EP0200010B1 - Ignition device - Google Patents

Ignition device Download PDF

Info

Publication number
EP0200010B1
EP0200010B1 EP86104406A EP86104406A EP0200010B1 EP 0200010 B1 EP0200010 B1 EP 0200010B1 EP 86104406 A EP86104406 A EP 86104406A EP 86104406 A EP86104406 A EP 86104406A EP 0200010 B1 EP0200010 B1 EP 0200010B1
Authority
EP
European Patent Office
Prior art keywords
voltage
ignition
spark gap
medium
voltage transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86104406A
Other languages
German (de)
French (fr)
Other versions
EP0200010A1 (en
Inventor
Albert Schmidt
Dieter Teutsch
Roland Gaisser
Rudolf Maly
Eberhard Wagner
Hans Albrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERU Ruprecht GmbH and Co KG
Original Assignee
BERU Ruprecht GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERU Ruprecht GmbH and Co KG filed Critical BERU Ruprecht GmbH and Co KG
Priority to AT86104406T priority Critical patent/ATE70598T1/en
Publication of EP0200010A1 publication Critical patent/EP0200010A1/en
Application granted granted Critical
Publication of EP0200010B1 publication Critical patent/EP0200010B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/02Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors
    • F02P7/03Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors with electrical means
    • F02P7/035Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors with electrical means without mechanical switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0876Layout of circuits the storage capacitor being charged by means of an energy converter (DC-DC converter) or of an intermediate storage inductance
    • F02P3/0884Closing the discharge circuit of the storage capacitor with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Definitions

  • the invention relates to an ignition system according to the preamble of patent claim 1.
  • the basic goal is to achieve sparks with the highest possible ignitability.
  • the aspect of high ignitability is gaining importance especially in connection with the lean burn engines that are currently being developed to save fuel, which use fuel-air mixtures (Lambda ⁇ 1.4) that are unwilling to ignite and react very slowly, and with the use of exhaust gas catalytic converters that only misfire tolerated to a limited extent, because unburned fuel entering the catalytic converter can burn the catalytic converter.
  • an ignition system according to the preamble of claim 1 is known.
  • a medium-voltage storage capacitor is provided in the number of ignition strands and the high-voltage converter has inductors which allow the ignition energy stored in the high-voltage storage capacitor to be converted in a period of approximately 0.1 ms.
  • an object of the invention to provide an ignition system which, without amplification or additional load on the primary energy source, is able to reliably deliver the required ignition voltage with a high-energy ignition spark.
  • the use of the low-inductance high-voltage converter in the multiplicity of ignition strands and the associated omission of a high-voltage ignition distributor makes a decisive contribution to ensuring that the energy is lossless and extremely quickly from the medium-voltage storage capacitor, to which the primary energy source works via the medium-voltage converter, into the high-voltage storage capacitor is reloaded.
  • the capacity of the high-voltage storage capacitor can be chosen so high without loss of charging security that even after the spark gap has broken through, i.e. if storage capacity and spark plug capacity are in parallel, the voltage at the spark plug gap is still so high that it is suitable for all operating states Spark plug spark gap is sufficient. With a spark plug capacitance of approximately 20 pF, values of the order of 300 pF are typical for the high-voltage storage capacitor.
  • the spark gap represents a switch that suddenly changes to low resistance when the breakdown voltage is reached, with low inductance and low resistance of the entire ignition circuit, including the voltage converter generating the high voltage, ensuring that voltage rises on the spark gap of the order of 100 kV / ⁇ s can be achieved. As a result, the majority of the energy converted in the spark plug spark gap goes into the plasma structure and thus into the mixture to be ignited.
  • the low resistance and low inductance required for the individual ignition strands include the switching elements which switch the medium-voltage storage capacitor to the individual ignition strands.
  • thyristors are preferably used, which can be easily opened at the correct time and which can be quickly blocked by themselves.
  • a blocking oscillator is preferably provided for the medium-voltage converter on which the primary low-DC voltage source operates. It is short-circuit proof, relatively loss-free buildable, can be optimally adjusted in performance and has a sufficiently rapid voltage rise.
  • the medium voltage storage capacitor to which the voltage converter operates is preferably charged to a voltage of the order of 700 V and has a capacitance of the order of magnitude of 1.5 ⁇ F.
  • the high-voltage storage capacitor can thus be charged to voltage values of approximately 30 kV with a capacitance of the order of magnitude of 300 pF.
  • Such a lossless transmission has proven to be impossible with conventional ignition coils with high inductance and with an ignition distribution on the high voltage side.
  • a voltage converter 2 in the form of a blocking oscillator is acted upon by a voltage typical for these voltage sources, for example 12 V or less, via a disconnector in the form of a switch.
  • the blocking oscillator 2 charges a medium-voltage energy store 1 in the form of a film capacitor of approximately 1.5 ⁇ F capacitance to a voltage of approximately 700 V.
  • the circuit branches into parallel branches of the same structure, corresponding to the multiplicity of the units to be ignited, i.e. Spark plugs or cylinders.
  • controllable isolators preferably fast thyristors, 3a, 3b, 3c, 3d, ... are parallel in the multiplicity of the ignition strings provided.
  • FIG. 3 A preferred construction of an ignition line 4x to 8x is shown in FIG. 3.
  • Transformer 4x To the high voltage output of the High voltage storage capacitor 5x is connected to transformer 4x.
  • spark gap 6x In parallel is the series connection of spark gap 6x and spark plug capacity 7x with spark gap 8x.
  • the spark plug capacitance is typically approx. 20 pF.
  • the capacitance of this spark gap In order for the voltage generated by the transformer 4x to actually drop substantially across the spark gap 6x before the spark gap 6x breaks down, the capacitance of this spark gap must be chosen to be small compared to the spark plug capacitance 7x, so it is preferably of the order of 2 pF.
  • the storage capacitor 5x in turn must be so high with its capacitance that after switching through the spark gap, that is if the capacitance of the storage capacitor 5x and the spark plug capacitance 7x are in parallel, the total capacitance is still essentially determined by the capacitance of the storage capacitor 5x.
  • the desired value for this voltage is of the order of 30 kV.
  • the generation of a voltage of the order of 30 kV on a capacitance of the order of a few hundred pF without additional load on the primary energy source, i.e. battery or alternator, is achieved by using the low-loss and low-inductance high-voltage transformers 4x in conjunction with dispensing with ignition distribution on the high-voltage side and their replacement by the isolators 3x on the low voltage side of the transformers 4x achieved in the multiplicity of these transformers.
  • Particularly suitable values for the high-voltage transformer are of the order of magnitude of 150 ⁇ H inductance, 350 m ⁇ resistance on the primary side in conjunction with 350 mH inductance, 180 ⁇ resistance on the secondary side.
  • a ferrite core material ensures low core losses.
  • the low inductance of the high voltage transformer 4x leads to extremely rapid recharging processes from the medium-voltage storage capacitor into the high-voltage storage capacitor 5x that has just been connected, which, in conjunction with the rapid breakdown of the spark gap that is thereby promoted, provides 6x voltage increases of the order of magnitude 100 kV / ⁇ s on the spark plug spark gap. This favors the energy conversion in the spark gap 8x in the head of the spark, i.e. in the nanosecond range, and contributes to the fact that in the time available, there are only negligible amounts of energy due to possible shunts, such as those caused by sooting the insulator body of the spark plug can drain off.
  • the low inductance of the high-voltage transformer 4x makes its combination with the high-voltage storage capacitor 5x or the medium-voltage storage capacitor 1 very rapidly oscillating resonant circuits, so that the energy which is not converted in the nanosecond range can be returned to the medium-voltage storage capacitor.
  • a diode can be provided antiparallel to the switching path of the thyristor 3x, which is already blocking at this time.
  • the requirements for the isolating element 3x located between the medium-voltage energy store 1 and the high-voltage converter 4x consist primarily in the fact that it can be controlled in a defined time, switches very quickly and is very low-resistance in the switched-through state in order to avoid losses here as well. These requirements are met to a particularly high degree by a fast thyristor, as is available today.
  • the separation elements 3x can be activated in any suitable manner.
  • a map computer that can be controlled via signal transmitters 10 (sensors), so that the ignition timing can be adjusted in accordance with engine requirements, load conditions, etc., can be used as the signal converter 9 that controls the isolating elements 3x.
  • the signal converter 9 can also be a converted mechanical high-voltage ignition distributor without a high-voltage function, which contains the sensors for negative pressure adjustment, centrifugal force adjustment, cylinder detection, etc.
  • a blocking oscillator is preferred as medium-voltage converter 2 because it can be built with relatively little loss, can be optimally adapted in terms of performance, is short-circuit proof and offers a sufficiently rapid voltage rise in the millisecond range. In addition, it can be built small.
  • the blocking oscillator principle it is also possible to fully charge the medium-voltage energy store 1 with a pulse sequence of approximately 10 Hz, sufficient for engine starts, from a primary voltage of 3 V (extreme cold start).
  • a plurality of medium-voltage energy storage devices 1 act on each ignition train, with the provision of corresponding additional isolating elements 3x. This means that several high-energy sparks can be processed one after the other per ignition process and spark plug. Since the ignition system draws energy proportionally to the spark sequence of the battery or alternator, double sparks are possible up to half the maximum spark sequence, and triple sparks at a third of the maximum ignition sequence without a greater load on the battery or alternator than with the maximum spark sequence.
  • FIG. 2 shows part of the circuit of Figure 1 in greater detail.
  • the signal converter 9 for example a map computer, outputs its output control signals to the light-emitting diodes 20a, 20b, 20c, 20d, ... from optocouplers with which the power section is galvanically isolated from the control elements in order to suppress crosstalk from one ignition branch to the other.
  • the phototransistors 21a, 21b, 21c, 21d, ... of the optocouplers give their signals to the control electrodes of the thyristors 3a, 3b, 3c, 3d, ..., which are in series with the primary windings of the high-voltage converters 4a, 4b, 4c, 4d , ... lie.
  • the voltage of the medium-voltage capacitor 1 charged via the blocking oscillator 2 from the alternator or battery is at a voltage of the order of magnitude 1.
  • the Thyristor controlled by signal converter 9, switched through, current flows - because of the low inductance and low resistance of the high-voltage converter 4x and the speed of the thyristor 3x with short rise time and high peak currents.
  • the high-voltage converter transforms the voltage on the primary side high and the high-voltage storage capacitor 5x, which is no longer shown in FIG. 2, is charged with high efficiency in the nanosecond range to the desired voltage of the order of magnitude of 30 kV.
  • the decoupling diodes 22x are omitted and diodes connected antiparallel to the thyristors are provided.
  • the response voltage of the spark gaps was then increased to 27 kV and the capacitance of the storage capacitors increased to 330 pF.
  • the application of the ignition system described is not limited to single and multi-cylinder reciprocating piston engines, but can also be used with rotary piston engines, gas turbines etc. with a wide variety of fuels diesel, gasoline, alcohol, ethanol, hydrogen, hydrogen gasoline, biogas, natural gas, propane etc. with more or less good mixture preparation, more or less emaciated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Magnetic Heads (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

