KR20210121723A - Desulfurization method of heavy oil using supercritical extraction - Google Patents

Desulfurization method of heavy oil using supercritical extraction Download PDF

Info

Publication number
KR20210121723A
KR20210121723A KR1020200038922A KR20200038922A KR20210121723A KR 20210121723 A KR20210121723 A KR 20210121723A KR 1020200038922 A KR1020200038922 A KR 1020200038922A KR 20200038922 A KR20200038922 A KR 20200038922A KR 20210121723 A KR20210121723 A KR 20210121723A
Authority
KR
South Korea
Prior art keywords
heavy oil
sulfur
desulfurization
oil
hydrocarbon solvent
Prior art date
Application number
KR1020200038922A
Other languages
Korean (ko)
Inventor
신웅철
김철현
Original Assignee
현대오일뱅크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대오일뱅크 주식회사 filed Critical 현대오일뱅크 주식회사
Priority to KR1020200038922A priority Critical patent/KR20210121723A/en
Priority to PCT/KR2020/004446 priority patent/WO2021201321A1/en
Publication of KR20210121723A publication Critical patent/KR20210121723A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/14Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure

Abstract

The present invention relates to a method for desulfurizing heavy oil using supercritical extraction, and more specifically, to a method for desulfurizing heavy oil, wherein a hydrocarbon solvent is added to heavy oil containing a sulfur-containing compound to extract and separate the sulfur-containing compound from the heavy oil under supercritical conditions so that desulfurized heavy oil is obtained without the use of separate hydrogen and catalysts, the production ratio of by-products is lower than that of an existing process to improve economical efficiency and profitability, hydrogen sulfide is not generated during the process to be eco-friendly, and a process configuration is simple compared to previous technology to improve the efficiency of the process.

Description

초임계 추출을 이용한 중질유의 탈황 방법{Desulfurization method of heavy oil using supercritical extraction}Desulfurization method of heavy oil using supercritical extraction {Desulfurization method of heavy oil using supercritical extraction}

본 발명은 초임계 추출을 이용한 중질유의 탈황 방법에 관한 것으로서, 보다 상세하게는 황 함유 화합물을 포함하는 중질유에 탄화수소 용제를 첨가하여, 황 함유 화합물을 중질유로부터 초임계 조건에서 추출 및 분리함으로써, 별도의 수소 및 촉매를 사용하지 않고도 탈황된 중질유를 수득하면서 기존의 공정에 비해 부산물의 생산 비율이 낮아 경제성 및 수익성을 향상시킬 수 있고, 공정 중에 황화수소가 발생되지 않아 친환경적이며, 공정의 구성이 종전 기술에 비해 간단하여 공정의 효율성을 향상시킬 수 있는 중질유의 탈황 방법에 관한 것이다.The present invention relates to a heavy oil desulfurization method using supercritical extraction, and more particularly, by adding a hydrocarbon solvent to the heavy oil containing a sulfur-containing compound, extracting and separating the sulfur-containing compound from the heavy oil under supercritical conditions. While obtaining desulfurized heavy oil without using hydrogen and catalyst of It relates to a method of desulfurization of heavy oil that can improve the efficiency of the process by being simple compared to the present invention.

석유 정제는 크게 단순 정제와 고도화 정제로 분리하여 생각할 수 있다. 단순 정제는 통상 원유를 섭씨 360도 이상으로 가열해 원유에 포함된 성분들의 끓는 온도 차이를 이용하여 석유 제품을 분리ㆍ생산한다. 상압증류시설〔Atmospheric Distillation Unit or Crude Distillation Unit(ADU/CDU)〕이 대표적이다. 원리는 원유를 커다란 탱크에 넣고 끓이면 원유에 포함된 각 성분들이 기체가 되어 커다란 굴뚝을 타고 올라간다. 증기가 된 원유를 중간중간 냉각시키면, 끓는 점과 분자량에 따라 프로판, 부탄, 나프타, 등유, 경유, 벙커C유 등 석유제품이 순서대로 나온다. 단순 정제를 할 경우 원유의 물성에 따라 다르지만, 보통 중질유인 벙커C유가 40~50%가량 나오게 되는데, 벙커C유는 과량의 유황 성분을 농축하여 포함한다.Petroleum refining can be largely divided into simple refining and advanced refining. Simple refining usually separates and produces petroleum products by heating crude oil to more than 360 degrees Celsius and using the difference in boiling temperature of the components contained in crude oil. A typical example is an atmospheric distillation facility [Atmospheric Distillation Unit or Crude Distillation Unit (ADU/CDU)]. The principle is that when crude oil is put into a large tank and boiled, each component contained in the crude oil becomes gas and climbs up a large chimney. When crude oil that has become steam is cooled in the middle, petroleum products such as propane, butane, naphtha, kerosene, light oil, and bunker C oil come out in order according to the boiling point and molecular weight. In the case of simple refining, although it depends on the physical properties of crude oil, about 40 to 50% of bunker C oil, which is usually a heavy oil, comes out.

바로 고도화 정제공정은 고유황 벙커C유를 원료로 다시 한 번 가공.분해ㆍ탈황 등의 공정을 통해 휘발유, 등유, 경유, 저유황 벙커C유를 생산하는 공정이다.The advanced refining process is a process to produce gasoline, kerosene, diesel, and low-sulfur bunker C oil through processes such as processing, decomposition and desulfurization once again using high-sulfur bunker C oil as a raw material.

고도화 정제공정은 다시 중질유 분해공정과 중질유 탈황공정으로 구분된다.The advanced refining process is further divided into a heavy oil cracking process and a heavy oil desulfurization process.

