfur AR: ULSD: UCO in a volume ratio of 91:4.5:4.5 without removing asphaltene, sulfur content, asphaltene content, spot rating by spot test immediately after mixing, and change with time by spot test spot rating Was measured, and these results are shown in Table 2.

[비교예 6][Comparative Example 6]

저황 AR : ULSD : SLO를 용적비 72 : 20 : 8로 혼합한 유분 혼합물을 아스팔텐 제거를 하지 않은 채로 황 함량, 아스팔텐 함량, 혼합 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 2에 나타내었다. 여기에서 SLO는 FCC(Fluidized Catalytic Cracking) 공정의 잔사유이다.Low sulfur AR: ULSD: SLO in volume ratio 72: 20: 8 without removing asphaltene, sulfur content, asphaltene content, spot rating by spot test immediately after mixing, and change with time by spot test spot rating Was measured, and these results are shown in Table 2. Here, SLO is the residue of the FCC (Fluidized Catalytic Cracking) process.

[비교예 7][Comparative Example 7]

t-AR : LCO : SLO : H-Aro를 용적비 80 : 9 : 6 : 5로 혼합한 유분 혼합물을 아스팔텐 제거를 하지 않은 채로 황 함량, 아스팔텐 함량, 혼합 직후 Spot Test에 의한 Spot Rating 및 Spot Test에 의한 경시변화 Spot Rating을 측정하고, 이들 결과들을 표 2에 나타내었다. 여기에서 LCO는 유동층 촉매반응 공정에서 생산되는 저가 유분의 일종이고, H-Aro는 방향족 생산공정에서의 부산물이다.t-AR: LCO: SLO: H-Aro in volume ratio 80: 9: 6: 5 without removing asphaltene, sulfur content, asphaltene content, spot rating and spot by spot test immediately after mixing The spot rating of change over time was measured by the test, and these results are shown in Table 2. Here, LCO is a kind of inexpensive oil produced in the fluidized bed catalytic reaction process, and H-Aro is a by-product in the aromatic production process.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

표 1 및 표 2에서, S%는 황 함량을, AS%는 아스팔텐 함량을, 그리고 S.R.은 Spot Rating을 나타낸다. 표 2에서, i는 혼합 후 즉시(immediately)를 의미하며, 이는 혼합 직후 Spot Rating이 높아 경시 안정성을 확인하지 않았음을 나타낸다.In Tables 1 and 2, S% represents the sulfur content, AS% represents the asphaltene content, and S.R. represents the Spot Rating. In Table 2, i means immediately after mixing, which indicates that the stability over time was not confirmed due to high Spot Rating immediately after mixing.

표 1 및 표 2에 나타난 결과를 기준으로 본 발명의 효과를 설명하면 다음과 같다:When explaining the effects of the present invention based on the results shown in Tables 1 and 2 are as follows:

1. 혼합유로부터 아스팔텐을 제거한 실시예들 모두는 아스팔텐 제거 이전의 낮은 안정성에서 아스팔텐 제거 이후 높은 안정성을 나타내는 것을 확인할 수 있어, 본 발명에 따른 혼합유의 안정성을 입증하는 것으로 여겨진다. 또한, 아스팔텐 제거에 의해 혼합유의 경시 안정성에서 30일 초과에서도 경시 변화 없이 Spot Rating 1을 나타내어 경시 안정성 역시 크게 개선됨을 확인할 수 있었다. 1. It can be seen that all of the examples in which asphaltene was removed from the mixed oil showed high stability after removing the asphaltene from the low stability before removing the asphaltene, and it is believed to prove the stability of the mixed oil according to the present invention. In addition, it was confirmed that the stability over time was also significantly improved by showing a Spot Rating of 1 without any change over time even in more than 30 days in the stability over time of the mixed oil by removing asphaltene.

2. t-AR을 포함하는 혼합유로부터 아스팔텐을 제거한 실시예 1은 t-AR 단독유로부터 아스팔텐을 제거한 비교예 1과 비교하여 볼 때, 혼합유임에도 불구하고, 단독유에 준하는 안정성 및 경시 안정성을 나타냄을 확인할 수 있었으며, 또한 용제 사용량을 줄였음에도 반응 온도를 상승시키는 것에 의해 수율이 향상됨을 확인할 수 있었다.2. Example 1, in which asphaltene was removed from the mixed oil containing t-AR, was compared with Comparative Example 1 in which asphaltene was removed from the t-AR alone oil. It was confirmed that the stability was shown, and the yield was improved by increasing the reaction temperature even though the amount of the solvent used was reduced.