An ignition system having a low voltage source serving as a starting point for producing of an ignition voltage at least one ignition spark gap via at least one ignition branch, said branch including a said ignition spark gap, a high voltage capacitor, a high voltage transformer for producing a voltage at the high voltage capacitor of at least the same order of magnitude as said ignition voltage, an auxiliary spark gap having a breakdown threshold, and timing control means for controlling voltage delivery timing to said branch; wherein said auxiliary spark gap is disposed at an output side of said high voltage transformer and said high voltage capacitor is coupled to said auxiliary spark gap in a manner causing the high voltage capacitor to discharge to said ignition spark gap when the breakdown threshold of the auxiliary spark gap is exceeded; wherein the high voltage transformer has minimum inductances and minimum impedances; wherein a medium voltage transformer for producing a voltage between the low voltage and the ignition voltage and a medium voltage storage capacitor that is chargeable by said medium voltage transformer are provided between the low voltage source and the high voltage transformer; and wherein a controllable element is provided in said branch at an input side of said high voltage transformer, said controllable element being controlled by the timing control means in a manner operable for separating and interconnecting said high voltage transformer and said medium voltage storage capacitor.

Description

Die Erfindung bezieht sich auf eine Zündanlage gemäß Oberbegriff des Patentanspruchs 1.The invention relates to an ignition system according to the preamble of patent claim 1.

Bei der Konzipierung einer Zündanlage ist es Grundziel, Funken mit möglichst hoher Zündfähigkeit zu erreichen. Der Gesichtspunkt hoher Zündfähigkeit gewinnt vor allem an Bedeutung im Zusammenhang mit den heute zur Kraftstoffeinsparung in Entwicklung befindlichen Magerbetriebsmotoren, die zündunwillige und recht träge reagierende Kraftstoff-Luftgemische (Lambda≧1,4) verwenden, und mit dem Einsatz von Abgaskatalysatoren, die Zündaussetzer nur in beschränktem Umfang vertragen, weil in den Katalysator gelangender unverbrannter Kraftstoff zu einem Verbrennen des Katalysators führen kann.When designing an ignition system, the basic goal is to achieve sparks with the highest possible ignitability. The aspect of high ignitability is gaining importance especially in connection with the lean burn engines that are currently being developed to save fuel, which use fuel-air mixtures (Lambda ≧ 1.4) that are unwilling to ignite and react very slowly, and with the use of exhaust gas catalytic converters that only misfire tolerated to a limited extent, because unburned fuel entering the catalytic converter can burn the catalytic converter.

Bei Verwendung eines Hochspannungsspeicherkondensators und einer Vorfunkenstrecke in Verbindung mit der eigentlichen Zündkerzenfunkenstrecke (DE-A-2 810 159) hat sich eine Möglichkeit zu energiereichen Zündfunken geöffnet, die darüber hinaus den wesentlichen Teil ihrer Energie, was günstig ist, im sogenannten Funkenkopf, also in der Durchbruchsphase, umsetzen. Allerdings muß bei einer solchen Anordnung in Form des Speicherkondensators ein Kondensator hoher Kapazität auf im wesentlichen die Zündspannung aufgeladen werden, was mit herkömmlichen Transistorzündsystemen aufgrund ihres schlechten Wirkungsgrades oder auch bei Hockspannungskondensatorzündsystemen mit an sich gutem Wirkungsgrad aber geringer Leistung bei vertretbarer Belastung der primären Energiequelle (Batterie, Lichtmaschine) praktisch nicht möglich ist. Dies liegt vor allem an Verlusten in der Zündspule und im Hochspannungszündverteiler, durch den die Sekundärseite der Zündspule auf den jeweiligen Zündstrang geschaltet wird.When using a high-voltage storage capacitor and a spark gap in connection with the actual spark plug gap (DE-A-2 810 159), there is a possibility of high-energy spark that also saves the essential part of its energy, which is cheap, in the so-called spark head, i.e. in the breakthrough phase. However, with such an arrangement in the form of the storage capacitor, a capacitor of high capacitance must be charged to essentially the ignition voltage, which is the case with conventional transistor ignition systems because of their poor efficiency or also with high-voltage capacitor ignition systems with an efficiency that is good per se but low power with a reasonable load on the primary energy source (battery , Alternator) is practically not possible. This is mainly due to losses in the ignition coil and in the high-voltage distributor, through which the secondary side of the ignition coil is switched to the respective ignition branch.