중질유 분해공정은 수소와 촉매를 이용해 고유황 벙커C유에 화학반응을 일으켜 휘발유, 등유, 경유를 생산하는 공정이다. 세부적으로는 수첨분해(Hydrocracking)와 촉매접촉분해(Catalytic Cracking)로 구분된다. 수첨분해란 고온.고압 촉매화에서 수소를 첨가하여 중질유를 분해한 다음 나프타, 등유, 경유를 만드는 공정으로 HCR(Hydrocracking)라고 불린다. 촉매접촉분해는 고온 촉매하에서 중질유를 접촉시켜 휘발유, 프로필렌을 생산하는 것으로 RFCC(Residue Fluidized Catalytic Cracking: 잔사유 유동층 접촉분해시설)라 하며 RFCC나 FCC는 수소를 첨가하는 반응이 아니므로 원료유를 탈황하여 공급하여야 한다.The heavy oil cracking process is a process to produce gasoline, kerosene, and diesel by causing a chemical reaction with high sulfur bunker C oil using hydrogen and a catalyst. In detail, it is divided into hydrocracking and catalytic cracking. Hydrocracking is the process of decomposing heavy oil by adding hydrogen in high-temperature and high-pressure catalysis to produce naphtha, kerosene, and light oil. It is called HCR (Hydrocracking). Catalytic cracking produces gasoline and propylene by contacting heavy oil under a high-temperature catalyst. It is called RFCC (Residue Fluidized Catalytic Cracking). should be supplied.

중질유 탈황공정은 고유황 벙커C유에 함유된 각종 불순물을 제거해 저유황 벙커C유와 RFCC나 HCR의 원료유 등을 생산하는 공정이다. 세계적인 환경 규제로 저유황 석유제품의 공급 부족이 심화되고 있어 시장성이 높아지고 있다.Heavy oil desulfurization process is a process to remove various impurities contained in high sulfur bunker C oil to produce low sulfur bunker C oil and raw material oil for RFCC or HCR. Due to global environmental regulations, the supply shortage of low-sulfur petroleum products is deepening, and marketability is increasing.

세계 3대 원유로 꼽히는 WTI(서부텍사스산 원유)는 생산비는 높은 대신 유황 성분이 적어 상대적으로 고급 휘발유 생산 비율이 높으나, 가격이 다른 유종보다 비싸다. 반면 우리나라 원유 도입의 70% 이상을 차지하는 두바이유는 서부텍사스원유에 비해 가격이 싼 대신 유황 성분이 상대적으로 높아 가공 비용이 높다. West Texas Intermediate (WTI), which is one of the world's three largest crude oils, has a relatively high production rate of high-quality gasoline due to its high production cost but low sulfur content, but is more expensive than other types of oil. On the other hand, Dubai oil, which accounts for more than 70% of Korea's crude oil import, is cheaper than West Texas crude, but has a relatively high sulfur content and therefore high processing cost.

중질유 탈황공정은 일반적으로, 고정층 촉매 반응기를 활용하여 액상원료와 과량의 수소가 반응기 상부로 동시 투입되는 잔사유 수첨탈황공정(RDS)을 이용한다.The heavy oil desulfurization process generally uses a resid hydrodesulfurization process (RDS) in which a liquid raw material and an excess of hydrogen are simultaneously introduced into the upper part of the reactor using a fixed-bed catalytic reactor.

그러나 잔사유 수첨탈황공정은 많은 수소와 촉매가 소모되며, 고온 및 고압조건에서 운전되기 때문에 경제성 및 수익성이 낮아질 수 있으며, 반응기, 부산물 분리를 위한 증류탑, 수소의 회수 및 압축을 위한 다수의 Separator 및 Compressor를 필수적으로 사용하기 때문에 공정의 효율성을 높이기 어렵다. 또한, 잔사유 수첨탈황공정에서 발생하는 가스, 나프타(Naphtha), 디젤(Diesel) 등의 부산물의 비율이 20% 이상으로 높으며, 수소 사용에 따른 크래킹(Cracking) 반응을 회피할 수 없다는 문제점도 존재한다. 나아가, 탈황공정에서 황화수소가 발생하여 친환경적이지 못하다. However, the resid hydrodesulfurization process consumes a lot of hydrogen and catalyst, and because it is operated under high temperature and high pressure conditions, economic efficiency and profitability may be lowered. Because the compressor is essential, it is difficult to increase the efficiency of the process. In addition, the ratio of by-products such as gas, naphtha, and diesel generated in the resid hydrodesulfurization process is as high as 20% or more, and there is also a problem that the cracking reaction caused by the use of hydrogen cannot be avoided. do. Furthermore, hydrogen sulfide is generated in the desulfurization process, which is not environmentally friendly.

또한, RDS공정을 통해 수첨탈황된 탈황 상압 잔사유 (t-AR, hydrotreated Atmospheric Residue)에 잔여하는 황 성분은 분자구조상 추가적인 탈황이 매우 어려운 형태로 남아 있게 되므로, 이 유분을 원료로 하여 추가적으로 RDS 공정을 수행하여 황 함량을 낮추어 0.3 B-C (황 함량 0.3wt% 이하 벙커유분)을 제품화하는 것은 매우 어려우며, 제품화를 하더라도 기존의 RDS 공정에 비해 더 많은 수소와 에너지가 소모되기 때문에 비효율적이라는 문제가 있다.  In addition, the sulfur component remaining in the hydrodesulfurized   atmospheric residue (t-AR, hydrotreated atmospheric residue) through the RDS process remains in a form that is very difficult to further desulfurize due to its molecular structure. It is very difficult to commercialize 0.3 BC (bunker oil content below 0.3 wt%  ) by lowering the sulfur content by performing

따라서, 별도의 수소 및 촉매를 사용하지 않고도 탈황된 중질유를 수득하면서 기존의 공정에 비해 부산물의 생산 비율이 낮아 경제성 및 수익성을 향상시킬 수 있고, 공정 중에 황화수소가 발생되지 않아 친환경적이며, 공정의 구성이 종전 기술에 비해 간단하여 공정의 효율성을 향상시킬 수 있는 중질유의 탈황 방법에 관한 개발이 필요한 실정이다. Therefore, it is possible to obtain desulfurized heavy oil without using separate hydrogen and catalyst, and improve economic efficiency and profitability due to a low production rate of by-products compared to the existing process, and it is environmentally friendly because hydrogen sulfide is not generated during the process, and the process configuration There is a need to develop a method for desulfurization of heavy oil that is simpler than the previous technology and can improve the efficiency of the process.

