EP0197021A1 - Procédé pour la réalisation d'un tunnel - Google Patents

Procédé pour la réalisation d'un tunnel Download PDF

Info

Publication number
EP0197021A1
EP0197021A1 EP86870032A EP86870032A EP0197021A1 EP 0197021 A1 EP0197021 A1 EP 0197021A1 EP 86870032 A EP86870032 A EP 86870032A EP 86870032 A EP86870032 A EP 86870032A EP 0197021 A1 EP0197021 A1 EP 0197021A1
Authority
EP
European Patent Office
Prior art keywords
tunnel
successive
reinforced concrete
shells
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86870032A
Other languages
German (de)
English (en)
Other versions
EP0197021B1 (fr
Inventor
Paul Hemberg
Bonfils Koeckelberg
Heri Stassens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sa Entreprises Koeckelberg
Original Assignee
Sa Entreprises Koeckelberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sa Entreprises Koeckelberg filed Critical Sa Entreprises Koeckelberg
Publication of EP0197021A1 publication Critical patent/EP0197021A1/fr
Application granted granted Critical
Publication of EP0197021B1 publication Critical patent/EP0197021B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • E02D29/05Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them at least part of the cross-section being constructed in an open excavation or from the ground surface, e.g. assembled in a trench

Definitions

  • the present invention relates to a method for making a tunnel by means of prefabricated concrete elements, joined together on site by concreting.
  • the tunnels are produced either by pouring successive tunnel sections in place, or by aligning prefabricated tunnel sections.
  • the tunneling process which consists of aligning prefabricated tunnel sections allows the length of the site to be reduced.
  • the prefabricated sections are placed, the backfilling and finishing work can be carried out.
  • the process according to the present invention in fact calls upon a certain number of standardized prefabricated elements, of relatively reduced weight (approximately 10 tonnes), the handling of which requires only more mobile lifting devices, of the type commonly used on most Construction sites.
  • These lifting devices can be automobile cranes, which do not need to be mounted on rails.
  • the use of standardized prefabricated elements makes it possible for the process of the invention to make tunnels of small section and tunnels of larger section, for example for large gauge metro, underground railway, etc., by juxtaposing a greater or lesser number of these standardized elements.
  • the method according to the invention makes it possible to vary the section of the tunnels, which can thus pass from a minimum section (for a single tunnel section of line) to a maximum section (sections of tunnel comprising stations, with landing platforms, waiting rooms, etc.) passing through intermediate sections.
  • the subject of the present invention is a method for producing a tunnel by means of prefabricated concrete elements, which are joined together by concreting, after placement.
  • the successive phases of realization of the tunnel are executed in order along the site, from the advancement front where the earthworks and the front excavation of the excavation are done to the area where the backfilling and the covering of the completed tunnel are done.
  • the vertical elements partially constituting the side walls of the tunnel are oblong shells of reinforced concrete having a cylindrical arch whose generator is parallel to the major axis of the shells; these shells are closed at each of their ends by a base in half line, perpendicular to their major axis.
  • These shells are arranged in such a way that their concavity is directed towards the interior of the tunnel, and that their vault is directed towards the walls of the trench.
  • the shells have two flat and parallel longitudinal sides extending the arch on each side thereof.
  • An advantageous embodiment of these elements has, on the outside of the vault, a substantially planar rear face which is connected perpendicular to the lateral faces of the element, which are also substantially planar.
  • the shells have on the outer faces of the longitudinal sides two grooves parallel to the major axis of the shells, capable of receiving the lateral edges of the two formwork plates.
  • the grooves located near the free edge of the plane longitudinal sides of the hulls, and therefore located on the inside of the tunnel are widened at their upper part, so as to constitute close to the level which the edge will occupy. upper side of the plate in place, shoulders on which the end of a lintel sits.
  • the reinforced concrete footings as well as the connecting footings ensuring continuity between them are provided, on their upper bearing face, with a rebate parallel to the axis of the tunnel and directed towards the interior of the tunnel.
  • the assembly of a beam, of the two reinforced concrete columns which support each of the ends of this beam and the footings supporting each of these reinforced concrete columns, forms a gantry capable of taking up the vertical pressures exerted by the earth and the roads. higher, as well as the horizontal earth pressure.
  • the method according to the invention has a number of advantages.
  • the arch shape of the hulls preferably used offers the advantage of taking up the horizontal loads of pushing the earth after backfilling behind the side walls of the tunnel with relatively thin partitions and not requiring additional reinforcements.
  • the hulls can be prefabricated in molds specially made for this purpose but, for small series, it is more economical to use molds of standardized shape, generally of rectangular section.
  • the face turned towards the outside of the tunnel is practically planar and is connected perpendicular to the lateral faces, which are also practically planar.
  • Such an embodiment coincides with the form of standard molds.
  • the number of prefabricated elements used being reduced (indeed, it mainly comprises only the footings, vertical elements forming the vertical walls, lintels, upper beams and slabs), the installation of these is a series of repeated operations, which promotes speed of execution.
  • the construction of a heavy-type metro tunnel can progress at the rate of approximately 3 running meters per day.
  • the disturbance caused to residents is therefore minimal, thanks to the speed of execution and therefore thanks to the mobility of the site.
  • the site is all the more mobile as the site facilities are reduced, thanks in particular to the manufacture of a maximum of elements off the site (prefabrication in the factory).
  • the process according to the invention also lends itself to the construction of tunnels in an aquiferous environment, thanks to the arrangement of the hulls, which will thus serve as a passage for sheets as will be described below. It is indeed important in the case of aquifers, not to oppose the movements of groundwater.
  • the process allows to marry the various unevennesses of the ground as well as the changes of direction imposed by the layout, while using the majority of the prefabricated elements above.
  • the method also lends itself to the production of tunnels of various widths, for example, narrow in a straight line, wide at the station, passing through intermediate sections connecting the narrow sections and the wide sections. As will be described below, these different widths are produced with the available prefabricated elements already described.
  • the process according to the invention makes it possible to combine the structural work and the finishing touches; in particular inside the stations one can take advantage of the shape of the hulls.
  • the dimensions of these shells can vary between relatively wide limits, but according to a particular and advantageous embodiment of the invention, the width of these shells is between 2 and 3 meters.
  • the walls of the stations present species of niches, which can be fitted out, as required, for example, by installing telephone booths, automatic distributors, benches, etc.
  • the benches can advantageously be continuous or interrupted ribs cast in the mass during the manufacture in the factory of the shells.
  • the shells forming the walls of the tunnel between the stations can be arranged to receive electrical devices such as junction boxes, lighting, signaling devices, etc.
  • the particular configuration of the walls can also be used advantageously acoustically. Indeed, sounds are picked up by the surface of the walls, which considerably lowers the acoustic level and thus improves the comfort of tunnel users, especially passengers waiting at stations.
  • prefabricated reinforced concrete footings 1 of generally rectangular shape, the upper face 2 of which has a rebate 3, are deposited on the bottom of the trench, leaving a space between the successive soles 1.
  • Each sole is arranged so as to be perpendicular to the vertical walls of the tunnel to be constructed, so that the rebate 3 is directed towards the interior of the tunnel.
  • each connecting flange 4 also has on its upper face 6 a rebate 7 connecting the rebates 3 of two successive flanges 1.
  • Oblong reinforced concrete shells 8 having a cylindrical vault 9 whose generatrix is parallel to their major axis, two plane longitudinal sides 10 extending this vault 9 on each side, and closed by a base, 11 in half-moon at each of their ends, are arranged on each continuous base 5, so as to provide an interval between successive shells 8, and so that their vault 9 is directed towards the wall of the trench and, consequently, that their concavity is directed towards the interior of the tunnel.
  • the shells 8 are placed in such a way that each shell 8 is supported both on two successive flanges 1 and therefore that.
  • the interval between two successive shells is located in line with a sole 1.
  • the shells 8 are placed by means of a positioning mannequin carrying a pair of shells 8, so as to simultaneously place two shells 8 on each side of the tunnel, one in line with the other.
  • the interval between two successive shells 8 is closed, on the side of the wall of the trench, by an exterior formwork plate 12 and, on the interior side of the tunnel, by an interior formwork plate 13.
  • the two formwork plates 12, 13 are spaced apart and are arranged parallel to the axis of the tunnel.
  • the formwork plates 12, 13 are, for example, made of asbestos-cement and delimit, with the external faces 14 of the sides 10 facing two successive shells 8, a vertical space between two successive shells 8. In this vertical space is inserted a concrete reinforcement 15.
  • the external formwork plates 12 have substantially the same height as the vertical elements 8.
  • the internal formwork plates 13 are significantly lower.
  • a lintel 16 which is supported by its ends, on the sides 10 facing two successive shells 8, as will be described later.
  • Transverse upper beams 17 are then placed perpendicular to the axis of the tunnel, so as to rest at each of their ends on lintels 16 facing each other.
  • the transverse upper beams 17 in turn support upper reinforced concrete slabs 18, arranged so that each slab 18 is supported by its front edge on a transverse upper beam 17, and by its rear edge on the upper beam transverse 17 next, relative to the direction of advancement of the site, and also so that the lower surface of the slabs 18 is at the same level as the lower surface of the bases 11 in upper half-moon of the shells 8, so as to present these a continuous surface which can be left bare and constitute the ceiling of the tunnel, between the upper transverse beams 17.