Ebenso wie aus DE-A-2 810 159 ist es aus US-A-3 361 932 bekannt, die Zündenergie aus einem Hochspannungsspeicherkondensator über eine vorfunkenstrecke in die Zündfunkenstrecke, die zusammen mit der Vorfunkenstrecke parallel zum Hochspannungsspeicherkondensator liegt, zu entladen.Just like from DE-A-2 810 159, it is known from US-A-3 361 932 to discharge the ignition energy from a high-voltage storage capacitor via a spark gap into the ignition spark gap, which together with the spark gap is parallel to the high-voltage storage capacitor.

Aus GB-A-2 099 917 ist eine Zündanlage gemäß dem Oberbegriff des Patentanspruchs 1 bekannt. Bei dieser bekannten Zündanlage ist ein Mittelspannungsspeicherkondensator in der Anzahl der Zündstränge vorgesehen und weist der Hochspannungswandler Induktivitäten auf, die eine Umsetzung der im Hochspannungsspeicherkondensator gespeicherten Zündenergie in einem Zeitraum von etwa 0,1 ms zulassen.From GB-A-2 099 917 an ignition system according to the preamble of claim 1 is known. In this known ignition system, a medium-voltage storage capacitor is provided in the number of ignition strands and the high-voltage converter has inductors which allow the ignition energy stored in the high-voltage storage capacitor to be converted in a period of approximately 0.1 ms.

Vor diesem Hintergrund ist es Aufgabe der Erfindung, eine Zündanlage zu schaffen, welche ohne Verstärkung bzw. zusätzliche Belastung der primären Energiequelle in der Lage ist, zuverlässig die geforderte Zündspannung bei gleichzeitig energiereichem Zündfunken zu liefern.Against this background, it is an object of the invention to provide an ignition system which, without amplification or additional load on the primary energy source, is able to reliably deliver the required ignition voltage with a high-energy ignition spark.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Zündanlage, wie sie in Anspruch 1 gekennzeichnet ist.This object is achieved according to the invention by an ignition system as characterized in claim 1.

Die Verwendung des induktivitätsarmen Hockspannungswandlers in der Vielfachheit der Zündstränge und der damit verbundene Verzicht auf einen hochspannungsseitigen Zündverteiler trägt entscheidend dazu bei, daß die Energie verlustarm und äußerst rasch aus dem Mittelspannungsspeicherkondensator, auf den die primäre Energiequelle über den Mittelspannungswandler arbeitet, in den Hochspannungs-Speicherkondensator umgeladen wird. Die Kapazität des Hochspannungs-Speicherkondensators kann dabei ohne Verlust an Aufladesicherheit so hoch gewählt werden, daß auch nach dem Durchschlagen der Vorfunkenstrecke, wenn also Speicherkapazität und Zündkerzenkapazität parallel liegen, die Spannung an der Zündkerzenfunkenstrecke noch so hoch ist, daß sie für alle Betriebszustände an der Zündkerzenfunkenstrecke ausreicht. Typisch sind bei einer Zündkerzeneigenkapazität von ca. 20 pF Werte der Größenordnung 300 pF für den Hochspannungsspeicherkondensator.The use of the low-inductance high-voltage converter in the multiplicity of ignition strands and the associated omission of a high-voltage ignition distributor makes a decisive contribution to ensuring that the energy is lossless and extremely quickly from the medium-voltage storage capacitor, to which the primary energy source works via the medium-voltage converter, into the high-voltage storage capacitor is reloaded. The capacity of the high-voltage storage capacitor can be chosen so high without loss of charging security that even after the spark gap has broken through, i.e. if storage capacity and spark plug capacity are in parallel, the voltage at the spark plug gap is still so high that it is suitable for all operating states Spark plug spark gap is sufficient. With a spark plug capacitance of approximately 20 pF, values of the order of 300 pF are typical for the high-voltage storage capacitor.

Die Vorfunkenstrecke stellt einen Schalter dar, der mit Erreichen der Durchbruchsspannung schlagartig ins Niederohmige übergeht, wobei Induktivitätsarmut und Niederohmigkeit des gesamten Zündstranges einschließlich des die hohe Spannung erzeugenden Spannungswandlers dafür sorgen, daß sich Spannungsanstiege an der Zündfunkenstrecke von der Größenordnung 100 kV/µs erreichen lassen. Dadurch geht der größte Teil der in der Zündkerzenfunkenstrecke umgesetzten Energie in den Plasmaaufbau und damit in das zu zündende Gemisch.The spark gap represents a switch that suddenly changes to low resistance when the breakdown voltage is reached, with low inductance and low resistance of the entire ignition circuit, including the voltage converter generating the high voltage, ensuring that voltage rises on the spark gap of the order of 100 kV / µs can be achieved. As a result, the majority of the energy converted in the spark plug spark gap goes into the plasma structure and thus into the mixture to be ignited.

Die für die einzelnen Zündstränge geforderte Niederohmigkeit und Induktivitätsarmut schließt die Schaltelemente, welche den Mittelspannungsspeicherkondensator auf die einzelnen Zündstränge schalten, mit ein. Vorzugsweise werden hierfür Thyristoren eingesetzt, die sich leicht zeitrichtig aufsteuern lassen und von selbst rasch wieder sperren. Für den Mittelspannungswandler, auf den die primäre Niedergleichspannungsquelle arbeitet ist vorzugsweise ein Sperrschwinger vorgesehen. Er ist kurzschlußfest, relativ verlustfrei baubar, läßt sich optimal in der Leistung anpassen und hat einen ausreichend schnellen Spannungsanstieg. Der Mittelspannungsspeicherkondensator,auf den der Spannungswandler arbeitet, wird vorzugsweise auf eine Spannung der Größenordnung von 700 V aufgeladen und hat eine Kapazität der Größenordnung von 1,5 µF. Damit läßt sich der hochspannungsseitige Speicherkondensator bei einer Kapazität der Größenordnung von 300 pF auf Spannungswerte von etwa 30 kV aufladen. Eine derart verlustfreie Übertragung hat sich mit herkömmlichen Zündspulen hoher Induktivität und mit einer Zündverteilung auf der Hochspannungsseite als unmöglich erwiesen.The low resistance and low inductance required for the individual ignition strands include the switching elements which switch the medium-voltage storage capacitor to the individual ignition strands. For this purpose, thyristors are preferably used, which can be easily opened at the correct time and which can be quickly blocked by themselves. A blocking oscillator is preferably provided for the medium-voltage converter on which the primary low-DC voltage source operates. It is short-circuit proof, relatively loss-free buildable, can be optimally adjusted in performance and has a sufficiently rapid voltage rise. The medium voltage storage capacitor to which the voltage converter operates is preferably charged to a voltage of the order of 700 V and has a capacitance of the order of magnitude of 1.5 µF. The high-voltage storage capacitor can thus be charged to voltage values of approximately 30 kV with a capacitance of the order of magnitude of 300 pF. Such a lossless transmission has proven to be impossible with conventional ignition coils with high inductance and with an ignition distribution on the high voltage side.