3. 동일한 혼합유로부터 아스팔텐을 제거한 실시예 2를 실시예 1과 비교하여 볼 때, 동일한 용제 사용량에도 불구하고 반응 온도를 하강시키는 것에 의해 수율이 향상됨을 확인할 수 있었다. 이는 동안의 추출탑 내에서의 초임계 상태의 용제의 밀도에 의해 수율이 달라질 수 있다는 것을 보여주는 분석된다.3. When comparing Example 2 in which asphaltene was removed from the same mixed oil with Example 1, it was confirmed that the yield was improved by lowering the reaction temperature despite the amount of the same solvent used. This is analyzed to show that the yield can vary depending on the density of the solvent in the supercritical state in the extraction column during the period.

4. 동일한 혼합유로부터 아스팔텐을 제거한 실시예 4를 실시예 3과 비교하여 볼 때, 동일한 용제 사용량에도 불구하고 i-펜탄을 사용하는 실시예 3에 비하여 n-펜탄을 사용하는 실시예 4의 수율이 크게 향상됨을 확인할 수 있었다. 이 역시, 용제의 분지화의 유무에 따라 추출탑 내에서의 초임계 상태의 용제의 밀도에 의해 수율이 달라질 수 있다는 것을 보여주는 것으로 분석된다.4. When comparing Example 4 in which asphaltene was removed from the same mixed oil with Example 3, in spite of the same amount of solvent used, Example 4 using n-pentane compared to Example 3 using i-pentane It was confirmed that the yield was greatly improved. This is also analyzed to show that the yield may vary depending on the density of the supercritical solvent in the extraction column depending on the presence or absence of branching of the solvent.

5. 아스팔텐을 제거하지 않은 비교예 2 및 3의 경우, 혼합 직후에는 Spot Rating이 1을 나타내어 안정성을 보이나, 경시 안정성에서 혼합 14 내지 18일 이후에는 Spot Rating이 2로 저하되었다.5. In the case of Comparative Examples 2 and 3 in which asphaltene was not removed, the Spot Rating was 1 immediately after mixing, showing stability, but in terms of aging stability, the Spot Rating decreased to 2 after 14 to 18 days of mixing.

6. 아스팔텐을 제거하지 않은 비교예 4 및 5의 경우, 혼합 직후에는 Spot Rating이 2를 나타내었으나, 경시 안정성에서 혼합 14 내지 18일 이후에는 Spot Rating이 3으로 저하되었다. 따라서, 혼합 직후 비교적 높은 안정성을 보이는 비교예들(비교예2 내지 5)은 경시 안정성에서의 저하를 나타냄을 확인할 수 있었다. 6. In the case of Comparative Examples 4 and 5 in which asphaltene was not removed, the Spot Rating was 2 immediately after mixing, but the Spot Rating decreased to 3 after 14 to 18 days of mixing in terms of aging stability. Therefore, it was confirmed that the comparative examples (Comparative Examples 2 to 5) showing relatively high stability immediately after mixing showed a decrease in stability over time.

7. 아스팔텐을 제거하지도 않고, 아스팔텐 함량이 높은 유분을 포함하는 비교예 6 및 7의 혼합유들은 혼합 직후에서조차도 낮은 안정성을 나타내었다.7. The mixed oils of Comparative Examples 6 and 7 which did not remove asphaltene and contained an oil having a high asphaltene content showed low stability even immediately after mixing.

8. 비록, 상기 실시예들에서는 t-AR 및 t-DAO 만을 사용하여 혼합유에 관해서만 기술하였으나, 고품질 유류를 생산하고 남은, 위에 열거한 바와 같은, 다른 유분들에 대하여도 유사한 결과를 얻을 수 있었다.8. Although, in the above examples, only the mixed oil was described using only t-AR and t-DAO, similar results could be obtained for other oils, as listed above, remaining after producing high-quality oil. there was.

지금까지 본 발명을 구체적인 실시예에 관하여 설명하였으나, 본 발명범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 청구의 범위뿐 아니라 이 청구의 범위와 균등한 것들에 의해 정해져야 한다.Although the present invention has been described with reference to specific embodiments so far, various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments and should not be defined by the claims to be described later, as well as by the claims and their equivalents.