  • the bases 11 in a half-moon have a thickness - (about 14 cm) greater than that of the slabs 18 - ( about 5 cm) and therefore protrude above the upper surface of the slabs 18.
  • the edge of the bases 11 in the upper half-moon advantageously constitutes with the upper edge of the formwork plates e exteriors 12 a side formwork for pouring the upper slab 19.
  • a slab 21 is then poured between the two continuous bases 5 formed by the flanges 1 and the connecting flanges 4, cast therebetween, so as to cover the rebates 3 and 7.
  • This slab 21 will support gutters 22 intended for passage cables, pipes, etc., as well as the track infrastructure, for example the ballast 23 of a railway 24.
  • the tunnel Before the final backfilling, the tunnel is plugged in order to seal it.
  • Fig. 2 is a view, on a large scale, of three successive shells 8, showing the external 12 and internal 13 formwork plates and the lintels 16 on which the upper transverse beams 17 are supported before joining with the reinforced concrete columns 20 poured into the intervals between the successive shells 8.
  • the shells 8 have, on the outer faces 14 of the plane and parallel longitudinal sides 10 of the shells 8, two grooves 25, 26 parallel to the major axis thereof; the grooves 25 located on the side of the wall of the trench of two external faces 14 facing two successive shells 8 receive and guide the lateral edges of an external formwork plate 12.
  • This external formwork plate 12 constitutes the connection between two successive shells 8, on the outside of the tunnel, and thus ensures the continuity of the outside side wall of the tunnel.
  • the plates 12 have substantially the same length as the shells 8 and their small upper edge arrives at substantially the same height as the upper surface of the base 11 in the half-moon shape of the shells 8.
  • the grooves 26 located near the free edges of the longitudinal sections, therefore on the inside of the tunnel with two exterior faces 14 facing two successive shells 8 receive and guide the lateral edges of an interior formwork plate 13.
  • This inner plate 13 constitutes the inner connection between two successive shells 8, and therefore the continuity of the inner wall of the tunnel.
  • the interior plates 13 and the interior of the concavity of the shells 8 can advantageously be left bare, thus participating by their shapes and by a judicious choice of their colors, in the interior decoration of the tunnel. , in particular the law of underground stations and other places accessible to the public.
  • the interior plates 13 have a length less than that of the shells 8.
  • the space situated above the small upper edge of each interior plate 13 is occupied by a lintel 16 and by the end of the transverse beam 17 which it supports.
  • this beam 17 is offset downwards by a distance equal to the added thicknesses of the slabs 18 and of the upper slab 19, so that the upper surface of the upper slab 19 is at the same level as the upper surface of the bases. 11 in the upper half-moon of the shells 8, the edge of these bases 11 thus acting as lateral formwork for the upper slab 19, with the upper edge of the external formwork plates 12.
  • the grooves 26 located near the free edges of the longitudinal sections are widened at their upper part, so as to constitute, near the level of the upper edge of the internal formwork plate, shoulders 27 on which the end of a lintel sits. 16.
  • Fig. 3 is a partial view, on a larger scale, of the junction zone between two shells constituting the side walls of the tunnel, showing another method of fixing the lintels.
  • the shells 28 have, on the free edges of each of their plane and parallel longitudinal sections 29 in the vicinity of their base 30 in an upper half-moon, recesses 31 corresponding to the cross section of the lintels 32, and capable of receiving the ends of these lintels 32.
  • Each lintel is thus received by its ends in the recesses 31 of two contiguous sides 29 of two successive shells 28 and is supported by shoulders 33. It is held in place by studs 34.
  • Fig. 4 is a section, on a larger scale, of the junction zone between two shells 8, and shows in particular the position of the armature 15 inserted in the vertical space delimited by the shells 8 and by the outer plates 12 and interior 13, which are guided and held respectively by grooves 25 and 26, in which U-shaped steel sections 35 are embedded.
  • the method according to the invention has the advantage of allowing the tunnel to follow the various unevennesses of the terrain as well as the height changes imposed by the layout.
  • FIG. 5 to 7 An example of such a tunnel is illustrated in Figs. 5 to 7, in which the elements common to all the embodiments described have the same reference numbers.
  • Figs. 5 and 6 illustrate a straight-aligned tunnel whose incline is sloping.
  • the different production phases are the same as those described above for the construction of a straight and horizontal tunnel.
  • the difference in level between two successive shells 8 is determined by the positioning and adjustment of the reinforced concrete footings 1.
  • the difference in level between two successive flanges 1 requires the use of lintels 37 of a particular type.
  • a lintel of this type as illustrated in FIG. 7, has at its upper surface two half-bearing surfaces 38 and 39 offset, separated by a rung 40 whose height is equal to the difference in level between two successive shells 8.
  • the ends of two half-beams 41 and 42 (Fig. 5) will come to bear respectively on the half-surfaces 38 and 39. These beams 41 and 42 are, therefore, offset in height one relative to the other.
  • connection with the vertical columns of the half-beams 41, 42 is done in the same way as in the case of a tunnel with a horizontal attitude, as described above (Insertion of a frame 15 in the vertical space between two successive shells 8, pouring a vertical column 20, securing each of the half-beams 41 and 42 therewith).
  • the highest half-beam 42 of a pair of half-beams 41, 42 is at the same height as the lowest half-beam 41 of the next pair of half-beams 41, 42, a pre-slab 18 pressing at its ends on a half-beam 42 of a pair of half-beams 41, 42 and on the half-beam 41 of the next pair, will therefore be substantially horizontal.
  • the tunnel completion works (concreting the upper slab, waterproofing, covering) are then carried out as described above.
  • Fig. 8 illustrates an example of a curved tunnel, in which the elements common to all the embodiments have the same reference numbers.
  • the construction phases of a curved tunnel are the same as before.
  • the interval between the soles 1 of the row situated outside the curve is greater than the interval between the soles 1 of the row situated inside the curve.
  • the connecting soles 43 cast in the intervals of the outer row will therefore be wider than the connecting soles 44 cast between the soles 1 of the inner row.
  • the interval between two shells 8 situated outside the curve of the tunnel is also greater than the interval between two interior shells 8.
  • the outer closure plates 45 between the shells 8 of the row located outside the curve will be wider than the outer closure plates 46 between the shells 8 of the row located inside the curve.
  • the interior closure plates 47 of the exterior row of shells 8 will be wider than the interior closure plates 48 of the interior row of shells 8.
  • Fig. 9 illustrates an example of a tunnel constructed in an aquifer.
  • the section illustrated is in a straight line, but it goes without saying that the method applies as well to a tunnel in curved alignment as to a tunnel whose attitude is sloping.
  • the tunnel section then comprises shells 53, the roof 54 of which is provided with openings 55 which put the interior of the latter in communication with the surrounding medium, and consequently allowing the passage of water.
  • the cavity of these shells 53 is closed over the entire height by a vertical partition 56, provided with an access hole 57 - (Fig. 10). The interior of these shells thus fills with water to a level equal to the level of the sheet.
  • a transverse pipe 58 located below the raft 21 and held by connecting flanges 59 between prefabricated flanges 1, connects two shells 53 on each side of the tunnel and facing each other.
  • This pipe 58 is connected to the lower part of each shell 53 by an orifice 60 and allows the passage of the groundwater and the establishment of the equilibrium of the levels thereof on each side of the tunnel.
  • the method according to the invention is not limited to the production of simple tunnels, such as those described above, and an example of which is illustrated in section in FIG. 11, allowing circulation along two parallel lanes, but also lends itself to the production of tunnels of greater width, for example, a tunnel of double width, as illustrated in section in FIG. 12.
  • This tunnel comprises intermediate soles 6 1 arranged along the median axis of the tunnel, between the soles 1 of a pair of soles.
  • These intermediate flanges 61 support intermediate columns 62.
  • Each of these columns 62 supports the inner ends of two upper beams 63 perpendicular to the axis of the tunnel, the outer ends of which are supported by lintels and concreted with vertical columns (not shown) as described above
  • the beams 63 are joined together and with the column 62 which supports them, the assembly thus obtained forming a double gantry, supported by the flanges 1 and the intermediate flange 61.
  • Fig. 13 shows a particular embodiment of a double tunnel, using upper beams 6 4 of greater length, which allows the development of a central landing platform 65, between the traffic lanes.
  • the width of the tunnel can be increased as desired, as required, thanks to the multiplication of intermediate elements (footings, columns 62, upper beams, etc.).
  • the method according to the invention also lends itself to the production of intermediate tunnel sections, for joining, for example, a single tunnel section (line) to a double tunnel section - (station), passing through widths intermediaries.
  • Fig. 14 shows a section along a horizontal plane, halfway up, of an advantageous embodiment of a shell 8 constituting a part of the vertical wall of a tunnel produced according to the invention.
  • the face turned towards the outside of the tunnel 65 on the side opposite to the vault 9 is planar and is connected perpendicular to the lateral faces 14, which are practically planar of the shell 8.
  • These external faces are also advantageously provided with their own grooves 66 to improve the joining of these elements and of the reinforced concrete columns between which they are placed.
  • Recesses 67 are provided between the arch 9 and the flat rear face 65 so as to keep the shells thus produced their lightness. These recesses 67 are produced according to a known method, such as the insertion into the molds of polystyrene cores.
  • This embodiment makes it possible to reinforce the rigidity of the structure of an element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