Im folgenden wird die Erfindung anhand der Zeichnung im einzelnen beschrieben. Auf dieser zeigt

  • Fig. 1 ein Blockschaltbild einer Zündanlage eines mehrzylindrigen Verbrennungsmotors,
  • Fig. 2 das Schaltbild wesentlicher Teile der Fig. 1 im einzelnen, und
  • Fig. 3 das Schaltbild auf der Sekundärseite des Hochspannungswandlers.
The invention is described in detail below with reference to the drawing. On this shows
  • 1 is a block diagram of an ignition system of a multi-cylinder internal combustion engine,
  • Fig. 2 shows the circuit diagram of essential parts of Fig. 1 in detail, and
  • Fig. 3 shows the circuit diagram on the secondary side of the high voltage converter.

Gemäß Fig. 1 wird ausgehend von einer Spannungsquelle in Form einer Lichtmaschine 12 oder einer Batterie 11 über ein Trennglied in Form eines Schalters ein Spannungswandler 2 in Form eines Sperrschwingers mit einer für diese Spannungsquellen typischen Spannung, also zum Beispiel 12 V oder weniger, beaufschlagt. Der Sperrschwinger 2 lädt einen Mittelspannungsenergiespeicher 1 in Form etwa eines Folienkondensators etwa einer Kapazität von 1,5 µF auf eine Spannung etwa von 700 V auf. Hinter diesem Mittelspannungsenergiespeicher 1 verzweigt sich die Schaltung in parallele untereinander gleich aufgebaute Zweige entsprechend der Vielfachheit der zu zündenden Einheiten, d.h. Zündkerzen bzw. Zylinder. Am Ausgang des Mittelspannungsenergiespeichers 1 liegen ansteuerbare Trennglieder, vorzugsweise schnelle Thyristoren, 3a, 3b, 3c, 3d, ... in der Vielfachheit der vorgesehenen Zündstränge parallel. Ein jeder solcher Zündstrang besteht aus einem Hochspannungswandler 4x (x = a, b, c, ...) in Form eines möglichst induktivitätsarmen und ohmsch, dielektrisch und magnetisch besonders verlustarmen Transformators mit hohem Kopplungsfaktor, einem Hochspannungsenergiespeicher 5x in Form etwa eines Keramikkondensators etwa einer Kapazität der Größenordnung zwischen 200 und 400 pF, einem Trennglied 6x in Form einer druckgasgefüllten Funkenstrecke und einem Energiespeicher 7x mit Energiewandler 8x in Form der Zündkerzeneigenkapazität bzw. der Zündkerzenfunkenstrecke.According to FIG. 1, starting from a voltage source in the form of an alternator 12 or a battery 11, a voltage converter 2 in the form of a blocking oscillator is acted upon by a voltage typical for these voltage sources, for example 12 V or less, via a disconnector in the form of a switch. The blocking oscillator 2 charges a medium-voltage energy store 1 in the form of a film capacitor of approximately 1.5 μF capacitance to a voltage of approximately 700 V. Behind this medium-voltage energy store 1, the circuit branches into parallel branches of the same structure, corresponding to the multiplicity of the units to be ignited, i.e. Spark plugs or cylinders. At the output of the medium-voltage energy store 1, controllable isolators, preferably fast thyristors, 3a, 3b, 3c, 3d, ... are parallel in the multiplicity of the ignition strings provided. Each such ignition circuit consists of a high-voltage converter 4x (x = a, b, c, ...) in the form of a low-inductance and ohmic, dielectric and magnetic, particularly low-loss transformer with a high coupling factor, a high-voltage energy store 5x in the form of a ceramic capacitor, for example one Capacity of the order of magnitude between 200 and 400 pF, a separating element 6x in the form of a spark gap filled with compressed gas and an energy store 7x with energy converter 8x in the form of the spark plug capacitance or the spark plug spark gap.

Ein bevorzugter Aufbau eines Zündstranges 4x bis 8x ist in Fig. 3 dargestellt. An den Hochspannungsausgang des Transformators 4x ist der Hochspannungsspeicherkondensator 5x angeschlossen. Ihm parallel liegt die Reihenschaltung aus Vorfunkenstrecke 6x und Zündkerzenkapazität 7x mit Zündfunkenstrecke 8x. Die Zündkerzenkapazität beträgt typischerweise ca. 20 pF. Damit vor dem Durchschlagen der Vorfunkenstrecke 6x die vom Transformator 4x erzeugt Spannung im wesentlichen wirklich an der Vorfunkenstrecke 6x abfällt, muß die Kapazität dieser Vorfunkenstrecke klein gegen die Zündkerzenkapazität 7x gewählt werden, sie ist vorzugsweise also von der Größenordnung 2 pF. Der Speicherkondensator 5x wiederum muß mit seiner Kapazität so hoch liegen, daß nach dem Durchschalten der Vorfunkenstrecke, wenn also die Kapazität des Speicherkondensators 5x und die Zündkerzenkapazität 7x parallel liegen, die Gesamtkapazität weiterhin im wesentlichen durch die Kapazität des Speicherkondensators 5x bestimmt wird. Daraus resultieren Kapazitätswerte für den Speicherkondensator der Größenordnung 100 pF, d.h. 200 bis 400 pF. Dadurch läßt sich erreichen, daß die Spannung an der Zündkerzenfunkenstrecke 8x nach dem Durchschalten der Vorfunkenstrecke 6x nicht wesentlich unter die Spannung absinkt, auf die der Speicherkondensator 5x aufgeladen worden ist. Der angestrebte Wert für diese Spannung ist von der Größenordnung 30 kV.A preferred construction of an ignition line 4x to 8x is shown in FIG. 3. To the high voltage output of the High voltage storage capacitor 5x is connected to transformer 4x. In parallel is the series connection of spark gap 6x and spark plug capacity 7x with spark gap 8x. The spark plug capacitance is typically approx. 20 pF. In order for the voltage generated by the transformer 4x to actually drop substantially across the spark gap 6x before the spark gap 6x breaks down, the capacitance of this spark gap must be chosen to be small compared to the spark plug capacitance 7x, so it is preferably of the order of 2 pF. The storage capacitor 5x in turn must be so high with its capacitance that after switching through the spark gap, that is if the capacitance of the storage capacitor 5x and the spark plug capacitance 7x are in parallel, the total capacitance is still essentially determined by the capacitance of the storage capacitor 5x. This results in capacitance values for the storage capacitor of the order of 100 pF, ie 200 to 400 pF. It can thereby be achieved that the voltage across the spark plug gap 8x does not drop significantly below the voltage to which the storage capacitor 5x has been charged after the spark gap 6x has been switched through. The desired value for this voltage is of the order of 30 kV.

Die Erzeugung einer Spannung der Größenordnung von 30 kV an einer Kapazität von der Größenordnung einiger hundert pF ohne zusätzliche Belastung der primären Energiequelle also Batterie bzw. Lichtmaschine, wird durch die Verwendung der verlustund induktivitätsarmen Hochspannungstransformatoren 4x in Verbindung mit dem Verzicht auf eine Zündverteilung auf der Hochspannungsseite und deren Ersatz durch die Trennglieder 3x auf der Niederspannungsseite der Transformatoren 4x in der Vielfachheit dieser Transformatoren erreicht.The generation of a voltage of the order of 30 kV on a capacitance of the order of a few hundred pF without additional load on the primary energy source, i.e. battery or alternator, is achieved by using the low-loss and low-inductance high-voltage transformers 4x in conjunction with dispensing with ignition distribution on the high-voltage side and their replacement by the isolators 3x on the low voltage side of the transformers 4x achieved in the multiplicity of these transformers.