본 발명은 상기한 종래 기술의 문제점들을 해결하고자 한 것으로, 황 함유 화합물을 포함하는 중질유에 탄화수소 용제를 첨가하여, 황 함유 화합물을 중질유로부터 초임계 조건에서 추출 및 분리함으로써, 별도의 수소 및 촉매를 사용하지 않고도 탈황된 중질유를 수득하면서 기존의 공정에 비해 부산물의 생산 비율이 낮아 경제성 및 수익성을 향상시킬 수 있고, 공정 중에 황화수소가 발생되지 않아 친환경적이며, 공정의 구성이 종전 기술에 비해 간단하여 공정의 효율성을 향상시킬 수 있는 중질유의 탈황 방법을 제공하는 것을 기술적 과제로 한다.The present invention is to solve the problems of the prior art, by adding a hydrocarbon solvent to the heavy oil containing the sulfur-containing compound, extracting and separating the sulfur-containing compound from the heavy oil under supercritical conditions, thereby producing a separate hydrogen and catalyst While obtaining desulfurized heavy oil without using it, the production rate of by-products is lower than in the existing process, so economical efficiency and profitability can be improved. It is a technical task to provide a method for desulfurization of heavy oil that can improve the efficiency of

상기한 기술적 과제를 달성하기 위하여, 본 발명은 황 함유 화합물을 포함하는 중질유에 탄화수소 용제를 첨가하여, 황 함유 화합물을 중질유로부터 초임계 조건에서 추출 및 분리하는 제1단계; 제1단계에서 황 함유 화합물이 제거된 중질유로부터 탄화수소 용제를 분리하여 탈황된 중질유를 수득하는 제2단계; 및 제2단계에서 분리된 탄화수소 용제를 제1단계로 이송하여 재사용하는 제3단계를 포함하며, 상기 제1단계 및 제2단계에서 수소 및 촉매를 사용하지 않는, 중질유의 탈황 방법을 제공한다.In order to achieve the above technical problem, the present invention is a first step of extracting and separating the sulfur-containing compound from the heavy oil under supercritical conditions by adding a hydrocarbon solvent to the heavy oil containing the sulfur-containing compound; a second step of separating a hydrocarbon solvent from the heavy oil from which the sulfur-containing compound has been removed in the first step to obtain a desulfurized heavy oil; and a third step of reusing the hydrocarbon solvent separated in the second step by transferring it to the first step, wherein hydrogen and a catalyst are not used in the first step and the second step, and a desulfurization method of heavy oil is provided.

본 발명의 중질유의 탈황 방법을 사용함으로써, 별도의 수소 및 촉매를 사용하지 않고도 탈황된 중질유를 수득하면서 기존의 공정에 비해 부산물의 생산 비율이 낮으며, 공정 중에 황화수소가 발생되지 않고도 중질유 내의 황 저감율을 최대 60%까지 확보할 수 있어 친환경적이면서 경제성 및 수익성이 우수하다. 또한, 종래의 수첨탈황공정에 비해 비교적 간단한 공정 구성을 가지므로, AR, VR, t-AR 등 정유공정 전반의 중질유분을 단일 유닛(Unit)으로 처리할 수 있어 공정의 효율성을 향상시킬 수 있다. By using the heavy oil desulfurization method of the present invention, desulfurized heavy oil is obtained without using separate hydrogen and a catalyst, and the production rate of by-products is lower than in the existing process, and the reduction rate of sulfur in the heavy oil without hydrogen sulfide generated during the process It is eco-friendly, economical and profitable as it can secure up to 60% of In addition, since it has a relatively simple process configuration compared to the conventional hydrodesulfurization process, it is possible to process the heavy oil in the overall oil refining process such as AR, VR, and t-AR as a single unit, thereby improving the efficiency of the process. .

특히, RDS공정을 통해 수첨탈황된 탈황 상압 잔사유 (t-AR, hydrotreated Atmospheric Residue)에 잔여하는 황 성분은 추가적인 탈황이 어려운 형태로 존재하고 있으나, 본 발명의 탈황 방법을 이용하는 경우 황 함량을 낮추어 0.3 B-C (황 함량 0.3 wt% 이하 벙커유분)을 제품화할 수 있으며, 추가적인 탈황에 많은 수소와 에너지가 소모되는 기존의 RDS 공정에 비해 에너지 소모를 절감할 수 있다. In particular, the sulfur component remaining in the hydrodesulfurized   desulfurized atmospheric residue (t-AR, hydrotreated atmospheric residue) through the RDS process exists in a form that is difficult to further desulfurize, but when using the desulfurization method of the present invention, the sulfur content is lowered. 0.3 BC (sulphur content   0.3 wt%   or less bunker oil) can be commercialized, and energy consumption can be reduced compared to the existing RDS process, which consumes a lot of hydrogen and energy for additional desulfurization.

본 발명의 중질유의 탈황 방법은 단독으로 수행되거나, 또는 기존의 수첨탈황공정과 연계하여 사용될 수 있으며, 예를 들면 수첨탈황을 거친 잔사유분의 추가 탈황을 수행하는 경우에, 기존의 수첨탈황공정의 운전 조건보다 훨씬 온화한 조건에서도 탈황을 수행할 수 있다.The heavy oil desulfurization method of the present invention may be performed alone or may be used in conjunction with a conventional hydrodesulfurization process. Desulfurization can also be carried out in conditions much milder than operating conditions.