L'invention concerne la construction de tunnels. Elle a pour objet un procédé utilisant des éléments préfabriqués en béton et qui comprend les phases suivantes : - pose de semelles (1) et raccordement de celles-ci par coulage de semelles de liaison (4), pour former une embase continue (5) le long de chaque bord du tunnel, - pose d'éléments verticaux en forme de coques (8) en béton armé, en ménageant des intervalles entre ceux-ci, - pose de linteaux (16) enjambant ces intervalles, - coulage d'un radier (21), - pose de poutres transversales (17), - coulage de colonnes en béton armé (20), - pose de prédalles supérieures (18) sur les poutres (17), - bétonnage de la dalle supérieure (19). Le procédé de l'invention a pour avantage de comprendre une suite d'opérations simples et répétées et d'utiliser des éléments préfabriqués de poids relativement réduit, ce qui favorise la rapidité d'exécution et ne nécessite qu'un chantier de longueur réduite.

Description

  • La présente invention se rapporte à un procédé pour réaliser un tunnel au moyen d'éléments préfabriqués en béton, solidarisés entre eux sur chantier par bétonnage.
  • La réalisation de tunnels se fait généralement par construction de tronçons successifs. Les procédés les plus courants actuellement dans ce domaine sont :
    • -le procédé en fouilles ouvertes, suivant lequel on réalise dans une tranchée ouverte un cadre en béton armé composé d'un radier, de voiles verticaux et de dalles supérieures, et
    • -le procédé en fouilles blindées, suivant lequel on effectue un blindage latéral de la fouille avant de réaliser un cadre en béton armé comme ci-dessus. Suivant ce procédé, on peut également réaliser les voiles du tronçon de tunnel à l'aide du blindage latéral de la fouille, ou par des murs emboués qui servent de blindage du sol.
  • Suivant les procédés courants, les tunnels sont réalisés soit par coulage en place des tronçons de tunnel successifs, soit par alignement de tronçons de tunnel préfabriqués.
  • Le coulage en place de tronçons de tunnel qui est le procédé le plus répandu actuellement, nécessite l'installation de chantiers de longueur relativement importante. En effet le coulage en place du radier, des voiles verticaux puis des dalles supérieures se fait sur des longueurs de plusieurs dizaines de mètres à la fois, ce qui entraîne que le chantier s'étend sur au moins une longueur égale. En réalité le chantier est beaucoup plus long, car il s'étend aussi bien en avant de la zone de coulage (terrassement et excavation des tranchées) qu'en arrière de celle-ci - (remblayage, recouvrement du tunnel et finition) par rapport au sens d'avancement des travaux.
  • Le procédé de réalisation de tunnels qui consiste à aligner des tronçons de tunnel préfabriqués permet de réduire la longueur du chantier. En effet, d'une part, au fur et à mesure que les tronçons préfabriqués sont placés, les travaux de remblayage et de finition peuvent être exécutés. D'autre part, il n'est pas nécessaire que la tranchée soit creusée sur une grande longueur; celle-ci peut, en effet, être limitée à une longueur équivalent à quelques tronçons seulement La longueur du chantier s'en trouve donc réduite.
  • Toutefois, la manipulation des tronçons de tunnel préfabriqués nécessite l'utilisation d'engins de levage lourds et encombrants. Ces engins de levage de forte puissance sont, en général, montés sur rails, ce qui en limite l'utilisation (difficultés d'installation qui dépendent de la nature du sol supportant les rails, portée limitée à la longueur des rails de roulement). En effet, même pour des petites sections, les tronçons de tunnel préfabriqués sont d'un poids relativement élevé (de l'ordre de 50 tonnes). De ce fait, le procédé est limité à la construction de tunnels de sections réduites tels des passages pour piétons, véhicules automobiles légers ou métro de petit gabarit (par exemple T.A.U., Transport Automatisé Urbain); pour des sections plus importantes, le poids des tronçons préfabriqués serait en effet excessif.
  • Un autre problème posé par la construction d'un ouvrage souterrain est que la circulation en surface est fortement pertubée (déviations, construction de viaducs de détournement, etc.) et même dans certains cas, supprimée le long de l'axe des travaux.
  • Un autre problème encore est le désagrément de longue durée occasionné aux riverains, provoquée par l'activité du chantier et les difficultés d'accès entraînées par l'éventrement des chaussées.
  • La présente invention a pour but un procédé pour la réalisation de tunnels, par assemblage d'éléments semi- préfabriqués qui :
    • -ne nécessite qu'un chantier de faible longueur,
    • -fait appel à des machines de chantier courantes, de type automoteur,
    • -permet de réaliser indifféremment des tunnels de grande ou de petite section, en passant par des sections intermédiaires,
    • -permet le déplacement rapide du chantier le long de l'axe du tunnel, grâce à la répétition d'une série d'opérations simples.
  • Le procédé suivant la présente invention fait en effet appel à un certain nombre d'éléments préfabriqués standardisés, de poids relativement réduit (environ 10 tonnes), dont la manipulation ne nécessite que des engins de levage plus mobiles, du type couramment employé sur la plupart des chantiers. Ces engins de levage peuvent être des grues automobiles, qu'il n'est pas nécessaire de monter sur rails.
  • L'utilisation d'éléments préfabriqués standardisés permet au procédé de l'invention de réaliser indifféremment des tunnels de faible section et des tunnels de plus grande section, par exemple pour métro de grand gabarit, chemin de fer souterrain, etc., en juxtaposant un nombre plus ou moins grand de ces éléments standardisés. De plus, comme on le verra plus loin, le procédé suivant l'invention permet de varier la section des tunnels, qui peut ainsi passer d'une section minimale (pour un tronçon de tunnel simple de ligne) à une section maximale (tronçons de tunnel comprenant des gares, avec quais de débarquement, salles d'attente, etc.) en passant par des sections intermédiaires.
  • D'autre part, la manipulation et le placement de ces éléments standardisés est un suite d'opérations répétitives et simples. En effet, les différents éléments préfabriqués composant les voiles verticaux, les dalles supérieures, etc.) sont placés un à un comme il sera décrit plus loin; la construction du tunnel se fait donc de manière continue.
  • La présente invention a pour objet un procédé pour la réalisation d'un tunnel au moyen d'éléments préfabriqués en béton, qui sont solidarisés entre eux par bétonnage, après placement
  • La réalisation d'un tunnel suivant la présente invention comprend les phases suivantes :
    • -excavation transversale de la fouille;
    • -pose et réglage de semelles en béton armé ayant une forme généralement rectangulaire et présentant une face d'appui supérieure, en ménageant un espace entre les semelles successives; chaque semelle étant disposée de façon à se trouver à l'aplomb des parois verticales du tunnel à construire;
    • -raccordement des semelles successives par coulage de semelles de liaison, formant ainsi une embase continue le long de chaque bord du tunnel;
    • -pose d'éléments verticaux en béton armé constituant partiellement les parois latérales du tunnel sur chaque embase continue, de manière à ménager un intervalle entre éléments verticaux successifs d'une même rangée, chaque élément vertical étant disposé au droit d'un élément semblable de l'autre côté du.tunnel à construire;
    • -mise en place, dans chacun des intervalles entre éléments verticaux successifs de chaque rangée, de deux plaques de coffrage verticales espacées entre elles, parallèlement à l'axe du tunnel; ces deux plaques formant, avec une partie de la surface extérieure de deux éléments verticaux successifs, un coffrage pour la coulée d'une colonne en béton armé;
    • -introduction d'une armature à béton dans le dit coffrage;
    • -pose de linteaux parallèlement à l'axe du tunnel, près du bord supérieur de la plaque de coffrage située du côté intérieur du tunnel à construire, de manière que chaque linteau s'appuie par ses extrémités sur deux éléments verticaux successifs; chaque linteau est disposé au droit d'un linteau situé de l'autre côté du tunnel à construire;
    • -coulage en place d'un radier en béton entre les deux embases continues;
    • -pose de poutres supérieures transversales au droit des coffrages entre éléments verticaux successifs, de manière que chaque poutre s'appuie par ses extrémités sur deux linteaux disposés l'un au droit de l'autre;
    • -coulage de béton dans les coffrages entre éléments verticaux successifs et solidarisation de chaque poutre avec les colonnes en béton armé ainsi formées et situées au droit l'une de l'autre;
    • -remblayage derrière les parois latérales du tunnel;
    • -pose et solidarisation de prédalles supérieures en béton armé sur les poutres, de manière telle que chaque prédalle s'appuie par son bord avant sur une poutre et par son bord arrière sur la poutre suivante par rapport au sens d'avancement du chantier;
    • -bétonnage de la dalle supérieure et colmatage du tunnel, et
    • -remblayage et recouvrement du tunnel.
  • Suivant une forme d'exécution préférée, les phases successives de réalisation du tunnel sont exécutées dans l'ordre au long du chantier, depuis le front d'avancement où se font le terrassement et l'excavation frontale de la fouille jusqu'à la zone de parachèvement où se font le remblayage et le recouvrement du tunnel achevé.