Claims (9)

(1) 석유 정제 공정에서 고품질 유류를 생산하고 남은 적어도 2종의 유분들을 혼합하여 유분 혼합물을 얻는 혼합 단계;
(2) 상기 유분 혼합물에 탄소수 3, 4 또는 5의 탄화수소 용제를 첨가하고 가열하여 상기 유분 혼합물 중의 아스팔텐을 추출 분리하여 라피네이트 중에 잔류시키고 상기 유분과 용제의 혼합물을 휘발시켜 회수하는, 아스팔텐 분리 단계; 및
(3) 회수된 상기 유분과 용제의 혼합물로부터 상기 탄화수소 용제를 제거하여 초저황 연료유를 얻는 정유 단계;
를 포함하여 구성되고, 총 중량을 기준으로 0.5중량% 이하의 황 함량을 가지는 초저황 연료유를제조하는, 초저황 연료유의 제조방법.
(1) a mixing step of producing a high-quality oil in a petroleum refining process and mixing the remaining at least two types of oil to obtain an oil mixture;
(2) asphaltene, which is recovered by adding a hydrocarbon solvent having 3, 4 or 5 carbon atoms to the oil mixture and heating to extract and separate asphaltene from the oil mixture, remaining in the raffinate, and volatilizing the mixture of the oil component and the solvent. Separation step; And
(3) a refinery step of removing the hydrocarbon solvent from the recovered mixture of oil and solvent to obtain ultra-low sulfur fuel oil;
Consisting to include, and manufacturing an ultra-low sulfur fuel oil having a sulfur content of 0.5% by weight or less based on the total weight, a method of producing an ultra-low sulfur fuel oil.
제1항에 있어서,
상기 유분이 AR(Atmospheric Residue ; 상압 잔사유), VR(Vacuum Residue ; 감압 잔사유), t-AR(hydrotreated Atmospheric Residue ; 탈황 상압 잔사유), t-VR(hydrotreated Vacuum Residue ; 탈황 감압 잔사유), DAO(Deasphalted Oil ; 탈아스팔트유), t-DAO(hydrotreated Deasphalted Oil; 탈황 탈아스팔트유), UCO(Unconverted Oil ; 미전환유(또는 HCR 공정 잔사유), VGO(Vacuum Gas Oil ; 감압 가스유), t-VGO(hydrotreated VGO, 탈황 감압 가스유), HSD(High sulfur Diesel ; 고황 디젤유), ULSD(Ultra Low Sulfur Diesel ; 초저황 디젤유)로 이루어지는 군으로부터 선택됨을 특징으로 하는, 초저황 연료유의 제조방법.
The method of claim 1,
The oil is AR (Atmospheric Residue; atmospheric pressure residual oil), VR (Vacuum Residue; decompression residual oil), t-AR (hydrotreated Atmospheric Residue; desulfurization atmospheric pressure residual oil), t-VR (hydrotreated Vacuum Residue; desulfurization and decompression residual oil) , DAO (Deasphalted Oil; deasphalted oil), t-DAO (hydrotreated Deasphalted Oil; desulfurized and deasphalted oil), UCO (Unconverted Oil; unconverted oil (or HCR process residue), VGO (Vacuum Gas Oil; reduced pressure gas oil) , t-VGO (hydrotreated VGO, desulfurized decompression gas oil), HSD (High sulfur Diesel; high sulfur diesel oil), ULSD (Ultra Low Sulfur Diesel; ultra low sulfur diesel oil), characterized in that it is selected from the group consisting of, ultra-low sulfur fuel How to make oil.
제1항 또는 제2항에 있어서,
상기 아스팔텐 분리 단계에서 사용되는 탄화수소 용제가 n-프로판, n-부탄, i-부탄, n-펜탄, i-펜탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택됨을 특징으로 하는, 초저황 연료유의 제조방법.
The method according to claim 1 or 2,
The hydrocarbon solvent used in the asphaltene separation step is selected from the group consisting of n-propane, n-butane, i-butane, n-pentane, i-pentane, and mixtures of two or more thereof. Manufacturing method.
제1항 또는 제2항에 있어서,
상기 아스팔텐 분리 단계가 추출탑 내에서 30 내지 50 barg의 범위의 압력 및 100 내지 230℃의 범위의 온도에서 탄소수 3, 4 또는 5의 탄화수소 용제를 상기 유분 혼합물 용적 대비 1 내지 4 배량 첨가(탄화수소 용제 : 혼합유 = 1 내지 4 : 1)하여 반응시키는 것을 특징으로 하는, 초저황 연료유의 제조방법.
The method according to claim 1 or 2,