도 1은 본 발명의 중질유 탈황 방법을 개략적으로 도시한 것이다.1 schematically shows the heavy oil desulfurization method of the present invention.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 중질유의 탈황 방법은, 황 함유 화합물을 포함하는 중질유에 탄화수소 용제를 첨가하여, 황 함유 화합물을 중질유로부터 초임계 조건에서 추출 및 분리하는 제1단계; 제1단계에서 황 함유 화합물이 제거된 중질유로부터 탄화수소 용제를 분리하여 탈황된 중질유를 수득하는 제2단계; 및 제2단계에서 분리된 탄화수소 용제를 제1단계로 이송하여 재사용하는 제3단계를 포함하며, 상기 제1단계 및 제2단계에서 수소 및 촉매를 사용하지 않는 것을 특징으로 한다. The heavy oil desulfurization method of the present invention includes a first step of extracting and separating the sulfur-containing compound from the heavy oil under supercritical conditions by adding a hydrocarbon solvent to the heavy oil containing the sulfur-containing compound; a second step of separating a hydrocarbon solvent from the heavy oil from which the sulfur-containing compound has been removed in the first step to obtain a desulfurized heavy oil; and a third step of reusing the hydrocarbon solvent separated in the second step by transferring it to the first step, characterized in that hydrogen and a catalyst are not used in the first step and the second step.

본 명세서에서 “황 함유 화합물”은 중질유 내의 황이 집중적으로 분포하는 화합물로서, 예를 들면 아스팔텐, 중질 레진(heavy resin), 다환구조 방향족 화합물(polyaromatic compound) 또는 이들의 조합일 수 있다. As used herein, the term “sulfur-containing compound” refers to a compound in which sulfur in heavy oil is intensively distributed, and may be, for example, asphaltene, heavy resin, polyaromatic compound, or a combination thereof.

또한, 본 명세서에서 “황 함유 화합물이 제거된 중질유”란 중질유 내의 황 함량이 5.0 중량% 이하, 예를 들면 4.5 중량% 이하, 4.0 중량% 이하, 3.5 중량% 이하, 3.0 중량% 이하, 2.5 중량% 이하, 2,0 중량% 이하, 1.5 중량% 이하, 1.0 중량% 이하, 0.8 중량% 이하, 0.5 중량% 이하, 0.4 중량% 이하 또는 0.3 중량% 이하인 중질유를 의미한다. In addition, in the present specification, "heavy oil from which sulfur-containing compounds are removed" means that the sulfur content in the heavy oil is 5.0% by weight or less, for example, 4.5% by weight or less, 4.0% by weight or less, 3.5% by weight or less, 3.0% by weight or less, 2.5% by weight or less. % or less, 2.0 wt% or less, 1.5 wt% or less, 1.0 wt% or less, 0.8 wt% or less, 0.5 wt% or less, 0.4 wt% or less or 0.3 wt% or less.

본 발명의 중질유의 탈황 방법은, 황 함유 화합물을 포함하는 중질유에 탄화수소 용제를 첨가하여, 황 함유 화합물을 중질유로부터 초임계 조건에서 추출 및 분리하는 제1단계를 포함한다. The heavy oil desulfurization method of the present invention includes a first step of extracting and separating the sulfur-containing compound from the heavy oil under supercritical conditions by adding a hydrocarbon solvent to the heavy oil containing the sulfur-containing compound.

본 발명에서 사용하는 탄화수소 용제는 탄소수 4 내지 6의 탄화수소 용제일 수 있으며, 예를 들면 n-부탄, i-부탄, n-펜탄, i-펜탄, n-헥산, i-헥산 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것을 사용할 수 있으며, 예를 들면 n-펜탄을 사용할 수 있다. 이러한 탄화수소 용제를 중질유에 첨가하여, 초임계 조건에서 황 함유 화합물을 추출 및 분리함으로써, 수첨탈황공정과 같이 많은 양의 수소와 촉매를 소요하지 않더라도 탈황 공정을 수행할 수 있다. The hydrocarbon solvent used in the present invention may be a hydrocarbon solvent having 4 to 6 carbon atoms, for example, n-butane, i-butane, n-pentane, i-pentane, n-hexane, i-hexane, and combinations thereof. One selected from the group consisting of can be used, for example, n-pentane can be used. By adding such a hydrocarbon solvent to heavy oil to extract and separate sulfur-containing compounds under supercritical conditions, the desulfurization process can be performed without requiring a large amount of hydrogen and a catalyst as in the hydrodesulfurization process.

상기 제1단계의 황 함유 화합물을 포함하는 중질유는, 상압 잔사유 (AR, Atmospheric Residue), 감압 잔사유 (VR, Vacuum Residue), 탈황 상압 잔사유 (t-AR, hydrotreated Atmospheric Residue), 탈황 감압 잔사유(t-VR, hydrotreated Vacuum Residue), 탈아스팔트유 (DAO, Deasphalted Oil), 감압 가스유 (VGO, Vacuum Gas Oil) 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것일 수 있다. 예를 들면, 황 함유 화합물을 포함하는 중질유는 AR, VR 또는 t-AR일 수 있다. The heavy oil containing the sulfur-containing compound of the first step is, atmospheric residue (AR, Atmospheric Residue), vacuum residue (VR, Vacuum Residue), desulfurization atmospheric residue (t-AR, hydrotreated Atmospheric Residue), desulfurization and reduced pressure It may be selected from the group consisting of residue oil (t-VR, hydrotreated vacuum residue), deasphalted oil (DAO), vacuum gas oil (VGO, vacuum gas oil), and combinations thereof. For example, a heavy oil comprising a sulfur containing compound may be AR, VR or t-AR.