  • Suivant une forme d'exécution avantageuse, les éléments verticaux constituant partiellement les parois latérales du tunnel sont des coques oblongues en béton armé présentant une voûte cylindrique dont la génératrice est parallèle au grand axe des coques; ces coques sont fermées à chacune de leurs extrémités par une base en demi-lαne, perpendiculaire à leur grand axe. Ces coques sont disposées de manière telle que leur concavité soit dirigée vers l'intérieur du tunnel, et que leur voûte soit dirigée vers les parois de la tranchée.
  • De manière plus particulière, les coques présentent deux pans longitudinaux plans et parallèles prolongeant la voûte de chaque côté de celle-ci.
  • Une forme de réalisation avantageuse de ces éléments présente, du côté extérieur de la voûte, une face arrière sensiblement plane qui se raccorde perpendiculairement aux faces latérales de l'élément, elles aussi sensiblement planes.
  • Suivant une forme d'exécution préférée, les coques présentent sur les faces extérieures des pans longitudinaux deux rainures parallèles au grand axe des coques, aptes à recevoir les bords latéraux des deux plaques de coffrage.
  • Suivant une forme d'exécution particulière, les rainures situées près du bord libre des pans longitudinaux plans des coques, et donc situées du côté intérieur du tunnel, sont élargies à leur partie supérieure, de manière à constituer près du niveau qu'occupera le bord supérieur de la plaque mise en place, des épaulements sur lesquels s'assied l'extré mité d'un linteau.
  • Suivant une forme d'exécution préférée, les semelles en béton armé ainsi que les semelles de liaison assurant la continuité entre celles-ci sont pourvues, sur leur face d'appui supérieure, d'une feuillure parallèle à l'axe du tunnel et dirigée vers l'intérieur du tunnel.
  • L'assemblage d'une poutre, des deux colonnes en béton armé qui supportent chacune des extrémités de cette poutre et les semelles supportant chacune de ces colonnes en béton armé, forme un portique apte à reprendre les pressions verticales exercées par les terres et la voirie supérieures, ainsi que les pressions horizontales de poussée des terres.
  • Ainsi que l'on peut le constater, le procédé suivant l'invention présente un certain nombre d'avantages.
  • La forme en voûte des coques utilisées préférentiellement offre l'avantage de reprendre les charges horizontales de poussée des terres après remblayage derrière les parois latérales du tunnel avec des cloisons relativement minces et ne nécessitant pas de renforts additionnels.
  • On peut préfabriquer les coques dans des moules exécutés spécialement à cet usage mais, pour de petites séries, il est plus économique d'utiliser des moules de forme standardisée, généralement de section rectangulaire. Dans une forme de réalisation avantageuse de ces éléments, la face tournée vers l'extérieur du tunnel est pratiquement plane et se' raccorde perpendiculairement aux faces latérales, elles aussi pratiquement planes. Une telle forme de réalisation coïncide avec la forme de moules standards.
  • Il est d'une exécution facile, notamment grâce à l'utilisation d'éléments préfabriqués de poids relativement réduit (inférieur à 10 tonnes), dont la manipulation ne nécessite que des engins de manutention courants.
  • Le nombre d'éléments préfabriqués utilisés étant réduit (en effet, il ne comprend principalement que les semelles, éléments verticaux formant les parois verticales, linteaux, poutres supérieures et prédalles), la pose de ceux-ci est une suite d'opérations répétées, ce qui favorise la rapidité d'exécution. Ainsi, par exemple, la construction d'un tunnel de métro de type lourd peut avancer à raison d'environ 3 mètres courants par jour.
  • La perturbation causée aux riverains est donc minimale, grâce à la rapidité d'exécution et donc grâce à la mobilité du chantier. Le chantier est d'autant plus mobile que les installations de chantier sont réduites, grâce notamment à la fabrication d'un maximum d'éléments hors du site (préfabrication en usine).
  • En effet, pendant que l'on effectue les différentes opérations énumérées ci-dessus, pour un tronçon de tunnel, le creusement de la tranchée se poursuit de manière régulière. Aussitôt qu'une longueur équivalent au tronçon de tunnel suivant a été creusée, la même suite d'opérations (pose et réglage de semelles, coulage de semelles intermédiaires, pose de coques verticales, etc.) peut être effectuée pour le tronçon de tunnel suivant, avec un déphasage suffisant pour éviter toute interférence entre les phases de réalisation des tronçons successifs.
  • A titre d'exemple, un tronçon de tunnel équivalent à la longueur de quatre modules (un module comprenant deux semelles et deux coques verticales se trouvant au droit les unes des autres et une poutre supérieure transversale) peut être réalisé en 13 jours :
    • -les 1er et 2ème jours : creusement d'une tranchée correspondant à la longueur du tronçon de tunnel;
    • - le 3ème jour : pose et réglage des semelles;
    • -le 4ème jour : liaison entre ces semelles par coulage de semelles de liaison;
    • -le 5ème jour : pose des coques verticales;
    • -le 6ème jour : pose des linteaux et fermeture entre coques par placement des plaques de coffrage;
    • -les 7ème, 8ème et 9ème jours : coulage du radier et pose des caniveaux, coulage des colonnes en béton armé entre les coques verticales;
    • -les 10ème et llème jours : pose des poutres transversales et solidarisation, pose des prédalles;
    • -les 12ème et 13ème jours : coulage de la dalle supérieure et remblayage.
  • Le procédé suivant l'invention se prête également à la réalisation de tunnels en milieu aquifère, grâce à l'aménagement des coques, qui serviront ainsi de passage de nappes comme il sera décrit plus bas. Il importe en effet dans le cas de terrains aquifères, de ne pas s'opposer aux mouvements des nappes souterraines.
  • Le procédé permet d'épouser les diverses dénivellations du terrain ainsi que les changements de direction imposés par le tracé, tout en utilisant la majorité des éléments préfabriqués ci-dessus.
  • Le procédé se prête également à la réalisation de tunnels de diverses largeurs, par exemple, étroits en ligne droite, larges en gare, en passant par des sections intermédiaires reliant les tronçons étroits et les tronçons larges. Ainsi qu'il sera décrit plus bas, ces différentes largeurs sont réalisées avec les éléments préfabriqués disponibles déjà décrits.
  • Le procédé suivant l'invention permet d'allier le gros oeuvre et les parachèvements; en particulier à l'intérieur des stations on peut tirer parti de la forme des coques. Bien sûr, les dimensions de ces coques peuvent varier entre des limites relativement larges, mais suivant une forme d'exécution particulière et avantageuse de l'invention, la largeur de ces coques est comprise entre 2 et 3 mètres. De cette façon, les parois des stations présentent des espèces de niches, qui peuvent être aménagées, suivant les besoins, par exemple, en y installant des cabines téléphoniques, des distributeurs automatiques, des banquettes, etc. Dans ce dernier cas, les banquettes peuvent être avantageusement des nervures continues ou interrompues coulées dans la masse lors de la fabrication en usine des coques.
  • On peut également tirer parti de l'aspect des coques et des plaques de fermeture intérieures reliant les coques successives entre elfes, en modifiant à volonté l'aspect de la matière (coloration, coffrages structurés, habillage intégré, etc.).
  • De manière analogue, les coques formant les parois du tunnel entre les stations peuvent être aménagées pour recevoir des appareils électriques tels des boîtes de jonction, des dispositifs d'éclairage, de signalisation, etc.
  • La configuration particulière des parois peut également être exploitée avantageusement sur le plan acoustique. En effet, les sons sont captés par la surface des parois, ce qui abaisse considérablement le niveau acoustique et améliore ainsi le confort des usagers du tunnel, notamment des passagers en attente aux gares.
  • L'invention sera illustrée en se référant aux figures annexées, parmi lesquelles :
    • la Fig. 1 est une vue en perspective, avec arrachement partiel, d'un chantier de construction d'un tunnel suivant l'invention;
    • la Fig. 2 est une vue, à plus grande échelle, de la zone désignée par Il à la Fig. 1, montrant un mode de fixation des linteaux;
    • la Fig. 3 est une vue partielle, à plus grande échelle, d'une variante d'exécution montrant un autre mode de fixation des linteaux;
    • la Fig- 4 est une coupe suivant un plan horizontal dans la zone de jonction entre deux coques constituant les parois latérales du tunnel;
    • la Fig. 5 est une coupe suivant un plan vertical et avec arrachement partiel, d'une portion d'un tunnel dont l'assiette est en pente;
    • la Fig. 6 est une vue, à plus grande échelle, de trois coques successives lorsque l'assiette du tunnel est en pente;
    • la Fig. 7 est une vue, à plus grande échelle, d'un linteau utilisé dans l'assemblage de la Fig. 6;
    • la Fig. 8 est une coupe suivant un plan horizontal et avec arrachement partiel, d'une portion de tunnel en alignement courbe;
    • la Fig. 9 est une coupe suivant un plan horizontal avec arrachement partiel, d'une portion de tunnel en milieu aquifère;
    • la Fig. 10 est une coupe suivant la ligne X-X de la Fig. 9;
    • la Fig. 11 est une coupe transversale d'un tunnel simple suivant l'invention;
    • la Fig. 12 est une coupe transversale d'un tunnel double suivant l'invention;
    • la Fig. 13 est une coupe transversale d'un tunnel double suivant l'invention, aménagé en gare.