Besonders geeignete Werte für den Hochspannungstransformator sind von der Größenordnung 150 µH Induktivität, 350 m Ω Widerstand primärseitig in Verbindung mit 350 mH Induktivität, 180 Ω Widerstand sekundärseitig. Für geringe Kernverluste sorgt ein Ferritkernmaterial.Particularly suitable values for the high-voltage transformer are of the order of magnitude of 150 µH inductance, 350 m Ω resistance on the primary side in conjunction with 350 mH inductance, 180 Ω resistance on the secondary side. A ferrite core material ensures low core losses.

Die Induktivitätsarmut des Hochspannungstransformators 4x führt zu äußerst raschen Umladevorgängen aus dem Mittelspannungsspeicherkondensator in den gerade aufgeschalteten Hochspannungsspeicherkondensator 5x, was in Verbindung mit dem dadurch begünstigten raschen Durchschlagen der Vorfunkenstrecke 6x Spannungsanstiege von der Größenordnung 100 kV/µs an der Zündkerzenfunkenstrecke liefert. Dies begünstigt den Energieumsatz in der Zündfunkenstrecke 8x im Kopf des Zündfunkens, also im Nanosekundenbereich, und trägt dazu bei, daß in der zur Verfügung stehenden Zeit über eventuelle Nebenschlüsse, wie sie beispielsweise durch Verrußungen des Isolatorkörpers der Zündkerze gegeben sein könnten, nur vernachläßigbar wenig Energie abfließen kann.The low inductance of the high voltage transformer 4x leads to extremely rapid recharging processes from the medium-voltage storage capacitor into the high-voltage storage capacitor 5x that has just been connected, which, in conjunction with the rapid breakdown of the spark gap that is thereby promoted, provides 6x voltage increases of the order of magnitude 100 kV / µs on the spark plug spark gap. This favors the energy conversion in the spark gap 8x in the head of the spark, i.e. in the nanosecond range, and contributes to the fact that in the time available, there are only negligible amounts of energy due to possible shunts, such as those caused by sooting the insulator body of the spark plug can drain off.

Die Induktivitätsarmut des Hochspannungstransformators 4x macht seine Kombination mit dem Hochspannungsspeicherkondensator 5x bzw. dem Mittelspannungspeicherkondensator 1 zu sehr schnell schwingenden Schwingkreisen, so daß die nicht im Nanosekundenbereich umgesetzte Energie in den Mittelspannungsspeicherkondensator zurückgeführt werden kann. Um dies zu ermöglichen, kann antiparallel zur Schaltstrecke des zu diesem Zeitpunkt schon sperrenden Thyristors 3x eine Diode vorgesehen sein.The low inductance of the high-voltage transformer 4x makes its combination with the high-voltage storage capacitor 5x or the medium-voltage storage capacitor 1 very rapidly oscillating resonant circuits, so that the energy which is not converted in the nanosecond range can be returned to the medium-voltage storage capacitor. To make this possible, a diode can be provided antiparallel to the switching path of the thyristor 3x, which is already blocking at this time.

Die Anforderungen an das zwischen Mittelspannungsenergiespeicher 1 und Hochspannungswandler 4x liegende Trennglied 3x bestehen vor allem darin, daß es zeitlich definiert ansteuerbar ist, sehr schnell schaltet und im durchgeschalteten Zustand sehr niederohmig ist, um auch hier Verluste zu vermeiden. Diese Anforderungen werden durch einen schnellen Thyristor, wie er heute verfügbar ist, in besonders hohem Maße erfüllt.The requirements for the isolating element 3x located between the medium-voltage energy store 1 and the high-voltage converter 4x consist primarily in the fact that it can be controlled in a defined time, switches very quickly and is very low-resistance in the switched-through state in order to avoid losses here as well. These requirements are met to a particularly high degree by a fast thyristor, as is available today.

Die Ansteuerung der Trennglieder 3x kann auf beliebige geeignete Weise erfolgen. Als die Trennglieder 3x ansteuernder Signalwandler 9 kommt beispielsweise ein Kennfeldrechner in Frage, der über Signalgeber 10 (Sensoren) angesteuert wird, so daß der Zündzeitpunkt entsprechend den Motorerfordernissen, Lastzuständen usw. verstellt werden kann. Der Signalwandler 9 kann auch ein umgebauter mechanischer Hochspannungszündverteiler ohne Hochspannungsfunktion sein, der die Sensoren für Unterdruckverstellung, Fliehkraftverstellung, Zylindererkennung usw. beinhaltet.The separation elements 3x can be activated in any suitable manner. For example, a map computer that can be controlled via signal transmitters 10 (sensors), so that the ignition timing can be adjusted in accordance with engine requirements, load conditions, etc., can be used as the signal converter 9 that controls the isolating elements 3x. The signal converter 9 can also be a converted mechanical high-voltage ignition distributor without a high-voltage function, which contains the sensors for negative pressure adjustment, centrifugal force adjustment, cylinder detection, etc.

Als Mittelspannungswandler 2 wird ein Sperrschwinger bevorzugt, da er relativ verlustarm gebaut werden kann, sich optimal in der Leistung anpassen läßt, kurzschlußfest ist und einen ausreichend schnellen Spannungsanstieg im Millisekundenbereich bietet. Darüber hinaus läßt er sich klein bauen. Durch Anwendung des Sperrschwingerprinzips ist es überdies möglich, bereits ab einer Primärspannung von 3 V (extremer Kaltstart) den Mittelspannungsenergiespeicher 1 mit einer für Motorstarts ausreichenden Impulsfolge von etwa 10 Hz voll aufzuladen.A blocking oscillator is preferred as medium-voltage converter 2 because it can be built with relatively little loss, can be optimally adapted in terms of performance, is short-circuit proof and offers a sufficiently rapid voltage rise in the millisecond range. In addition, it can be built small. By using the blocking oscillator principle, it is also possible to fully charge the medium-voltage energy store 1 with a pulse sequence of approximately 10 Hz, sufficient for engine starts, from a primary voltage of 3 V (extreme cold start).

In Weiterbildung des beschriebenen Prinzips kann vorgesehen sein, daß jeweils mehrere Mittelspannungsenergiespeicher 1 unter Vorsehung entsprechender zusätzlicher Trennglieder 3x auf jeden Zündstrang einwirken. Damit lassen sich pro Zündvorgang und Zündkerze jeweils mehrere energiereiche Funken nacheinander abwickeln. Da die Zündanlage proportional der Funkenfolge der Batterie bzw. Lichtmaschine Energie entnimmt, sind bis zur halben maximalen Funkenfolge Zweifachfunken, bei einem Drittel der maximalen Zündfolge Dreifachfunken ohne größere Belastung der Batterie oder Lichmaschine als bei der maximalen Funkenfolge möglich.In a further development of the principle described, it can be provided that a plurality of medium-voltage energy storage devices 1 act on each ignition train, with the provision of corresponding additional isolating elements 3x. This means that several high-energy sparks can be processed one after the other per ignition process and spark plug. Since the ignition system draws energy proportionally to the spark sequence of the battery or alternator, double sparks are possible up to half the maximum spark sequence, and triple sparks at a third of the maximum ignition sequence without a greater load on the battery or alternator than with the maximum spark sequence.