본 발명의 중질유 탈황 방법에서, 상기 제1단계는 35 내지 50 bar의 압력 및 190 내지 250℃의 초임계 조건에서 수행될 수 있다. 초임계 조건에서 중질유에 포함된 되어 황 함유 화합물은 전술한 탄화수소 용제에 추출되어 분리될 수 있다. 상기 압력 조건의 하한은 35 bar이상, 36 bar이상, 38 bar이상 또는 40 bar이상일 수 있고, 상한은 50 bar이하, 49 bar이하 또는 48 bar이하일 수 있으며, 압력 범위는 예를 들면, 35 내지 50 bar, 36 내지 50 bar, 38 내지 49 bar 또는 40 내지 48 bar일 수 있다. 상기 온도 조건의 하한은 190℃ 이상, 192℃ 이상, 195℃ 이상, 198℃ 이상 또는 200℃ 이상일 수 있고, 상한은 250℃ 이하, 245℃ 이하, 240℃ 이하, 235℃ 이하 또는 230℃ 이하일 수 있으며, 온도 범위는 예를 들면, 190 내지 250℃, 192 내지 245℃, 195 내지 240℃, 198 내지 235℃ 또는 200 내지 230℃일 수 있다. 압력 및 온도 범위가 상기 범위를 벗어나는 경우, 황 함유 화합물의 추출 및 분리가 저하되어 중질유 내의 황 함량 저감이 열약해질 수 있다.In the heavy oil desulfurization method of the present invention, the first step may be performed at a pressure of 35 to 50 bar and supercritical conditions of 190 to 250°C. The sulfur-containing compound contained in the heavy oil under supercritical conditions may be extracted and separated into the hydrocarbon solvent described above. The lower limit of the pressure condition may be 35 bar or more, 36 bar or more, 38 bar or more, or 40 bar or more, and the upper limit may be 50 bar or less, 49 bar or less, or 48 bar or less, and the pressure range is, for example, 35 to 50 bar, 36 to 50 bar, 38 to 49 bar or 40 to 48 bar. The lower limit of the temperature condition may be 190 °C or higher, 192 °C or higher, 195 °C or higher, 198 °C or higher, or 200 °C or higher, and the upper limit is 250 °C or lower, 245 °C or lower, 240 °C or lower, 235 °C or lower, or 230 °C or lower. and the temperature range may be, for example, 190 to 250 °C, 192 to 245 °C, 195 to 240 °C, 198 to 235 °C, or 200 to 230 °C. When the pressure and temperature ranges are out of the above ranges, the extraction and separation of sulfur-containing compounds may be lowered, and thus the reduction of the sulfur content in the heavy oil may be poor.

특별히 한정하지 않으나, 제1단계에서 첨가되는 탄화수소 용제의 양은 중질유 100 부피%를 기준으로 100 내지 500 부피%, 200내지 450부피% 또는 250내지 400부피%일 수 있다. 탄화수소 압력 및 온도 범위가 상기 범위를 벗어나는 경우, 황 함유 화합물의 추출 및 분리가 저하되어 중질유 내의 황 함량 저감이 열약해질 수 있다.Although not particularly limited, the amount of the hydrocarbon solvent added in the first step may be 100 to 500% by volume, 200 to 450% by volume, or 250 to 400% by volume based on 100% by volume of the heavy oil. If the hydrocarbon pressure and temperature range is out of the above range, the extraction and separation of sulfur-containing compounds may be lowered, and thus the reduction of the sulfur content in the heavy oil may be poor.

또한, 추출된 황 함유 화합물은 추출탑에서 피치 스트림(Pitch Stream)으로 제거될 수 있다. In addition, the extracted sulfur-containing compounds may be removed as a pitch stream in the extraction column.

본 발명의 중질유의 탈황 방법의 제2단계에서는, 제1단계에서 황 함유 화합물이 제거된 중질유로부터 탄화수소 용제를 분리하여 탈황된 중질유를 수득한다. 탄화수소의 분리는 탈황된 중질유와 탄화수소 용제의 혼합물을 휘발시켜 분리할 수 있으나, 이에 제한되지 않는다. 또한 특별히 한정하지 않으나, 탈황된 중질유의 황 함량은 5.0 중량% 이하, 예를 들면 4.5 중량% 이하, 4.0 중량% 이하, 3.5 중량% 이하, 3.0 중량% 이하, 2.5 중량% 이하, 2,0 중량% 이하, 1.5 중량% 이하, 1.0 중량% 이하, 0.8 중량% 이하, 0.5 중량% 이하, 0.4 중량% 이하 또는 0.3 중량% 이하일 수 있다. In the second step of the heavy oil desulfurization method of the present invention, the hydrocarbon solvent is separated from the heavy oil from which the sulfur-containing compound has been removed in the first step to obtain a desulfurized heavy oil. Separation of hydrocarbons may be performed by volatilizing a mixture of desulfurized heavy oil and a hydrocarbon solvent, but is not limited thereto. In addition, although not particularly limited, the sulfur content of the desulfurized heavy oil is 5.0 wt% or less, for example, 4.5 wt% or less, 4.0 wt% or less, 3.5 wt% or less, 3.0 wt% or less, 2.5 wt% or less, 2,0 wt% or less % or less, 1.5 wt% or less, 1.0 wt% or less, 0.8 wt% or less, 0.5 wt% or less, 0.4 wt% or less, or 0.3 wt% or less.

본 발명의 중질유의 탈황 방법의 제3단계에서는, 제2단계에서 분리된 탄화수소 용제를 제1단계로 이송하여 재사용하게 된다. 탄화수소 용제를 재사용함으로써 공정의 경제성 및 수익성을 향상시킬 수 있다. In the third step of the heavy oil desulfurization method of the present invention, the hydrocarbon solvent separated in the second step is transferred to the first step and reused. Reusing hydrocarbon solvents can improve the economics and profitability of the process.