    • la Fig. 14 est une vue en coupe suivant un plan horizontal à mi-hauteur d'une forme de réalisation avantageuse d'une coque constituant la paroi du tunnel.
    • La Fig. 1 représente toutes les phases pour la réalisation d'un tunnel suivant le procédé de l'invention.
  • Après les travaux préliminaires de terrassement et d'excavation transversale de la fouille, des semelles préfabriquées en béton armé 1 de forme généralement rectangulaire, dont la face supérieure 2 présente une feuillure 3, sont déposées sur le fond de la tranchée, en ménageant un espace entre les semelles 1 successives. Chaque semelle est disposée de manière à se trouver à l'aplomb des parois verticales du tunnel à construire, de telle sorte que la feuillure 3 soit dirigée vers l'intérieur du tunnel.
  • Les semelles 1 sont raccordées entre elles par coulage de semelles de liaison 4 dans les espaces entre les semelles 1, de manière à former ainsi une embase continue 5 le long de chaque bord du tunnel. Dans ce but, chaque semelle de liaison 4 présente également sur sa face supérieure 6 une feuillure 7 reliant les feuillures 3 de deux semelles 1 successives.
  • Des coques 8 oblongues en béton armé présentant une voûte cylindrique 9 dont la génératrice est parallèle à leur grand axe, deux pans longitudinaux plans 10 prolongeant cette voûte 9 de chaque côté, et fermées par une base, 11 en demi-lune à chacune de leurs extrémités, sont disposées sur chaque embase continue 5, de manière à ménager un intervalle entre coques 8 successives, et de manière que leur voûte 9 soit dirigée vers le paroi de la tranchée et, par conséquent, que leur concavité soit dirigée vers l'intérieur du tunnel. Les coques 8 sont placées de manière telle que chaque coque 8 prenne appui à la fois sur deux semelles 1 successives et donc que .l'intervalle entre deux coques successives soit situé au droit d'une semelle 1.
  • De manière avantageuse, les coques 8 sont placées au moyen d'un mannequin de positionnement portant une paire de coques 8, de façon à placer simultanément deux coques 8 de chaque côté du tunnel, l'une au droit de l'autre.
  • L'intervalle entre deux coques 8 successives est fermé, du côté de la paroi de la tranchée, par une plaque de coffrage extérieure 12 et, du côté intérieur du tunnel, par une plaque de coffrage intérieure 13. Les deux plaques de coffrage 12, 13 sont espacées entre elles et sont disposées parallèlement à l'axe du tunnel.
  • Les plaques de coffrage 12, 13 sont, par exemple, en asbeste-ciment et délimitent, avec les faces extérieures 14 des pans 10 se faisant face de deux coques 8 successives, un espace vertical entre deux coques 8 successives. Dans cet espace vertical est insérée une armature à béton 15.
  • Les plaques de coffrage extérieures 12 ont sensiblement la même hauteur que les éléments verticaux 8. Par contre, les plaques de coffrage intérieures 13 sont nettement moins hautes. En effet, au-dessus de chaque plaque de coffrage intérieure 13, est disposé, parallèlement à l'axe du tunnel, un linteau 16, qui s'appuie par ses extrémités, sur les pans 10 se faisant face de deux coques 8 successives, comme il sera décrit plus loin. Des poutres supérieures transversales 17 sont ensuite placées perpendiculairement à l'axe du tunnel, de manière à s'appuyer par chacune de leurs extrémités sur des linteaux 16 se faisant face. Les poutres supérieures transversales 17 supportent, à leur tour, des prédalles supérieures en béton armé 18, disposées de manière telle que chaque prédalle 18 s'appuie par son bord avant sur une poutre supérieure transversale 17, et par son bord arrière sur la poutre supérieure transversale 17 suivante, par rapport au sens d'avancement du chantier, et également de manière que la surface inférieure des prédalles 18 soit au même niveau que la surface inférieure des bases 11 en demi-lune supérieures des coques 8, de façon à présenter avec celles-ci une surface continue qui peut être laissée à nu et constituer le plafond du tunnel, entre les poutres supérieures transversales 17. Les bases 11 en demi-lune ont une épaisseur - (environ 14 cm) supérieure à celle des prédalles 18 - (environ 5 cm) et dépassent par conséquent au-dessus de la surface supérieure des prédalles 18. La tranche des bases 11 en demi-lune supérieure constitue avantageusement avec le bord supérieur des plaques de coffrage extérieures 12 un coffrage latéral pour le coulage de la dalle supérieure 19.
  • Du béton est coulé dans chacun des espaces νeit- caux entre deux coques 8 successives, où se trouve déjà l'armature à béton 15. Les poutres transversales 17 sont ensuite solidarisées avec les colonnes en béton armé 20 ainsi obtenues. L'assemblage d'une poutre transversale 17, des deux colonnes en béton armé 20 se trouvant au droit de cette poutre 17 et des semelles 1 supportant chacune de ces colonnes 20, forme un portique apte à reprendre les pressions verticales et horizontales exercées par les terres après recouvrement du tunnel.
  • Un radier 21 est ensuite coulé entre les deux embases continues 5 formées par les semelles 1 et les semelles de liaison 4, coulées entre celles-ci, de manière à recouvrir les feuillures 3 et 7. Ce radier 21 supportera des caniveaux 22 destinés au passage de câbles, canalisations, etc., ainsi que l'infrastructure de la voie, par exemple le ballast 23 d'une voie ferrée 24.
  • Le remblayage latéral de la tranchée, derrière les coques 8 et les plaques de coffrage extérieures 12 les reliant, peut déjà être effectué, alors que l'on procède à la pose des prédalles 18 sur les poutres supérieure 17, ainsi qu'au bétonnage de la dalle supérieure 19.
  • Avant le remblayage final, on procède au colmatage du tunnel en vue d'en assurer l'étanchéité.
  • La Fig. 2 est une vue, à grande échelle, de trois coques 8 successives, montrant les plaques de coffrage extérieures 12 et intérieures 13 et les linteaux 16 sur lesquels s'appuient les poutres supérieures transversales 17 avant solidarisation avec les colonnes en béton armé 20 coulées dans les intervalles entre les coques 8 successives.
  • Les coques 8 présentent, sur les faces extérieures 14 des pans longitudinaux plans et parallèles 10 des coques 8, deux rainures 25, 26 parallèles au grand axe de celles-ci; les rainures 25 situées du côté de la paroi de la tranchée de deux faces extérieures 14 se faisant face de deux coques 8 successives reçoivent et guident les bords latéraux d'une plaque de coffrage extérieure 12. Cette plaque de coffrage extérieure 12 constitue la liaison entre deux coques 8 successives, du côté extérieur du tunnel, et assure ainsi la continuité de la paroi latérale extérieure du tunnel. Les plaques 12 ont sensiblement la même longueur que les coques 8 et leur petit bord supérieur arrive sensiblement à la même hauteur que la surface supérieure de la base 11 en demi-lune des coques 8.
  • De même, les rainures 26 situées près des bords libres des pans longitudinaux, donc du côté intérieur du tunnel de deux faces extérieures 14 se faisant face de deux coques 8 successives reçoivent et guident les bords latéraux d'une plaque de coffrage intérieure 13. Cette plaque intérieure 13 constitue la liaison intérieure entre deux coques 8 successives, et donc la continuité de la paroi intérieure du tunnel.
  • Comme il a été déjà expliqué plus haut, les plaques intérieures 13 et l'intérieur de la concavité des coques 8 peuvent être avantageusement laissés à nu, participant ainsi par leurs formes et par un choix judicieux de leurs coloris, à la décoration intérieure du tunnel, notamment au droit des gares souterraines et autres lieux accessibles au public.
  • Ainsi que le montrent les Fig. 1 et 2, les plaques intérieures 13 ont une longueur inférieure à celle des coques 8. En effet, l'espace situé au-dessus du petit bord supérieur de chaque plaque intérieure 13 est occupé par un linteau 16 et par l'extrémité de la poutre transversale 17 qu'il supporte. De plus, cette poutre 17 est décalée vers le bas d'une distance égale aux épaisseurs additionnées des prédalles 18 et de la dalle supérieure 19, de sorte que la surface supérieure de la dalle supérieure 19 soit au même niveau que la surface supérieure des bases 11 en demi-lune supérieures des coques 8, la tranche de ces bases 11 faisant ainsi office de coffrage latéral de la dalle supérieure 19, avec le bord supérieur des plaques de coffrage extérieures 12.
  • Les rainures 26 situées près des bords libres des pans longitudinaux sont élargies à leur partie supérieure, de manière à constituer près du niveau du bord supérieur de la plaque de coffrage intérieur, des épaulements 27 sur lesquels s'assied l'extrémité d'un linteau 16.
  • La Fig. 3 est une vue patielle, à plus grande échelle, de la zone de jonction entre deux coques constituant les parois latérales du tunnel, montrant un autre mode de fixation des linteaux. Les coques 28 présentent, sur les bords libres de chacun de leurs pans longitudinaux plans et parallèles 29 au voisinage de leur base 30 en demi-lune supérieure, des évidements 31 correspondant à la section des linteaux 32, et aptes à recevoir les extrémités de ces linteaux 32. Chaque linteau est ainsi reçu par ses extrémités dans les évidements 31 de deux pans 29 contigus de deux coques 28 successives et est supporté par des épaulements 33. Il est maintenu en place par des goujons 34.
  • La Fig. 4 est une coupe, à plus grande échelle, de la.. zone de jonction entre deux coques 8, et montre notamment la position de l'armature 15 insérée dans l'espace vertical délimité par les coques 8 et par les plaques extérieure 12 et intérieure 13, lesquelles sont guidées et maintenues respectivement par des rainures 25 et 26, dans lesquelles sont encastrés des profilés en U en acier 35.