The asphaltene separation step adds 1 to 4 times the volume of the oil mixture with a hydrocarbon solvent having 3, 4 or 5 carbon atoms at a pressure in the range of 30 to 50 barg and a temperature in the range of 100 to 230°C in the extraction tower (hydrocarbon Solvent: mixed oil = 1 to 4: 1), characterized in that the reaction, the method for producing ultra-low sulfur fuel oil.
제4항에 있어서,
상기 아스팔텐 분리 단계에서 사용되는 탄화수소 용제가 n-프로판, n-부탄, i-부탄, n-펜탄, i-펜탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택됨을 특징으로 하는 초저황 연료유의 제조방법.
The method of claim 4,
Preparation of ultra-low sulfur fuel oil, characterized in that the hydrocarbon solvent used in the asphaltene separation step is selected from the group consisting of n-propane, n-butane, i-butane, n-pentane, i-pentane, and mixtures of two or more thereof Way.
석유 정제 공정에서 고품질 유류를 생산하고 남은 적어도 2종의 유분들의 혼합에 의해 수득되는 유분 혼합물에 탄소수 3, 4 또는 5의 탄화수소 용제를 첨가하고 가열하여 유분 혼합물 중의 아스팔텐을 추출분리하여 라피네이트 중에 잔류시키고, 상기 유분 혼합물의 유분과 상기 탄화수소 용제의 혼합물을 휘발시켜 회수한 후, 회수된 유분과 용제의 혼합물로부터 상기 탄화수소 용제를 제거하여 얻고, 총 중량을 기준으로 0.5중량% 이하의 황 함량을 가지는, 초저황 연료유.After producing high-quality oil in the petroleum refining process, a hydrocarbon solvent having 3, 4 or 5 carbon atoms is added to the oil mixture obtained by mixing at least two oils remaining, followed by heating to extract and separate asphaltene from the oil mixture into raffinate. After remaining, the mixture of the oil component of the oil mixture and the hydrocarbon solvent is recovered by volatilization, and then obtained by removing the hydrocarbon solvent from the mixture of the recovered oil component and the solvent, a sulfur content of 0.5% by weight or less based on the total weight is obtained. Eggplant, ultra-low sulfur fuel oil. 제6항에 있어서,
상기 유분이 AR, VR, t-AR, t-VR, DAO, t-DAO, UCO, VGO, t-VGO, HSD, ULSD로 이루어지는 군으로부터 선택됨을 특징으로 하는, 초저황 연료유.
The method of claim 6,
The oil is selected from the group consisting of AR, VR, t-AR, t-VR, DAO, t-DAO, UCO, VGO, t-VGO, HSD, and ULSD.
제6항에 있어서,
총 중량을 기준으로 0.01 내지 0.6중량%의 범위의 아스팔텐 함량을 가짐을 특징으로 하는 초저황 연료유.
The method of claim 6,
Ultra-low sulfur fuel oil, characterized in that it has an asphaltene content in the range of 0.01 to 0.6% by weight based on the total weight.
제1항 내지 제5항 중의 어느 한 항에 따른 초저황 연료유의 제조방법에 의하여 얻어지고, 총 중량을 기준으로 0.5중량% 이하의 황 함량을 가지는 초저황 연료유.
An ultra-low sulfur fuel oil obtained by the method for producing an ultra-low sulfur fuel oil according to any one of claims 1 to 5, and having a sulfur content of 0.5% by weight or less based on the total weight.
KR1020190122350A 2019-10-02 2019-10-02 A Very Low Sulfur Fuel Oil and a method for producing the same KR20210039743A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020190122350A KR20210039743A (en) 2019-10-02 2019-10-02 A Very Low Sulfur Fuel Oil and a method for producing the same
US17/763,826 US20220403256A1 (en) 2019-10-02 2020-03-10 Very low-sulfur fuel oil and method for producing the same
PCT/KR2020/003307 WO2021066265A1 (en) 2019-10-02 2020-03-10 Very low-sulfur fuel oil and method for producing the same
KR1020210181908A KR20210157454A (en) 2019-10-02 2021-12-17 A Very Low Sulfur Fuel Oil and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190122350A KR20210039743A (en) 2019-10-02 2019-10-02 A Very Low Sulfur Fuel Oil and a method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210181908A Division KR20210157454A (en) 2019-10-02 2021-12-17 A Very Low Sulfur Fuel Oil and a method for producing the same