본 발명의 중질유 탈황 방법은, 상기 제1단계 및 제2단계에서 기존의 수첨탈황공정과 같이 수소 및 촉매를 사용하지 않는다. 별도의 수소 및 촉매를 사용하지 않고도 탈황된 중질유를 수득하면서 기존의 공정에 비해 부산물의 생산 비율이 낮으며, 공정 중에 황화수소가 발생되지 않아, 경제성과 수익성을 확보하면서 친환경적으로 탈황 공정을 수행할 수 있다.The heavy oil desulfurization method of the present invention does not use hydrogen and a catalyst as in the conventional hydrodesulfurization process in the first and second steps. The production rate of by-products is lower than that of the existing process while obtaining desulfurized heavy oil without the use of separate hydrogen and catalyst, and hydrogen sulfide is not generated during the process. have.

특히, RDS공정을 통해 수첨탈황된 탈황 상압 잔사유 (t-AR, hydrotreated Atmospheric Residue)에 잔여하는 황 성분은 추가적인 탈황이 어려운 형태로 존재하고 있으나, 본 발명의 탈황 방법을 이용하는 경우 황 함량을 낮추어 0.3 B-C (황 함량 0.3wt% 이하 벙커유분)을 제품화할 수 있으며, 추가적인 탈황에 많은 수소와 에너지가 소모되는 기존의 RDS 공정에 비해 에너지 소모를 절감할 수 있다. In particular, the sulfur component remaining in the hydrodesulfurized   desulfurized atmospheric residue (t-AR, hydrotreated atmospheric residue) through the RDS process exists in a form that is difficult to further desulfurize, but when using the desulfurization method of the present invention, the sulfur content is lowered. 0.3 BC (sulphur content   0.3wt%   or less bunker oil) can be commercialized, and energy consumption can be reduced compared to the existing RDS process, which consumes a lot of hydrogen and energy for additional desulfurization.

본 발명의 중질유 탈황 방법은 단독으로 수행되거나, 또는 기존의 수첨탈황공정과 연계하여 수행될 수 있다. 예를 들면 수첨탈황을 거친 잔사유분의 추가 탈황을 수행하는 경우에, 기존의 수첨탈황공정의 운전 조건보다 훨씬 온화한 조건에서도 탈황을 수행할 수 있다. The heavy oil desulfurization method of the present invention may be performed alone or in conjunction with an existing hydrodesulfurization process. For example, in the case of performing additional desulfurization of the residual oil that has undergone hydrodesulphurization, desulfurization can be performed even under conditions much milder than the operating conditions of the existing hydrodesulfurization process.

이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples. However, the scope of the present invention is not limited by these examples.

[실시예][Example]

실시예 1Example 1

t-AR(황 함량: 0.51 중량%)을 원료 중질유 100부피%에 대하여, 탄화수소 용제인 n-펜탄 300부피%를 첨가하여, 초임계 조건인 220℃ 및 46 barg에서 황 함유 화합물인 아스팔텐을 추출 및 분리하였다. 아스팔텐이 제거된 중질유로부터 탄화수소 용제를 분리하여 탈황된 중질유를 얻었다. 탈황된 중질유의 황 함량은 0.20 중량%로서, 원료 대비 황 함량 저감율은 60%였으며, 수득된 중질유 수율은 96 중량%였다. t-AR (sulfur content: 0.51 wt %) was added to 300 vol % of n-pentane, a hydrocarbon solvent, with respect to 100 vol % of the raw heavy oil, and asphaltene, a sulfur-containing compound, was obtained at 220 ° C. and 46 barg, which are supercritical conditions. Extracted and isolated. A hydrocarbon solvent was separated from the asphaltene-free heavy oil to obtain a desulfurized heavy oil. The sulfur content of the desulfurized heavy oil was 0.20 wt%, the reduction rate of the sulfur content compared to the raw material was 60%, and the obtained heavy oil yield was 96 wt%.

실시예 2Example 2

VR(황 함량: 5.5중량%)을 원료 중질유 100부피%에 대하여, 탄화수소 용제인 n-펜탄 300부피%를 첨가하여, 초임계 조건인 200℃ 및 46 barg에서 황 함유 화합물인 아스팔텐을 추출 및 분리하였다. 아스팔텐이 제거된 중질유로부터 탄화수소 용제를 분리하여 탈황된 중질유를 얻었다. 탈황된 중질유의 황 함량은 2.5 중량%로서, 원료 대비 황 함량 저감율은 55%였으며, 수득된 중질유 수율은 80 중량%였다. VR (sulfur content: 5.5 wt %) was added to 100 vol % of the raw heavy oil, and 300 vol % of n-pentane, a hydrocarbon solvent, was added to extract asphaltene, a sulfur-containing compound, at 200 ° C. and 46 barg, which are supercritical conditions, and separated. A hydrocarbon solvent was separated from the asphaltene-free heavy oil to obtain a desulfurized heavy oil. The sulfur content of the desulfurized heavy oil was 2.5 wt%, the reduction rate of the sulfur content compared to the raw material was 55%, and the obtained heavy oil yield was 80 wt%.