Zeitlich aufeinanderfolgende Mehrfachfunken lassen sich auch in der Weise realisieren, daß die zur Verfügung stehende Energie des Mittelspannungsenergiespeichers 1 in Kippschwingungen, jeweils mit dem Energieinhalt des Hochspannungsenergiespeichers 5x umgewandelt wird.Multiple sparks which follow one another in time can also be implemented in such a way that the available energy of the medium-voltage energy store 1 is converted into tilting oscillations, in each case with the energy content of the high-voltage energy store 5x.

Um die Niederohmigkeit der Zündanlage zu gewährleisten, ist es zweckmäßig die Anlage kompakt und mit kurzen Leitungswegen auszubilden. Fig. 1 zeigt mehrere mögliche Schnittstellen in der Gesamtkette mit der sich dadurch ergebenden möglichen Zusammenfassung von Teilkomponenten in bestimmten Baueinheiten.In order to ensure the low impedance of the ignition system, it is advisable to design the system to be compact and with short conduction paths. 1 shows several possible interfaces in the overall chain with the resultant possible combination of sub-components in certain structural units.

Fig. 2 zeigt einen Teil der Schaltung von Fig. 1 in größeren Einzelheiten. Der Signalwandler 9, etwa ein Kennfeldrechner gibt seine Ausgangssteuersignale auf die Leuchtdioden 20a, 20b, 20c, 20d, ... von Optokopplern aus, mit denen zur Unterdrückung eines Übersprechens von einem Zündstrang auf den anderen der Leistungsteil von den Steuerelementen galvanisch getrennt ist. Die Phototransistoren 21a, 21b, 21c, 21d, ... der Optokoppler geben ihre Signale auf die Steuerelektroden der Thyristoren 3a, 3b, 3c, 3d, ..., die in Reihe mit den Primärwicklungen der Hochspannungswandler 4a, 4b, 4c, 4d, ... liegen. An der Reihenschaltung aus Primärwicklung des Hochspannungstransformators 4x und dem Thyristor 3x, in der auch noch eine Entkopplungsdiode 22x vorhanden ist, liegt die Spannung des über den Sperrschwinger 2 aus der Lichtmaschine oder Batterie auf eine Spannung der Größenordnung einige 100 V aufgeladenen Mittelspannungskondensators 1. Sobald der Thyristor,vom Signalwandler 9 angesteuert,durchschaltet,fließt Strom - wegen der Induktivitätsarmut und Niederohmigkeit des Hochspannungswandlers 4x und der Schnelligkeit des Thyristors 3x mit kurzer Anstiegszeit und hohen Spitzenstromstärken. Der Hochspannungswandler transformiert die primärseitige Spannung dabei hoch und der in Fig. 2 nicht mehr gezeigte Hochspannungsspeicherkondensator 5x wird mit hohem Wirkungsgrad im Nanosekundenberich auf die gewünschte Spannung der Größenordnung von 30 kV aufgeladen.Figure 2 shows part of the circuit of Figure 1 in greater detail. The signal converter 9, for example a map computer, outputs its output control signals to the light-emitting diodes 20a, 20b, 20c, 20d, ... from optocouplers with which the power section is galvanically isolated from the control elements in order to suppress crosstalk from one ignition branch to the other. The phototransistors 21a, 21b, 21c, 21d, ... of the optocouplers give their signals to the control electrodes of the thyristors 3a, 3b, 3c, 3d, ..., which are in series with the primary windings of the high-voltage converters 4a, 4b, 4c, 4d , ... lie. At the series circuit consisting of the primary winding of the high-voltage transformer 4x and the thyristor 3x, in which a decoupling diode 22x is also present, the voltage of the medium-voltage capacitor 1 charged via the blocking oscillator 2 from the alternator or battery is at a voltage of the order of magnitude 1. As soon as the Thyristor, controlled by signal converter 9, switched through, current flows - because of the low inductance and low resistance of the high-voltage converter 4x and the speed of the thyristor 3x with short rise time and high peak currents. The high-voltage converter transforms the voltage on the primary side high and the high-voltage storage capacitor 5x, which is no longer shown in FIG. 2, is charged with high efficiency in the nanosecond range to the desired voltage of the order of magnitude of 30 kV.

Ist eine Rückspeisung der nicht im Nanosekundenbereich umgesetzten Energie in den Mittelspannungsspeicherkondensator gewünscht, so entfallen die Entkopplungs-Dioden 22x und es sind antiparallel zu den Thyristoren verschaltete Dioden vorgesehen.If the energy that is not converted in the nanosecond range is to be fed back into the medium-voltage storage capacitor, the decoupling diodes 22x are omitted and diodes connected antiparallel to the thyristors are provided.

Zur Belegung der Wirksamkeit der beschriebenen Zündantage wurde folgender Versuch unternommen:
   Ein Sechszylindermotor wurde zunächst mit einer herkömmlichen Transistorzündung mit mechanischem Hochspannungsverteiler, ergänzt um Vorfunkenstecker mit 100 pF und Vorfunkenstrecken von 20 kV,betrieben. Dabei ergaben sich folgende Mängel:

  • a) Das Gemisch im Motor ist nur bedingt abmagerungsfähig, die ans Gas abgegebene Energie von 20 mJ ist nicht ausreichend für alle Betriebszustände. Die primärseitige Leistungsaufnahme betrug 96 W.
  • b) Da beim Kaltstart bis 23 kV an der Zündkerze auftreten, wird zwar durch die Vorfunkenstrecke bis 20 kV abgesperrt, darüber steigt die Spannung an der Zündkerze aber mit normaler Geschwindigkeit von ca. 400 V/µs an. Bei leitfähigem Belag fließt oft zuviel Energie über den Isolatorfuß der Zündkerze ab, so daß es zu Zündaussetzern kommt.
  • c) Zumindest bei kaltem, innen betautem mechanischen Verteiler kommt es hier zuHockspannungsüberschlägen bereits bei ca. 17 kV und damit zu Zündaussetzern.
The following experiment was carried out to prove the effectiveness of the described ignition advantage:
A six-cylinder engine was initially operated with a conventional transistor ignition with a mechanical high-voltage distributor, supplemented by spark plugs with 100 pF and spark gaps of 20 kV. The following shortcomings resulted:
  • a) The mixture in the engine is only partially lean, the energy delivered to the gas of 20 mJ is not sufficient for all operating conditions. The primary power consumption was 96 W.
  • b) Since up to 23 kV occur on the spark plug during a cold start, the spark gap cuts off up to 20 kV, but above this the voltage at the spark plug rises at a normal speed of approx. 400 V / µs. In the case of a conductive coating, too much energy often flows through the insulator base of the spark plug, so that misfiring occurs.
  • c) At least in the case of a cold, internally defrosted mechanical distributor, high voltage flashovers occur already at approx. 17 kV and thus misfires.

Die Ansprechspannung der Funkenstrecken wurde dann auf 27 kV erhöht und die Kapazitäten der Speicherkondensatoren auf 330 pF angehoben.The response voltage of the spark gaps was then increased to 27 kV and the capacitance of the storage capacitors increased to 330 pF.