Publications (1)

Publication Number Publication Date
KR20210039743A true KR20210039743A (en) 2021-04-12

Family

ID=75336545

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190122350A KR20210039743A (en) 2019-10-02 2019-10-02 A Very Low Sulfur Fuel Oil and a method for producing the same
KR1020210181908A KR20210157454A (en) 2019-10-02 2021-12-17 A Very Low Sulfur Fuel Oil and a method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210181908A KR20210157454A (en) 2019-10-02 2021-12-17 A Very Low Sulfur Fuel Oil and a method for producing the same

Country Status (3)

Country Link
US (1) US20220403256A1 (en)
KR (2) KR20210039743A (en)
WO (1) WO2021066265A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2579985B1 (en) * 1985-04-05 1988-07-15 Inst Francais Du Petrole
KR101779605B1 (en) * 2010-06-04 2017-09-19 에스케이이노베이션 주식회사 Method for producing base oil using deasphalt oil from reduced pressure distillation
KR101955702B1 (en) * 2011-07-31 2019-03-07 사우디 아라비안 오일 컴퍼니 Integrated process to produce asphalt and desulfurized oil
US20140221713A1 (en) * 2013-02-04 2014-08-07 Lummus Technology Inc. Residue hydrocracking processing
KR101654412B1 (en) * 2014-05-20 2016-09-05 에스케이이노베이션 주식회사 Method for preparing single grade lube base oil
FI20175815A1 (en) * 2017-09-14 2019-03-15 Neste Oyj Low sulfur fuel oil bunker composition and process for producing the same
US11236281B2 (en) * 2019-06-10 2022-02-01 Chevron U.S.A. Inc. Production of stable fuel oils

Also Published As

Publication number Publication date
US20220403256A1 (en) 2022-12-22
KR20210157454A (en) 2021-12-28
WO2021066265A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
CA3073130C (en) Low sulfur fuel oil bunker composition and process for producing the same
KR20210157454A (en) A Very Low Sulfur Fuel Oil and a method for producing the same
US4493765A (en) Selective separation of heavy oil using a mixture of polar and nonpolar solvents
KR20220017441A (en) Production of stable fuel oil
RU2661875C2 (en) Increased production of fuels by integration of vacuum distillation with solvent deasphalting
US4592832A (en) Process for increasing Bright Stock raffinate oil production
WO2007011168A1 (en) High quality asphalt containing pitch and method of preparing the same
CN104919024A (en) method for the selective deasphalting of heavy feedstocks
CA1096801A (en) Deasphalting with liquid hydrogen sulfide
SG192680A1 (en) Process for improving aromaticity of heavy aromatic hydrocarbons
US9828555B2 (en) Deasphalting process for production of feedstocks for dual applications
WO2020112094A1 (en) Low sulfur marine fuel compositions
CA2732393A1 (en) Production of gasoline using new method, blending of petroleum material cuts
US3206388A (en) Treatment of asphaltic crude oils
US20230059182A1 (en) Low sulfur fuel oil bunker composition and process for producing the same
CA3100011C (en) Bitumen partial upgrading
KR20210072217A (en) Method of producing stabilized fuel oil and the same produced therefrom
CA3110561A1 (en) Bitumen processing via solvent deasphalting and slurry-phase hydrocracking
WO2023037049A1 (en) A marine fuel blend
CN107033952B (en) Heavy oil processing method
KR20210121723A (en) Desulfurization method of heavy oil using supercritical extraction
CA1272976A (en) Process for increasing bright stock oil raffinate production
EP4090717A1 (en) Debottleneck solution for delayed coker unit
JPS63110285A (en) Efficient recovery of petroleum fraction
Guanghua et al. [17] P2 A Novel Deasphalting Process of Petroleum Residue

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2021101003210; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20211217

Effective date: 20220523