  • Le procédé suivant l'invention a l'avantage de permettre au tunnel d'épouser les diverses dénivellations du terrain ainsi que les changements de hauteur imposés par le tracé.
  • Un exemple d'un tunnel de ce type est illustré aux Fig. 5 à 7, dans lesquelles les éléments communs à toutes les formes de réalisation décrites ont les mêmes chiffres de référence.
  • Les Fig. 5 et 6 illustrent un tunnel à alignement droit dont l'assiette est en pente. Les différentes phases de réalisation sont les mêmes que celles décrites plus haut pour la construction d'un tunnel droit et horizontal. La différence de niveau entre deux coques 8 successives est déterminée par le positionnement et le réglage des semelles en béton armé 1.
  • La différence de niveau entre deux semelles 1 successives, supportant entre elles une coque 8 ainsi qu'illustré à la Fig. 5, nécessite l'insertion, entre la semelle 1 la plus basse et la coque 8 supportée par ces deux semelles 1, d'une cale 36 dont la hauteur est égale à la différence de niveau entre deux semelles 1 successives, de manière à ce que la coque 8 reste verticale. est, en effet, essentiel que les colonnes qui seront coulées dans les espaces entre les coques successives 8 soient verticales.
  • De même, la différence de niveau entre deux semelles 1 (et par suite entre deux coques 8) successives nécessite l'utilisation de linteaux 37 d'un type particulier. Un linteau de ce type, ainsi qu'illustré à la Fig. 7, présente à sa surface supérieure deux demi-surfaces d'appui 38 et 39 décalées, séparées par un échelon 40 dont la hauteur est égale à la différence de niveau entre deux coques 8 successives. Les extrémités de deux demi-poutres 41 et 42 (Fig. 5) viendront s'appuyer respectivement sur les demi-surfaces 38 et 39. Ces poutres 41 et 42 sont, par conséquent, décalées en hauteur l'une par rapport à l'autre. La solidarisation avec les colonnes verticales des demi-poutres 41, 42, se fait de la même manière que dans le cas d'un tunnel à assiette horizontale, ainsi que décrit plus haut (Insertion d'une armature 15 dans l'espace vertical entre deux coques 8 successives, coulage d'une colonne verticale 20, solidarisation de chacune des demi-poutres 41 et 42 avec celle-ci). Ainsi que l'on peut le remarquer à la Fig. 5, la demi-poutre la plus haute 42 d'une paire de demi-poutres 41, 42 est à la même hauteur que la demi-poutre la plus basse 41 de la paire de demi-poutres 41, 42 suivante, une prédalle 18 s'appuyant par ses extrémités sur une demi-poutre 42 d'une paire de demi-poutres 41, 42 et sur la demi-poutre 41 de la paire suivante, sera donc sensiblement horizontale. Les travaux de parachèvement du tunnel (bétonnage de la dalle supérieure, étanchéité, recouvrement) sont ensuite effectués de la manière décrite plus haut
  • La Fig. 8 illustre un exempte de tunnel en courbe, dans laquelle les éléments communs à toutes les formes de réalisation ont les mêmes chiffres de référence. Les phases de réalisation d'un tunnel en courbe sont les mêmes que précédemment.
  • L'intervalle entre les semelles 1 de la rangée située à l'extérieur de la courbe est supérieur à l'intervalle entre les semelles 1 de la rangée située à l'intérieur de la courbe.
  • Les semelles de liaison 43 coulées dans les intervalles de la rangée extérieure seront, par conséquent, plus larges que les semelles de liaison 44 coulées entre les semelles 1 de la rangée intérieure. L'intervalle entre deux coques 8 situées à l'extérieur de la courbe du tunnel est également plus grand que l'intervalle entre deux coques 8 intérieures. Par suite, comme le montre la Fig. 8, les plaques de fermeture extérieures 45 entre les coques 8 de la rangée située à l'extérieur de la courbe seront plus larges que les plaques de fermeture extérieures 46 entre les coques 8 de la rangée située à l'intérieur de la courbe. De même, les plaques de fermeture intérieures 47 de la rangée extérieure de coques 8 seront plus larges que les plaques de fermeture intérieures 48 de la rangée intérieure de coques 8.
  • Par conséquent, les espaces verticaux entre coques successives 8 (et par suite les armatures 49 qui y sont insérées) de la rangée de coques 8 située à l'extérieur de la courbe, sont plus larges que les espaces verticaux (et donc les armatures 50 qui y sont insérées) de la rangée de coques 8 située à l'intérieur de la courbe. Cela nécessite évidemment le placement de linteaux 51 plus longs entre les coques 8 successives de la rangée extérieure de la courbe et le placement de linteaux 52 plus courts entre les coques 8 successives de la rangée intérieure de la courbe. De même, les poutres transversales (non illustrées) utilisées pour un tunnel en alignement courbe seront plus larges à l'une de leurs extrémités; elles seront déposées sur les linteaux 51, 52 de façon à ce que leur extrémité la plus large soit située du côté extérieur de la courbe.
  • La Fig. 9 illustre un exemple de tunnel construit en milieu aquifère. Le tronçon illustré est en ligne droite, mais il va de soi que le procédé s'applique aussi bien à un tunnel en alignement courbe qu'à un tunnel dont l'assiette est en pente.
  • Le tronçon de tunnel comprend alors des coques 53 dont la voûte 54 est munie d'ouvertures 55 mettant en communication l'intérieur de celle-ci avec le milieu environnant, et permettant par conséquent, le passage d'eau. La cavité de ces coques 53 est fermée sur toute la hauteur par une cloison verticale 56, munie d'un trou d'accès 57 - (Fig. 10). L'intérieur de ces coques se remplit ainsi d'eau jusqu'à un niveau égal au niveau de la nappe.
  • Un tuyau 58 transversal situé en dessous du radier 21 et maintenu par des semelles de liaison 59 entre semelles préfabriquées 1, relie deux coques 53 de chaque côté du tunnel et se faisant face. Ce tuyau 58 est raccordé à la partie inférieure de chaque coque 53 par un orifice 60 et permet le passage de la nappe souterraine et l'établissement de l'équilibre des niveaux de celle-ci de chaque côté du tunnel.
  • Il est évident que cette forme d'exécution nécessite l'utilisation de joints d'étanchéité de type connu, non représentés sur les figures. Ces joints sont placés notamment entre les bases en demi-lune inférieures des coques verticales 8, 53 et le radier 21, d'une part, et les bases en demi-lune supérieures des coques verticales 8, 53 et les prédalles supérieures 18 d'autre part.
  • Le procédé suivant l'invention n'est pas limité à la réalisation de tunnels simples, comme ceux décrits plus haut, et dont un exemple est illustré en coupe à la Fig. 11, permettant la circulation suivant deux voies parallèles, mais se prête également à la réalisation de tunnels de plus grande largeur, par exemple, un tunnel de largeur double, tel qu'illustré en coupe à la Fig. 12. Ce tunnel comprend des semelles intermédiaires 61 disposées suivant l'axe médian du tunnel, entre les semelles 1 d'une paire de semelles. Ces semelles intermédiaires 61 supportent des colonnes intermédiaires 62. Chacune de ces colonnes 62 supporte les extrémités intérieures de deux poutres supérieures 63 perpendiculaires à l'axe du tunnel dont les extrémités extérieures sont supportées par des linteaux et bétonnées à des colonnes verticales (non représentés) de la manière décrite plus haut Les poutres 63 sont solidarisées entre elles et avec la colonne 62 qui les supporte, l'ensemble ainsi obtenu formant un portique double, supporté par les semelles 1 et la semelle intermédiaire 61.
  • La Fig. 13 représente une forme d'exécution particulière de tunnel double, utilisant des poutres supérieures 64 de plus grande longueur, ce qui permet l'aménagement d'un quai de débarquement central 65, entre les voies de circulation.
  • Il va de soi que la largeur du tunnel peut être augmentée à souhait, selon les besoins, grâce à la multiplication des éléments intermédiaires (semelles, colonnes 62, poutres supérieures, etc.). Le procédé suivant l'invention se prête également à la réalisation de tronçons de tunnel intermédiaires, pour joindre, par exemple, un tronçon de tunnel simple (de ligne) à un tronçon de tunnel double - (de gare), en passant par des largeurs intermédiaires.
  • La Fig. 14 montre une coupe suivant un plan horizontal, à mi-hauteur, d'une forme de réalisation avantageuse d'une coque 8 constituant une partie de la paroi verticale d'un tunnel réalisé suivant l'invention. La face tournée vers l'extérieur du tunnel 65 du côté opposé à la voûte 9 est plane et se raccorde perpendiculairement aux faces latérales 14, pratiquement planes de la coque 8.
  • Des rainures 25, 26 s'étendant longitudinalement sur ces faces extérieures 14 de ces pans longitudinaux 10, permettent d'y insérer les bords latéraux des plaques de coffrage 12, 13. Ces faces extérieures sont, en outre, avantageusement dotées de cannelures 66 propres à améliorer la solidarisation de ces éléments et des colonnes en béton armé entre lesquels ils sont placés.
  • Des évidements 67 sont ménagés entre la voûte 9 et la face arrière plane 65 de façon à conserver aux coques ainsi réalisées leur légèreté. Ces évidements 67 sont réalisés suivant un procédé connu, tel que l'insertion dans les moules de noyaux de polystyrène.
  • Ce mode de réalisation permet de renforcer la rigidité de la structure d'un élément.
  • Bien entendu, l'invention n'est pas limitée aux détails d'exécution décrits plus haut auxquels de nombreux changements et modifications peuvent être apportés sans sortir de son cadre.