실시예 3Example 3

AR 70% 및 VR 30%의 혼합 중질유 (황 함량: 5중량%)을 원료 중질유 100부피%에 대하여, 탄화수소 용제인 n-펜탄 300부피%를 첨가하여, 초임계 조건인 200℃ 및 46 barg에서 황 함유 화합물인 아스팔텐을 추출 및 분리하였다. 아스팔텐이 제거된 중질유로부터 탄화수소 용제를 분리하여 탈황된 중질유를 얻었다. 탈황된 중질유의 황 함량은 3.5중량%로서, 원료 대비 황 함량 저감율은 30%였으며, 수득된 중질유 수율은 85 중량%였다. A mixed heavy oil of 70% AR and 30% VR (sulfur content: 5% by weight) was added to 100% by volume of the raw heavy oil, and 300% by volume of n-pentane, a hydrocarbon solvent, was added, at 200° C. and 46 barg, which are supercritical conditions. Asphaltene, a sulfur-containing compound, was extracted and isolated. A hydrocarbon solvent was separated from the asphaltene-free heavy oil to obtain a desulfurized heavy oil. The sulfur content of the desulfurized heavy oil was 3.5% by weight, the reduction rate of the sulfur content compared to the raw material was 30%, and the obtained heavy oil yield was 85% by weight.

비교예 1Comparative Example 1

AR(황 함량: 4.0 중량%)을 원료 중질유를 반응기에 투입하고, 반응기 운전조건을 160 barg, 400 ℃로 하여 수첨탈황공정을 수행하였다. 이 때, 탈황반응에 참여하는 수소 소모량은 150 Nm3 H3/m3 로서, 이는 원료 1 m3 당 수소 13.4 kg 소비하는 것이다. AR (sulfur content: 4.0 wt %) was added to the reactor as a raw material heavy oil, and the hydrodesulfurization process was performed under operating conditions of the reactor at 160 barg and 400 °C. At this time, the hydrogen consumption participating in the desulfurization reaction is 150 Nm 3 H 3 /m 3 , which is 13.4 kg of hydrogen consumed per 1 m 3 of the raw material.

반응에 참여하며, 온도조절용으로 사용되는 수소의 투입량은 잉여량으로 공급되는바, 탈황 반응에 참여하는 수소 소모량의 5배가 되며, 이는 컴프레셔의 용량 증가 및 운전비 과다 발생의 원인이 된다. The amount of hydrogen that participates in the reaction and is used for temperature control is supplied as a surplus, which is five times the amount of hydrogen consumed in the desulfurization reaction, which causes an increase in the capacity of the compressor and excessive operating costs.

이러한 수첨탈황공정의 탈황성능으로는, 제품으로 수득된 t-AR의 황 함량이 0.8 중량%로서, 황 함량 저감율은 80%로서 비교적 높은 수치를 나타내나, 반응기 운전조건을 맞추기 위한 에너지 소모가 크고, 투입되는 수소 및 촉매의 소요가 너무 많으며, 탈황 공정에서 황화수소가 발생하여, 경제성 및 친환경성이 열악함을 확인할 수 있다. As for the desulfurization performance of this hydrodesulfurization process, the sulfur content of t-AR obtained as a product is 0.8 wt%, and the sulfur content reduction rate is 80%, which is relatively high, but the energy consumption to meet the reactor operating conditions is large and , it can be confirmed that the input hydrogen and catalyst are too much, and hydrogen sulfide is generated in the desulfurization process, so economical efficiency and eco-friendliness are poor.

상기 실시예 및 비교예에서 알 수 있는 바와 같이, 본 발명의 중질유의 탈황 방법은 과량의 수소 및 촉매를 사용하지 않으면서 탈황된 중질유를 보다 경제적으로 수득할 수 있다. 특히 본 발명의 중질유의 탈황 방법은 기존의 수첨탈황공정과 연계하여 사용될 수 있으며, 예를 들면 수첨탈황을 거친 잔사유분의 추가 탈황을 수행하는 경우에, 기존의 수첨탈황공정의 운전 조건보다 훨씬 온화한 조건에서도 탈황을 수행할 수 있다.As can be seen from the above Examples and Comparative Examples, the heavy oil desulfurization method of the present invention can more economically obtain desulfurized heavy oil without using excess hydrogen and catalyst. In particular, the heavy oil desulfurization method of the present invention can be used in conjunction with the existing hydrodesulfurization process, for example, in the case of performing additional desulfurization of the residual oil that has undergone hydrodesulphurization, it is much milder than the operating conditions of the existing hydrodesulfurization process. Desulfurization can also be performed under conditions.

Claims (8)