Mit keiner handelsüblichen, bekannten Zündung konnte diese Kombination zum Durchschalten gebracht werden. Die Beibehaltung des Konstruktionsprinzips hätte zu einer Leistungsaufnahme an der Batterie bzw. Lichtmaschine von 360 W geführt, was ohne Verstärkung von Batterie bzw. Lichtmaschine nicht möglich gewesen wäre. Die Zündspule als Energiezwischenspeicher wurde nun durch einen über einen Sperrschwinger auf 700 V aufzuladenden Kondensator einer Kapazität von 1,5 µF ersetzt und dieser über in der Vielfachheit der Zündkerzen niederspannungsseitig vorhandene Thyristoren und verlust- sowie induktivitätsarme Transformatoren in die 330 pF-Hochspannungsspeicherkondensatoren umgeladen.With no commercially available, known ignition this combination could be made to switch through. Maintaining the design principle would have resulted in a power consumption of 360 W on the battery or alternator, which would not have been possible without reinforcing the battery or alternator. The ignition coil as an intermediate energy store has now been replaced by a capacitor with a capacitance of 1.5 µF to be charged to 700 V via a blocking oscillator, and this is reloaded into the 330 pF high-voltage storage capacitors using thyristors on the low-voltage side and low-loss and low-inductance transformers.

Damit war es dann möglich, die Kombination aus 330 pF Speicherkondensator und 27 kV Vorfunkenstrecke durchzuschalten und für jeden Motorbetriebspunkt die mindestens 23 kV an der Zündkerze als Nadelimpuls mit einer Anstiegszeit von 100 kV/µs anzubieten.This made it possible to switch through the combination of 330 pF storage capacitor and 27 kV spark gap and at least 23 kV for each engine operating point to be offered on the spark plug as a needle pulse with a rise time of 100 kV / µs.

Die Anwendung der beschriebenen Zündanlage beschränkt sich nicht auf Ein- und Mehrzylinderhubkolbenmotore, sondern kann auch bei Rotationskolbenmotoren, Gasturbinen usw. mit den verschiedensten Kraftstoffen Diesel, Benzin,Alkohol, Äthanol, Wasserstoff, Wasserstoff-Benzin, Biogas, Erdgas, Propan usw. bei mehr oder weniger guter Gemischaufbereitung, mehr oder weniger abgemagert, verwendet werden.The application of the ignition system described is not limited to single and multi-cylinder reciprocating piston engines, but can also be used with rotary piston engines, gas turbines etc. with a wide variety of fuels diesel, gasoline, alcohol, ethanol, hydrogen, hydrogen gasoline, biogas, natural gas, propane etc. with more or less good mixture preparation, more or less emaciated.

Die günstige Energieausnützung bei der beschriebenen Zündung ermöglicht es, sie bei reduzierter Zündenergie etwa auch für Zusatzheizungen für Kraftfahrzeuge zu verwenden. Als primäre Energiequellen sind wegen des hohen Wirkungsgrads der Zündanlage auch Solarzellen oder handbetriebene Dynamos vorstellbar, ebenso für Kurzzeitbetrieb leistungsfähige Batterien, die einen Stoßstrom von z.B. 2 A bringen.The favorable use of energy in the ignition described makes it possible to use it with reduced ignition energy, for example, for additional heating systems for motor vehicles. Due to the high efficiency of the ignition system, solar cells or hand-operated dynamos are also conceivable as primary energy sources, as are high-performance batteries for short-term operation that generate a surge current of e.g. Bring 2 A.

Claims (6)

  1. Ignition device for internal combustion engines having a plurality of ignition branches lying parallel to each other, in the case of which are provided a low-voltage source (11, 12), a medium-voltage transformer (4a, 4b, ... ) transforming the voltage of the low-voltage source (11, 12) to a medium voltage, a high-voltage transformer (4a, 4b, .... ) for each ignition branch, the high-voltage converter having a primary winding and a secondary winding, wherein a medium-voltage storage capacitor (1), which is connected to the medium voltage transformer, is discharged by means of a switching element (3a, 3b, ... ), which can be switched by means of a device for the timed triggering of the ignition line, via the primary winding of the high-voltage transformer, and ignition spark gaps (8a, 8b, ... ) connected to the secondary side of the high-voltage transformer (4a, 4b, ... ) are provided, characterised in that a common medium-voltage storage capacitor (1) is provided for all the ignition branches; in that each ignition spark gap (8a, 8b, ... ) has an auxiliary spark gap connected in series therewith; and in that there is connected to the secondary side of each high-voltage capacitor (4a, 4b, ...) a high-voltage storage capacitor (5a, 5b, ...) to which the series connection consisting of the auxiliary spark gap and the ignition spark gap is connected in parallel, wherein the high-voltage transformer (4a, 4b, ... ) has an inductance of at most 150 µH and an ohmic resistance of at most 350 m Ω on the primary side together with an inductance of at most 350 mH and an ohmic resistance of at most 180 Ω on the secondary side.
  2. Ignition device according to claim 1, characterised in that a self-blocking oscillator is provided as the medium voltage transformer (2).
  3. Ignition device according to claim 1 or 2, characterised in that thyristors are provided as the controllable switching elements (3a, 3b, ... ).
  4. Ignition device according to claim 3, characterised in that there is provided, antiparallel to each thyristor (3a, 3b, ... ), a diode for feeding energy that has not been transformed in the nano-second range at the ignition spark gap back into the medium-voltage storage capacitor (1).
  5. Ignition device according to claim 3, characterised in that the device for the timed triggering is electrically separated from the controllable switching elements (3a, 3b, ...) by means of optocouplers (20a, 21a; 20b, 21b, ...) for transmitting signals.
  6. Ignition device according to anyone of the preceding claims, characterised in that a plurality of medium voltage transformers and a plurality of controllable switching elements are provided for each ignition branch, wherein the switching elements belonging to the same branch may be triggered in a time-delayed manner.
EP86104406A 1985-04-15 1986-04-01 Ignition device Expired - Lifetime EP0200010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86104406T ATE70598T1 (en) 1985-04-15 1986-04-01 IGNITION SYSTEM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3513422 1985-04-15
DE3513422A DE3513422C2 (en) 1985-04-15 1985-04-15 Ignition system for internal combustion engines

Publications (2)

Publication Number Publication Date
EP0200010A1 EP0200010A1 (en) 1986-11-05
EP0200010B1 true EP0200010B1 (en) 1991-12-18

Family

ID=6268042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86104406A Expired - Lifetime EP0200010B1 (en) 1985-04-15 1986-04-01 Ignition device

Country Status (9)

Country Link
US (1) US4727891A (en)
EP (1) EP0200010B1 (en)
JP (1) JPS61241465A (en)
AT (1) ATE70598T1 (en)
BR (1) BR8601692A (en)
DD (1) DD245702A5 (en)
DE (1) DE3513422C2 (en)
ES (1) ES8706903A1 (en)
IN (1) IN166150B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1204274B (en) * 1986-04-24 1989-03-01 Claudio Filippone Electronically-controlled plasma ignition device for IC engine
DE3731393A1 (en) * 1987-09-18 1989-04-06 Bosch Gmbh Robert HIGH VOLTAGE SWITCH
JPH04349386A (en) * 1991-05-27 1992-12-03 West Electric Co Ltd Voltage stabilizing tube for internal combustion engine ignition device
DE4117808C2 (en) * 1991-05-31 1994-09-22 Bosch Gmbh Robert Ignition systems for internal combustion engines with high-voltage switches
US6559376B2 (en) 1996-09-30 2003-05-06 Nology Engineering, Inc. Combustion initiation device and method for tuning a combustion initiation device
EP1214520A1 (en) * 1999-09-15 2002-06-19 Knite, Inc. Electronic circuits for plasma-generating devices
DE10048053A1 (en) * 2000-09-28 2002-06-06 Christoph Koerber Plasma jet ignition system for spark ignition engines, includes UV-triggered gas discharge tube and component controlling current flow to spark
US6374816B1 (en) 2001-04-23 2002-04-23 Omnitek Engineering Corporation Apparatus and method for combustion initiation
US6679235B1 (en) * 2003-02-21 2004-01-20 Delphi Technologies, Inc. High power ignition system having high impedance to protect the transformer
GB0720939D0 (en) * 2007-10-24 2007-12-05 Powell Jude A Coolign device
AT507748A1 (en) * 2008-12-16 2010-07-15 Ge Jenbacher Gmbh & Co Ohg IGNITION DEVICE
KR101922545B1 (en) 2011-01-13 2018-11-27 페더럴-모굴 이그니션 컴퍼니 Corona ignition system having selective enhanced arc formation
FR3032232B1 (en) * 2015-01-30 2017-03-10 Meggitt (France) HIGH ENERGY IGNITION GENERATOR, IN PARTICULAR FOR GAS TURBINE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2810159A1 (en) * 1978-03-09 1979-09-13 Bloss Werner H Prof Dr Ing Spark plug for igniting Otto engine mixt. - uses HV capacitor discharged on reaching threshold voltage, higher than breakdown voltage of electrodes

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2950419A (en) * 1956-12-07 1960-08-23 Bendix Corp Ignition apparatus
GB1077004A (en) * 1963-05-01 1967-07-26 Rotax Ltd Spark ignition apparatus
US3331034A (en) * 1964-09-10 1967-07-11 Gen Motors Corp Converter stabilizing circuit
DE1439995C3 (en) * 1964-11-27 1974-02-07 Beru-Werk Albert Ruprecht, 7140 Ludwigsburg Radio interference suppressed capacitor ignitor
US3575153A (en) * 1968-11-18 1971-04-20 Eltra Corp Regulated voltage converter
US3629651A (en) * 1969-09-25 1971-12-21 Bendix Corp Pulse-generating apparatus
GB1371042A (en) * 1970-10-20 1974-10-23 Plessey Co Ltd Spark generating systems for internal combustion engines
GB1473325A (en) * 1973-06-29 1977-05-11 Lucas Industries Ltd Spark ignition systems for internal combustion engines
US4027198A (en) * 1975-08-14 1977-05-31 The Bendix Corporation Capacitor discharge ignition system
GB1571884A (en) * 1975-12-03 1980-07-23 Lucas Industries Ltd Spark ignition systems for gas turbine engines
JPS57165673A (en) * 1981-04-07 1982-10-12 Nissan Motor Co Ltd Plasma ignition device
US4382430A (en) * 1981-06-01 1983-05-10 Shinichiro Iwasaki Ignition system
JPS57203867A (en) * 1981-06-09 1982-12-14 Nissan Motor Co Ltd Plasma ignition apparatus
US4391236A (en) * 1981-07-24 1983-07-05 Outboard Marine Corporation CD Ignition with automatic spark retard
JPS5859376A (en) * 1981-10-05 1983-04-08 Nissan Motor Co Ltd Plasma igniter
SE437286B (en) * 1982-07-09 1985-02-18 Saab Scania Ab IGNITION SYSTEM FOR MULTI-CYLINOUS FOUR SHEET ENGINE
US4479467A (en) * 1982-12-20 1984-10-30 Outboard Marine Corporation Multiple spark CD ignition system
US4487192A (en) * 1983-04-18 1984-12-11 Ford Motor Co Plasma jet ignition system
US4562823A (en) * 1983-07-15 1986-01-07 Nippon Soken, Inc. Ignition device for internal combustion engine
CA1267930A (en) * 1984-02-27 1990-04-17 Ronald C. Pate Combustion initiation system employing hard discharge ignition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2810159A1 (en) * 1978-03-09 1979-09-13 Bloss Werner H Prof Dr Ing Spark plug for igniting Otto engine mixt. - uses HV capacitor discharged on reaching threshold voltage, higher than breakdown voltage of electrodes

Also Published As

Publication number Publication date
ATE70598T1 (en) 1992-01-15
BR8601692A (en) 1986-12-16
JPS61241465A (en) 1986-10-27
US4727891A (en) 1988-03-01
DE3513422A1 (en) 1986-12-18
DD245702A5 (en) 1987-05-13
ES553995A0 (en) 1987-07-01
DE3513422C2 (en) 1993-10-28
EP0200010A1 (en) 1986-11-05
ES8706903A1 (en) 1987-07-01
IN166150B (en) 1990-03-17

Similar Documents

Publication Publication Date Title
EP0200010B1 (en) Ignition device
DE3221885C2 (en) Plasma ignition system for an internal combustion engine with several cylinders
DE3221990C2 (en) Plasma ignition system for a multi-cylinder internal combustion engine
DE3137239C2 (en) Plasma ignition device for an internal combustion engine
DE3137240C2 (en) Ignition system for an internal combustion engine
DE2340865A1 (en) IGNITION DEVICE FOR COMBUSTION MACHINERY
EP0207969A1 (en) Pulsed plasma ignition system.
DE2702021C2 (en) Ignition system for a multi-cylinder internal combustion engine
DE102007034390A1 (en) Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system
EP0228840A2 (en) Pulse generating circuit for an ignition system
WO2012130649A1 (en) Method and device for extending the combustion duration of a spark ignited by a spark plug in an internal combustion engine
DE102011089966A1 (en) Method for operating an ignition device for an internal combustion engine
DE19625422A1 (en) Hybrid ignition circuit for an internal combustion engine
EP1620946B1 (en) Trigger / ignition device in a marx generator provided with n step capacitors
DE2823391A1 (en) DISTRIBUTOR
DE1414588B2 (en) IGNITION DEVICE FOR COMBUSTION MACHINERY
EP1386074A1 (en) Ignition system for internal combustion engines
WO1991002153A1 (en) Fully electronic ignition device for an internal combustion engine
DE2363804A1 (en) Sparking plug with integrated capacitor - has dielectric material and electrode elements arranged to form parallel capacitors
DE3404245A1 (en) High-voltage generator circuit for a motor vehicle ignition system
DE4117808C2 (en) Ignition systems for internal combustion engines with high-voltage switches
DE3302198A1 (en) IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE2531278C3 (en) Ignition device for internal combustion engines
DE2237837A1 (en) IGNITION DEVICE FOR A COMBUSTION ENGINE
DE3505988A1 (en) Ignition device intended for an internal-combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE FR GB IT NL SE

17P Request for examination filed

Effective date: 19870410

17Q First examination report despatched

Effective date: 19890126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE FR GB IT NL SE

REF Corresponds to:

Ref document number: 70598

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920327

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920429

Year of fee payment: 7

Ref country code: AT

Payment date: 19920429

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920430

Year of fee payment: 7

Ref country code: BE

Payment date: 19920430

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930401

Ref country code: AT

Effective date: 19930401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930430

Year of fee payment: 8

BERE Be: lapsed

Owner name: BERU RUPRECHT G.M.B.H. & CO. K.G.

Effective date: 19930430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 86104406.3

Effective date: 19931110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050401