Claims (11)

1.-Procédé pour la réalisation d'un tunnel au moyen d'éléments préfabriqués en béton, qui sont solidarisés entre eux par bétonnage, après placement, caractérisé en ce qu'il comprend les phases suivantes :
-excavation frontale de la fouille,
-pose et réglage de semelles (1) en béton armé ayant une forme généralement rectangulaire et présentant une face d'appui supérieure (2), en ménageant un espace entre les semelles (1) successives, chaque semelle (1) étant disposée de façon à se trouver à l'aplomb des parois verticales du tunnel à construire,
-raccordement des semelles (1) successives par coulage de semelles de liaison (4), formant ainsi une embase continue (5) le long de chaque bord du tunnel,
-pose d'éléments verticaux en béton armé constituant partiellement les parois latérales du tunnel sur chaque embase continue (5), en ménageant un intervalle entre éléments verticaux successifs d'une même rangée, chaque élément vertical étant disposé au droit d'un élément semblable de l'autre côté du tunnel à construire,
-mise en place, dans chacun des intervalles entre éléments verticaux successifs de chaque rangée, de deux plaques de coffrage verticales (12, 13) espacées entre elles, parallèlement à l'axe du tunnel, ces deux plaques (12, 13) formant, avec une partie de la surface extérieure de deux éléments verticaux successifs, un coffrage pour la coulée d'une colonne en béton armé (20),
-introduction d'une armature à béton (15) dans le dit coffrage,
-pose de linteaux (16) parallèlement à l'axe du tunnel, près du bord supérieur de la plaque de coffrage (13) située du côté intérieur du tunnel à construire, de manière que chaque linteau (16) s'appuie par ses extrémités sur deux éléments verticaux successifs, chaque linteau (16) étant disposé au droit d'un linteau (16) situé de l'autre côté du tunnel à construire,
-coulage en place d'un radier (21) en béton entre les deux embases continues (5),
-pose de poutres supérieures transversales (17) au droit des coffrages entre éléments verticaux successifs, de manière telle que chaque poutre (17) s'appuie par ses extrémités sur deux linteaux (16) disposés l'un au droit de l'autre,
-coulage de béton dans les coffrages entre éléments verticaux successifs et solidarisation de chaque poutre (17) avec les colonnes en béton armé (20) ainsi formées et situées au droit l'une de l'autre,
-remblayage derrière les parois latérales du tunnel,
-pose et solidarisation de prédalles supérieures (18) en béton armé sur les poutres (17), de manière telle que chaque prédalle (18) s'appuie par son bord avant sur une poutre (17), et par son bord arrière sur la poutre (17) suivante par rapport au sens d'avancement du chantier,
-bétonnage de la dalle supérieure (19) et colmatage du tunnel, et
-remblayage et recouvrement du tunnel.
2.-Procédé suivant la revendication 1, caractérisé en ce que les phases successives de réalisation du tunnel sont exécutées dans l'ordre au long du chantier, depuis le front d'avancement où se font le terrassement et l'excavation frontale de la fouille jusqu'à la zone de parachèvement où se font le remblayage et le recouvrement du tunnel achevé.
3.-Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que les dits éléments verticaux sont des coques oblongues (8) en béton armé présentant une voûte cylindrique (9) dont la génératrice est parallèle au grand axe des coques (8), ces coques (8) étant fermées à chacune de leurs extrémités par une base (11) en demi-lune, perpendiculaire à leur grand axe, ces coques étant disposées de manière telle que leur concavité soit dirigée vers l'intérieur du tunnel, et que leur voûte (9) soit dirigée vers les parois de la tranchée.
4.-Procédé suivant la revendication 3, caractérisé en ce que les dites coques (8) présentent deux pans longitudinaux plans et parallèles (10) prolongeant la voûte (9) de chaque côté de celle-ci.
5.-Procédé suivant l'une quelconque des revendications 3 et 4, caractérisé en ce que les éléments verticaux en béton armé constituant les parois latérales du tunnel sont des coques dont la face tournée vers l'extérieur est sensiblement plane et se raccorde perpendiculairement aux faces latérales des dits éléments.
6.-Procédé suivant l'une quelconque des revendications 3, 4 et 5, caractérisé en ce que les coques (8) présentent, sur la face extérieure (14) de chacun des pans longitudinaux plans (10), deux rainures (25, 26) parallèles au grand axe des coques, aptes à recevoir les bords latéraux des deux plaques de coffrage (12,13).
7.-Procédé suivant la revendication 6, caractérisé en ce que les rainures (26) situées près du bord libre des pans longitudinaux plans (10), sont élargies à leur partie supérieure, de manière à consti tuer, près du niveau qu'occupera le bord supérieur de la plaque de coffrage (13) situé du côté intérieur du tunnel, des épaulements (27) sur lesquels s'assied l'extrémité d'un linteau (16).
8.-Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que les semelles (1) en béton armé ainsi que les semelles de liaison (4) assurant la continuité entre les dites semelles (1) sont pourvues, sur leur face d'appui supérieure (2, 6), d'une feuillure (3, 7) parallèle à l'axe du tunnel et dirigée l'intérieur du tunnel.
9.-Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que l'assemblage d'une poutre (17), des deux colonnes en béton armé (20) qui supportent chacune des extrémités de cette poutre supérieure (17) et les semelles (1) supportant chacune de ces colonnes en béton armé (20), forme un portique apte à reprendre les pressions verticales exercées par les terres et la voirie supérieures, ainsi que les pressions horizontales de poussée des terres.
10.-Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que les éléments en béton armé verticaux constituant les parois latérales du tunnel sont des conques minces moulées (8) présentant une voûte (9), aptes à reprendre les charges horizontales de poussée des terres.
11.-Tunnel réalisé suivant le procédé conforme à l'une quelconque des revendications 1 à 10.
EP19860870032 1985-03-12 1986-03-12 Procédé pour la réalisation d'un tunnel Expired EP0197021B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8503619 1985-03-12
FR8503619A FR2578904B1 (fr) 1985-03-12 1985-03-12 Procede pour la realisation d'un tunnel