황 함유 화합물을 포함하는 중질유에 탄화수소 용제를 첨가하여, 황 함유 화합물을 중질유로부터 초임계 조건에서 추출 및 분리하는 제1단계;
제1단계에서 황 함유 화합물이 제거된 중질유로부터 탄화수소 용제를 분리하여 탈황된 중질유를 수득하는 제2단계; 및
제2단계에서 분리된 탄화수소 용제를 제1단계로 이송하여 재사용하는 제3단계를 포함하며,
상기 제1단계 및 제2단계에서 수소 및 촉매를 사용하지 않는,
중질유의 탈황 방법.
A first step of extracting and separating the sulfur-containing compound from the heavy oil under supercritical conditions by adding a hydrocarbon solvent to the heavy oil containing the sulfur-containing compound;
a second step of separating a hydrocarbon solvent from the heavy oil from which the sulfur-containing compound has been removed in the first step to obtain a desulfurized heavy oil; and
It includes a third step of reusing the hydrocarbon solvent separated in the second step by transferring it to the first step,
No hydrogen and catalyst are used in the first and second steps,
Desulfurization method of heavy oil.
제1항에 있어서, 상기 탄화수소 용제는 탄소수 4 내지 6의 탄화수소 용제인, 중질유의 탈황 방법.According to claim 1, wherein the hydrocarbon solvent is a hydrocarbon solvent having 4 to 6 carbon atoms, heavy oil desulfurization method. 제2항에 있어서, 상기 탄화수소 용제는 n-부탄, i-부탄, n-펜탄, i-펜탄, n-헥산, i-헥산 및 이들의 조합으로 이루어지는 군으로부터 선택되는, 중질유의 탈황 방법.The method of claim 2, wherein the hydrocarbon solvent is selected from the group consisting of n-butane, i-butane, n-pentane, i-pentane, n-hexane, i-hexane, and combinations thereof. 제1항에 있어서, 황 함유 화합물을 포함하는 중질유는,
상압 잔사유, 감압 잔사유, 탈황 상압 잔사유, 탈황 감압 잔사유, 탈아스팔트유, 감압 가스유 및 이들의 조합으로 이루어지는 군으로부터 선택되는, 중질유의 탈황 방법.
According to claim 1, wherein the heavy oil containing a sulfur-containing compound,
A method for desulfurization of heavy oil, selected from the group consisting of atmospheric residue, vacuum residue, desulfurization atmospheric residue, desulfurization vacuum residue, deasphalted oil, vacuum gas oil, and combinations thereof.
제1항에 있어서, 상기 제1단계는 35 내지 50 bar의 압력 및 190 내지 250℃의 조건에서 수행되는,
중질유의 탈황 방법.
According to claim 1, wherein the first step is carried out under the conditions of a pressure of 35 to 50 bar and 190 to 250 ℃,
Desulfurization method of heavy oil.
제1항에 있어서, 황 함유 화합물은 아스팔텐, 중질 레진, 다환구조 방향족 화합물 또는 이들의 조합인, 중질유의 탈황 방법.The method according to claim 1, wherein the sulfur-containing compound is asphaltene, a heavy resin, a polycyclic aromatic compound, or a combination thereof. 제1항에 있어서, 탈황된 중질유의 황 함량은 5.0 중량% 이하인, 중질유의 탈황 방법. The method according to claim 1, wherein the sulfur content of the desulfurized heavy oil is 5.0% by weight or less. 제1항 내지 제7항 중 어느 하나의 방법으로 수득되는 중질유. A heavy oil obtained by the method of any one of claims 1 to 7.
KR1020200038922A 2020-03-31 2020-03-31 Desulfurization method of heavy oil using supercritical extraction KR20210121723A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200038922A KR20210121723A (en) 2020-03-31 2020-03-31 Desulfurization method of heavy oil using supercritical extraction
PCT/KR2020/004446 WO2021201321A1 (en) 2020-03-31 2020-04-01 Method for desulfurizing heavy oil by using supercritical extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200038922A KR20210121723A (en) 2020-03-31 2020-03-31 Desulfurization method of heavy oil using supercritical extraction

Publications (1)

Publication Number Publication Date
KR20210121723A true KR20210121723A (en) 2021-10-08

Family

ID=77929646

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200038922A KR20210121723A (en) 2020-03-31 2020-03-31 Desulfurization method of heavy oil using supercritical extraction

Country Status (2)

Country Link
KR (1) KR20210121723A (en)
WO (1) WO2021201321A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005432B2 (en) * 2010-06-29 2015-04-14 Saudi Arabian Oil Company Removal of sulfur compounds from petroleum stream
US9382485B2 (en) * 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
KR101568615B1 (en) * 2014-11-28 2015-11-11 연세대학교 산학협력단 Method for continuously pretreating heavy hydrocarbon fractions
WO2017182187A1 (en) * 2016-04-22 2017-10-26 Siemens Aktiengesellschaft Method for purifying an asphaltene-containing fuel
KR20180100771A (en) * 2017-03-02 2018-09-12 성균관대학교산학협력단 Method of producing light oil from heavy oil using supercritical alcohol

Also Published As

Publication number Publication date
WO2021201321A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US10202552B2 (en) Method to remove metals from petroleum
US9982203B2 (en) Process for the conversion of a heavy hydrocarbon feedstock integrating selective cascade deasphalting with recycling of a deasphalted cut
US7214308B2 (en) Effective integration of solvent deasphalting and ebullated-bed processing
KR101831041B1 (en) Process for producing distillate fuels and anode grade coke from vacuum resid
JP2804369B2 (en) Hydrotreatment of residual oil with resin
RU2656273C2 (en) Integration of residue hydrocracking and solvent deasphalting
RU2634721C2 (en) Combining deaspaltization stages and hydraulic processing of resin and slow coking in one process
RU2663896C2 (en) Residue hydrocracking processing
WO2012050692A1 (en) Integrated deasphalting and oxidative removal of heteroatom hydrocarbon compounds from liquid hydrocarbon feedstocks
JP6117203B2 (en) Selective hydrotreating process for middle distillate
KR20170034908A (en) Integrated process to produce asphalt, petroleum green coke, and liquid and gas coking unit products
KR20210157454A (en) A Very Low Sulfur Fuel Oil and a method for producing the same
EA032741B1 (en) Process for the preparation of a feedstock for a hydroprocessing unit
WO2018152521A1 (en) Oxidative desulfurization of oil fractions and sulfone management using an fcc
JP6937832B2 (en) Oxidative desulfurization of oils and sulfone management using FCC
CN109486518B (en) Method and system for modifying low-quality oil
KR20210121723A (en) Desulfurization method of heavy oil using supercritical extraction
WO2011075495A1 (en) Desulfurization process using alkali metal reagent
CN104263407A (en) Hydrocarbon hydrogenation method with up-flow bed layer and fixed bed operated in series
IL226640A (en) Method for converting hydrocarbon feedstock comprising a shale oil by decontamination, hydroconversion in an ebullating bed and fractionation by atmospheric distillation
US10093872B2 (en) Oxidative desulfurization of oil fractions and sulfone management using an FCC
US3669876A (en) Hf extraction and asphaltene cracking process
US9453167B2 (en) Methods and apparatuses for processing hydrocarbon streams containing organic nitrogen species
CN111040808B (en) Inferior oil upgrading method and system for high-yield heavy upgraded oil
US10087377B2 (en) Oxidative desulfurization of oil fractions and sulfone management using an FCC

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application