Publications (2)

Publication Number Publication Date
EP0197021A1 true EP0197021A1 (fr) 1986-10-08
EP0197021B1 EP0197021B1 (fr) 1988-10-19

Family

ID=9317112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860870032 Expired EP0197021B1 (fr) 1985-03-12 1986-03-12 Procédé pour la réalisation d'un tunnel

Country Status (3)

Country Link
EP (1) EP0197021B1 (fr)
DE (2) DE3660969D1 (fr)
FR (1) FR2578904B1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880334A (en) * 1988-04-11 1989-11-14 Finic, B.V. Tunnel construction apparatus and method
ES2052433A2 (es) * 1992-02-13 1994-07-01 Codelfa Prefabbricati S P A Sistema para la construccion de galerias artificiales con elementos prefabricados de hormigon.
US6234716B1 (en) * 1995-11-17 2001-05-22 Carlo Chiaves Underground structural work including prefabricated elements associated with piles and a process for its production
FR2843977A1 (fr) * 2002-08-28 2004-03-05 Conseil Service Investissement Procede de realisation d'une plate-forme enjambant une tranchee au moyen de longerons prefabriques
WO2012177143A2 (fr) 2011-06-21 2012-12-27 Stabinor As Procédé de construction d'un revêtement de tunnel et élément de structure à utiliser dans le procédé
CN112576260A (zh) * 2020-12-14 2021-03-30 中铁二院工程集团有限责任公司 拱盖法进洞施工方法以及拱盖法进洞支护结构
CN112576259A (zh) * 2020-12-14 2021-03-30 中铁二院工程集团有限责任公司 拱盖法车站从主体进附属施工方法及结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112049032B (zh) * 2020-07-27 2022-05-17 成龙建设集团有限公司 一种市政公路门洞的加固方法
CN114017079B (zh) * 2021-10-29 2023-10-13 国能神东煤炭集团有限责任公司 用于煤矿井下沿空掘巷的巷道支护装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746566A (en) * 1927-08-31 1930-02-11 Robert B Tufts Sewer construction
FR685548A (fr) * 1928-11-29 1930-07-11 éléments en béton-armé pour la construction des conduits, des puits, des galeries de mines, etc.
FR2082092A5 (fr) * 1970-03-03 1971-12-10 Gtmtp
FR2126202A1 (fr) * 1971-02-22 1972-10-06 Sbaraglia Goffredo
FR2223513A1 (en) * 1973-03-30 1974-10-25 Socea Tunnel made from prefabricated sections - has roof slab supported on shoulders extending from upper face of walls

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE519036C (de) * 1928-11-30 1931-02-23 Ernst Arnold Eisenbetonplatte zum Aufbau von Waenden in Schaechten, Stollen u. dgl.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746566A (en) * 1927-08-31 1930-02-11 Robert B Tufts Sewer construction
FR685548A (fr) * 1928-11-29 1930-07-11 éléments en béton-armé pour la construction des conduits, des puits, des galeries de mines, etc.
GB335816A (en) * 1928-11-29 1930-10-02 Ernst Arnold Reinforced concrete unit for the construction of shafts, tunnels and the like
FR2082092A5 (fr) * 1970-03-03 1971-12-10 Gtmtp
FR2126202A1 (fr) * 1971-02-22 1972-10-06 Sbaraglia Goffredo
FR2223513A1 (en) * 1973-03-30 1974-10-25 Socea Tunnel made from prefabricated sections - has roof slab supported on shoulders extending from upper face of walls

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880334A (en) * 1988-04-11 1989-11-14 Finic, B.V. Tunnel construction apparatus and method
ES2052433A2 (es) * 1992-02-13 1994-07-01 Codelfa Prefabbricati S P A Sistema para la construccion de galerias artificiales con elementos prefabricados de hormigon.
US6234716B1 (en) * 1995-11-17 2001-05-22 Carlo Chiaves Underground structural work including prefabricated elements associated with piles and a process for its production
FR2843977A1 (fr) * 2002-08-28 2004-03-05 Conseil Service Investissement Procede de realisation d'une plate-forme enjambant une tranchee au moyen de longerons prefabriques
WO2012177143A2 (fr) 2011-06-21 2012-12-27 Stabinor As Procédé de construction d'un revêtement de tunnel et élément de structure à utiliser dans le procédé
CN112576260A (zh) * 2020-12-14 2021-03-30 中铁二院工程集团有限责任公司 拱盖法进洞施工方法以及拱盖法进洞支护结构
CN112576259A (zh) * 2020-12-14 2021-03-30 中铁二院工程集团有限责任公司 拱盖法车站从主体进附属施工方法及结构
CN112576259B (zh) * 2020-12-14 2022-04-15 中铁二院工程集团有限责任公司 拱盖法车站从主体进附属施工方法及结构

Also Published As

Publication number Publication date
FR2578904A1 (fr) 1986-09-19
DE3660969D1 (en) 1988-11-24
DE197021T1 (de) 1987-01-15
EP0197021B1 (fr) 1988-10-19
FR2578904B1 (fr) 1987-07-03

Similar Documents

Publication Publication Date Title
EP0180667B1 (fr) Perfectionnement à des modules préfabriqués et leur utilisation dans le bâtiment
EP1101871B1 (fr) Tablier de pont métallique et procédé de construction d'un pont comportant un tel tablier
EP0463925B1 (fr) Procédé de réalisation, à flanc de montagne, d'une structure semi-enterrée et structure ainsi réalisée
EP0489054B1 (fr) Structures cellulaires pour murs de soutenement
EP0060230A1 (fr) Structure portante en congloméré ou en béton armé, en particulier antisismique, pour des constructions planes, ainsi que pour des voûtes ou des arcs, obtenue au moyen d'éléments modulaires
EP0102340A2 (fr) Procédé de réalisation d'ouvrages en béton armé tels que galeries souterraines, tunnels routiers, etc.; éléments en béton préfabriqués pour la réalisation de tels ouvrages
EP0197021B1 (fr) Procédé pour la réalisation d'un tunnel
FR2612988A1 (fr) Structure de tunnel pour recouvrir une voie routiere ou ferroviaire encaissee
EP0560660B1 (fr) Perfectionnements aux parkings souterrains ou analogues à étages multiples et à leurs procédés de construction
EP0242497B1 (fr) Procédé pour la construction de tunnels
BE1001360A3 (fr) Pont semi-prefabrique.
FR2672937A1 (fr) Structure tubulaire enterree et son procede de realisation.
CH434335A (fr) Procédé de construction d'un passage sous voie et installation pour la mise en oeuvre de ce procédé
EP0424223A1 (fr) Procédé permettant la construction rapide de deux routes superposées, en un ouvrage posé sur la chaussée existante, sans neutraliser la circulation
FR2824851A1 (fr) Appui de pont prefabrique
FR2558868A1 (fr) Procede de construction de parois de batiments ou autres murs, et element de coffrage pour sa mise en oeuvre
EP1211355A1 (fr) Mur de soubassement pour une construction et procédé de réalisation d'un tel mur
FR2774106A1 (fr) Dispositif de protection routiere et procede de realisation d'un tel dispositif
EP0321321B1 (fr) Bâtiment à éléments préfabriqués
EP1119663B1 (fr) Ouvrage tubulaire
EP0004998A2 (fr) Ossature de construction
FR2610339A1 (fr) Procede de realisation de soubassements d'immeubles et moyens pour mettre en oeuvre ledit procede
FR2839990A1 (fr) Ouvrage d'art prefabrique et procede de mise en place de l'ouvrage d'art
WO2007104838A1 (fr) Ouvrage de passage couvert
FR2637306A1 (fr) Element de construction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR

17P Request for examination filed

Effective date: 19860919

R17P Request for examination filed (corrected)

Effective date: 19860919

DET De: translation of patent claims
17Q First examination report despatched

Effective date: 19871201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR

REF Corresponds to:

Ref document number: 3660969

Country of ref document: DE

Date of ref document: 19881124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900313

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910228

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910515

Year of fee payment: 6

BERE Be: lapsed

Owner name: S.A. ENTREPRISES KOECKELBERG

Effective date: 19910331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST