EP0195926B1 - Système à aimants supraconducteurs pour accélérateur de particules pour source de radiation synchrotron - Google Patents

Système à aimants supraconducteurs pour accélérateur de particules pour source de radiation synchrotron Download PDF

Info

Publication number
EP0195926B1
EP0195926B1 EP86102069A EP86102069A EP0195926B1 EP 0195926 B1 EP0195926 B1 EP 0195926B1 EP 86102069 A EP86102069 A EP 86102069A EP 86102069 A EP86102069 A EP 86102069A EP 0195926 B1 EP0195926 B1 EP 0195926B1
Authority
EP
European Patent Office
Prior art keywords
magnet system
winding
superconducting
slot
stressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86102069A
Other languages
German (de)
English (en)
Other versions
EP0195926A3 (en
EP0195926A2 (fr
Inventor
Cord-Henrich Dr. Dipl.-Phys. Dustmann
Hubert Dr.Dipl.-Phys. Keiber
Bernd Dr.Dipl.-Phys. Krevet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASEA BROWN BOVERI AKTIENGESELLSCHAFT
Forschungszentrum Karlsruhe GmbH
Original Assignee
ASEA BROWN BOVERI AG
Kernforschungszentrum Karlsruhe GmbH
Asea Brown Boveri AG Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6266590&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0195926(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ASEA BROWN BOVERI AG, Kernforschungszentrum Karlsruhe GmbH, Asea Brown Boveri AG Germany filed Critical ASEA BROWN BOVERI AG
Priority to AT86102069T priority Critical patent/ATE49839T1/de
Publication of EP0195926A2 publication Critical patent/EP0195926A2/fr
Publication of EP0195926A3 publication Critical patent/EP0195926A3/de
Application granted granted Critical
Publication of EP0195926B1 publication Critical patent/EP0195926B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils

Definitions

  • the invention relates to a superconducting magnet system for particle accelerators of a synchrotron radiation source with a slot lying approximately in the plane of the particle path, tangentially or radially open for the exit of the synchrotron radiation and with a mechanical support device for the superconducting winding.
  • Such a magnet system is known from DE-OS 31 48 100 and from "Nuclear Instruments and Methods", Vol. 200, 1982, p. 475 to p. 479.
  • the coil configuration used in the known magnet system has a right-angled winding cross section and enables the tangential radiation exit.
  • the energy stored in the magnetic field is higher for such configurations than with a comparable shell arrangement.
  • This high stored energy must in the case of quenching, i. H. in the event of an unwanted transition from the superconducting to the normally conducting phase, be decoupled from the coil in order to prevent destruction of the coil due to the strong heating and the associated mechanical stresses.
  • the coil configuration mentioned requires a comparatively large amount of conductor material in order to implement the required magnetic field.
  • Superconducting deflection magnets are also used in the construction of large ring accelerators (e.g. HERA).
  • HERA large ring accelerators
  • G. Horlitz et al Superconducting Prototype Dipole Coils for HERA and
  • Alternatives and Improvements for Superconducting Dipole Coils for HERA Journal de Physique, Colloque C1, supplement au n ° 1, Tome 45, January 1984, pages C1- Essential details of these magnets are described in 255 to C1-262
  • the coil configuration used here has a shell-shaped winding cross section and an essentially cos 0-shaped current distribution The current distribution is designed for generating a dipole field within the winding arrangement.
  • the key element of this configuration is a clip that biases the superconducting coil.
  • the basic idea of the pretensioning principle is to compress the coil package so far by clamp elements in the de-energized state that the superconducting winding is supported with the rigidity of the clamp element when the coil is fully excited. This is necessary to prevent a conductor movement and thus a quench.
  • a bowl-shaped coil configuration with clamp elements does not allow the synchrotron radiation to exit tangentially with respect to the particle path curvature, since the particle path is surrounded on all sides by a vacuum tube and the surrounding coil arrangement with clamp elements.
  • the invention is based on the object of specifying a superconducting magnet system of the type mentioned at the outset, which has a low magnetic energy content, requires little conductor material and, when it is designed, an unfavorable vacuum pressure impregnation with regard to the training behavior can be avoided.
  • the at least one clamp element can form a structural unit with at least one tensioning element, which supports the superconducting winding in the region of the slot.
  • the clamp elements and the clamping elements will be separate, non-positively connected components.
  • the superconducting winding has a shell structure in which the coil is made from several concentric cylindrical shells. 0 winding packs are accommodated within each shell between two azimuth angles.
  • the advantage of this configuration is the low magnetic energy compared to the rectangular winding configuration.
  • the superconducting winding is designed as a block structure.
  • a block structure which is suitable in principle is given in H. Brechna: “Superconducting Magnet Systems” Springer Verlag, Berlin, Heidelberg, New York (1973) page 40, Fig. 2.1.6a.
  • the tensioning element can advantageously be hook-shaped, wherein it supports the superconducting winding in the region of the slot with a first leg and is suspended in the bracket, which essentially comprises the entire winding arrangement, with a second leg.
  • tensioning element can be seen in the fact that its cross section is U-shaped.
  • the inside of the base leg supports the winding parts directed towards the slot, and the two free legs are braced with the clamp and apply the required pressure force.
  • Pull bolts can be attached to the free leg ends for tensioning.
  • U-shaped clamping element with a further leg, which partially supplements the U-profile to form a W-profile, but the third free leg is not, or only partially, realized.
  • the second free base leg engages under the winding part, which lies in the plane of the curved particle path and on the side of the path center of curvature.
  • the tensioning element is designed in such a way that, when the magnetic field is switched on, it can absorb the attractive forces of the opposing coil halves directed towards the particle path plane and at the same time transmits the required pretension to the winding parts in order to exclude conductor movements.
  • the tensioning elements can preferably be designed such that they are part of the helium container in which the superconducting coil is located, in addition to the transmission of the prestress. Material can be saved in this way, in particular in the area of the slot, which simplifies the structural design in the slot area.
  • the clamp elements and / or the tensioning elements are preferably made of non-magnetic material, e.g. B. non-magnetic steel.
  • the magnet system can also be advantageous for the magnet system to design the clamp elements and / or the clamping elements as a magnetic yoke.
  • a laminated design of the clamp elements and / or clamping elements is preferable.
  • the clamp elements and the clamping elements can be designed as a solid yoke.
  • a structural unit of clamping elements and cryocontainer is particularly advantageous here.
  • the slot width and the arrangement of the windings are preferably matched to one another in such a way that, in addition to the dipole field, a quadrupole field, which has a focusing influence on the particle beam, is generated in the particle channel.
  • the slot can be enlarged by an optimization in this regard, so that more space is available for the clamping elements.
  • the superconducting winding is designed as a helium-transparent winding, i. that is, the insulation is designed so that helium can penetrate the winding between the conductors and cause intensive conductor cooling.
  • the superconducting winding 12 is made from several concentric cylindrical shells 13. Within each shell 13 there are 0 winding packages between two azimuth angles. There is non-magnetic filling material 14 between the winding packages, which consist of individual conductors running perpendicular to the plane of the representation.
  • This winding configuration results in an essentially cos e-shaped current distribution and is suitable for generating a dipole field. It has the advantage of lower magnetic energy compared to a rectangular winding configuration.
  • Electrons that move along the particle channel 11, which runs perpendicular to the plane of the illustration, are deflected as a result of the Lorentz force and forced onto a circular path 19. They emit synchrotron radiation tangentially to the outside (to the left in FIG. 1). The synchrotron radiation can emerge laterally from the particle channel 11 through a slot 15 and is available for physical experiments or technical applications.
  • the clamp elements 16 consist of punched magnetic sheets which are stacked to form a magnetic yoke.
  • the magnetic yoke has the shape of a circular curved cylinder composed of two halves, which forms a 90 ° arc.
  • sheets of different dimensions are required, between which there are spaces 17 which are filled with the cooling medium helium.
  • wedge-shaped stamped sheets can also be used. are used, but these are much more expensive to produce than sheets of the same material, as shown.
  • the sheets are welded together to form a unit.
  • the two yoke halves are connected to one another by tie rods 18. Due to the tension force of the tie rods 18, which can be applied with the aid of hydraulic pressing devices, the pressure required to pretension the superconducting winding 12 is generated.
  • the superconducting winding 12 is supported by tensioning elements 20.
  • the tensioning elements 20 are also laminated and complement the yoke effect of the clamp elements 16.
  • the tensioning elements 20 are essentially U-shaped.
  • One free leg 21 engages under the free part 22 of the winding 12 facing the slot 15 with a shell-shaped winding cross section 13.
  • the other free leg 23 engages behind a step-shaped recess 24 in the clamp element 16.
  • the tensioning elements 30 are prestressed. In doing so, they fulfill their task of transferring the forces of the coil to the yoke.
  • the superconducting winding 12, the clamp elements 16 and the tensioning elements 20 are surrounded by a container wall 25, within which there is liquid helium.
  • the particle channel 11, the slot 15 and the area outside the container wall 25 are evacuated.
  • the external cold shields and the outer vacuum jacket were not shown in FIG. 1.
  • the legs 21 of the clamping elements 20 facing the slot 15 are welded to the container wall 25. They thus serve to stiffen the container wall 25 in the area of the slot 15.
  • An insulation layer 26 is arranged between the winding 12 and the clamp elements 16, the thickness of which is selected on the basis of magnetic field calculations so that the homogeneity of the field in the particle channel 11 is not impaired by saturation phenomena in the material of the clamp elements 16 or the clamping elements 20.
  • the insulation layer 26 is a non-magnetic intermediate material, for example made of filled plastic.
  • FIG. 3 shows a further embodiment of the invention, the same or corresponding parts being given the same reference numbers as those from FIGS. 1 and 2.
  • the superconducting winding 12 is comparable to that shown in FIG. 1. It encloses a particle channel 11.
  • the individual winding packets 12 are separated from one another by non-magnetic filler pieces 14.
  • the winding 12 is surrounded by an insulation layer 26, the design of which is subject to the same requirements as were explained in the description of FIGS. 1 and 2.
  • the winding with the shell structure 13 is surrounded by a two-part clamp element 30 made of non-magnetic material, the two parts of which are connected to one another by tie rods 31.
  • the outer shape of the clamp element 30 essentially resembles a circular ring section with a rectangular cross section. It can be z. B. a 1/4 circle, as shown in Fig. 2, or a semicircle of the ring.
  • tensioning elements 33 which are arranged symmetrically with respect to the slot 32 and are made of non-magnetic material with an essentially W-shaped cross section.
  • the clamping elements 33 are turned parts, the axis of rotation of which coincides with the center of curvature of the particle track 19.
  • Draw studs 37 are welded to the outer free leg 34 and the middle free leg 35 of the W profile, by means of which the tensioning element 33 is connected and clamped to the clamp element 30.
  • the base leg 36 lying between the free legs 34 and 35 is pressed against the winding parts 38 directed towards the slot 32, so that the required pretensioning on the superconducting winding 12 is transmitted.
  • the cross section of the tensioning element 33 has a further free leg 39, by means of which the tensioning element cross section is approximately supplemented into a W-shape, the third free leg 39, which is located with respect to the particle path 19, not being formed symmetrically to the outer free leg 34 , but engages under the part 40 of the winding 12 pointing towards the center of curvature of the particle path 19.
  • the magnet system is surrounded by a container wall 41, in the interior of which the cooling medium is enclosed.
  • the container wall 41 is welded to the clamping elements 33, so that the clamping elements also serve as part of the cryogenic jacket here. 3, external cold shields and the vacuum jacket are also not shown.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Particle Accelerators (AREA)

Claims (11)

1. Système d'aimant supraconducteur pour accélérateur de particules d'une source de rayonnement synchrotron, comportant une fente, située sensiblement dans le plan de trajectoire des particules et ouverte tangentiellement ou radialement, pour la sortie du rayonnement synchrotron, et un dispositif d'appui mécanique pour l'enroulement supraconducteur, caractérisé par le fait que le système d'aimant comprend un agencement d'enroulement entourant la trajectoire des particules et ayant une répartition de courant de la forme cos 0, 0 étant l'angle d'azimut, et par le fait que l'enroulement supraconducteur (12) est précontraint par au moins un élément de bridage (16, 30) et, dans la région de la fente (15, 32), par des éléments de serrage (20, 33) coopérant avec l'élément de bridage (16, 30).
2. Système d'aimant selon la revendication 1, caractérisé par le fait que l'enroulement supraconducteur (12) présente une structure de coquille (13) ou une structure de bloc.
3. Système d'aimant selon la revendication 1 ou 2, caractérisé par le fait qu'au moins un élément de serrage (20) est fixé à au moins un élément de bridage (16) et présente une aile saillante (21) qui s'engage dans la région de la fente (15) et fournit un appui aux parties d'enroulement (22) situées dans la région de la fente (15).
4. Système d'aimant selon la revendication 3, caractérisé par le fait que l'élément de serrage (20) est sensiblement en forme de U et serre l'un contre l'autre, entre ses deux ailes saillantes (21, 23), l'élément de bridage (16) et les parties (22) de l'enroulement supraconducteur (12) tournées vers la fente (15).
5. Système d'aimant selon la revendication 1 ou 2, caractérisé par le fait que la section droite de l'élément de serrage (33) est sensiblement en forme de U, et par le fait que l'aile de base (36) de l'élément de serrage (33) passe dans la région de la fente (32) et, par sa partie intérieure, est appuyée contre les parties d'enroulement (38) dirigées vers la fente (32), les deux ailes saillantes (34, 35) étant serrées par l'élément de bridage (30).
6. Système d'aimant selon la revendication 5, caractérisé par le fait que le serrage de l'élément de serrage (33) s'effectue par des tirants (37) agencés aux extrémités saillantes des ailes (34, 35).
7. Système d'aimant selon la revendication 5 ou 6, caractérisé par le fait que l'élément de serrage (33) présente une autre aile (39) correspondant à l'aide de base (36) et soutenant les parties (40) de l'enroulement supraconducteur (12) qui, par rapport à la trajectoire (19) des particules, sont à l'opposé des parties d'enroulement situées à la fente (32).
8. Système d'aimant selon l'une des revendications 1 à 7, caractérisé par le fait que les éléments de serrage (20, 33) font partie d'un récipient d'hélium (25, 41) de l'enroulement supraconducteur (12).
9. Système d'aimant selon l'une des revendications 1 à 8, caractérisé par le fait que les éléments de bridage (16, 30) et/ou les éléments de serrage (20, 33) sont réalisés en tant que culasse magnétique.
10. Système d'aimant selon l'une des revendications 1 à 9, caractérisé par le fait que la largeur de la fente et l'agencement des enroulements supraconducteurs (12) sont mutuellement harmonisés de manière à produire dans le canal (11) des particules, en plus du champ dipolaire, un champ quadripolaire ayant une influence focalisante sur le faisceau de particules.
EP86102069A 1985-03-28 1986-02-18 Système à aimants supraconducteurs pour accélérateur de particules pour source de radiation synchrotron Expired - Lifetime EP0195926B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86102069T ATE49839T1 (de) 1985-03-28 1986-02-18 Supraleitendes magnetsystem fuer teilchenbeschleuniger einer synchrotonstrahlungsquelle.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3511282 1985-03-28
DE3511282A DE3511282C1 (de) 1985-03-28 1985-03-28 Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle

Publications (3)

Publication Number Publication Date
EP0195926A2 EP0195926A2 (fr) 1986-10-01
EP0195926A3 EP0195926A3 (en) 1987-12-16
EP0195926B1 true EP0195926B1 (fr) 1990-01-24

Family

ID=6266590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86102069A Expired - Lifetime EP0195926B1 (fr) 1985-03-28 1986-02-18 Système à aimants supraconducteurs pour accélérateur de particules pour source de radiation synchrotron

Country Status (5)

Country Link
US (1) US4745367A (fr)
EP (1) EP0195926B1 (fr)
JP (1) JPS61227400A (fr)
AT (1) ATE49839T1 (fr)
DE (2) DE3511282C1 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737727A (en) * 1986-02-12 1988-04-12 Mitsubishi Denki Kabushiki Kaisha Charged beam apparatus
EP0277521B1 (fr) * 1987-01-28 1991-11-06 Siemens Aktiengesellschaft Source de radiation synchrotron avec fixation de ses bobines courbées
DE3786158D1 (de) * 1987-01-28 1993-07-15 Siemens Ag Magneteinrichtung mit gekruemmten spulenwicklungen.
DE3842792A1 (de) * 1988-12-20 1990-06-28 Kernforschungsz Karlsruhe Teilchenfuehrungsmagnet zur fuehrung elektrisch geladener teilchen
JPH0782933B2 (ja) * 1989-01-19 1995-09-06 新技術事業団 超電導マグネット
WO1993002537A1 (fr) * 1991-07-16 1993-02-04 Sergei Nikolaevich Lapitsky Electro-aimant supraconducteur pour accellerateur de particules porteuses de charge
US5374913A (en) * 1991-12-13 1994-12-20 Houston Advanced Research Center Twin-bore flux pipe dipole magnet
US5463291A (en) * 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
US6664666B2 (en) * 1998-12-23 2003-12-16 Engineering Matters, Inc. Motor assembly allowing output in multiple degrees of freedom
CA2574122A1 (fr) * 2004-07-21 2006-02-02 Still River Systems, Inc. Generateur de forme d'ondes a radiofrequences programmable pour un synchrocyclotron
EP2389983B1 (fr) 2005-11-18 2016-05-25 Mevion Medical Systems, Inc. Radiothérapie à particules chargées
JP2009524201A (ja) * 2006-01-19 2009-06-25 マサチューセッツ・インスティテュート・オブ・テクノロジー 高磁場超伝導シンクロサイクロトロン
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) * 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
JP5524494B2 (ja) * 2009-03-09 2014-06-18 学校法人早稲田大学 磁場形成装置及びこれを用いた粒子加速器
TW201438787A (zh) 2012-09-28 2014-10-16 Mevion Medical Systems Inc 控制粒子治療
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
CN108770178B (zh) 2012-09-28 2021-04-16 迈胜医疗设备有限公司 磁场再生器
ES2739830T3 (es) 2012-09-28 2020-02-04 Mevion Medical Systems Inc Ajuste de energía de un haz de partículas
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
CN104813748B (zh) 2012-09-28 2019-07-09 梅维昂医疗系统股份有限公司 聚焦粒子束
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
WO2014052709A2 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Contrôle de l'intensité d'un faisceau de particules
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN105764567B (zh) 2013-09-27 2019-08-09 梅维昂医疗系统股份有限公司 粒子束扫描
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
CN109803723B (zh) 2016-07-08 2021-05-14 迈胜医疗设备有限公司 一种粒子疗法系统
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
JP7311620B2 (ja) 2019-03-08 2023-07-19 メビオン・メディカル・システムズ・インコーポレーテッド 粒子線治療システムのためのコリメータおよびエネルギーデグレーダ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128405A (en) * 1962-07-31 1964-04-07 Glen R Lambertson Extractor for high energy charged particles
US3303426A (en) * 1964-03-11 1967-02-07 Richard A Beth Strong focusing of high energy particles in a synchrotron storage ring
GB1329412A (en) * 1969-09-18 1973-09-05 Science Res Council Electrical coils for generating magnetic fields
DE2446716C3 (de) * 1974-09-30 1980-01-24 Siemens Ag, 1000 Berlin Und 8000 Muenchen Haltevorrichtung für ein mit Zugankern innerhalb eines Vakuumgehäuses befestigtes Wicklungsgehäuse
US4038622A (en) * 1976-04-13 1977-07-26 The United States Of America As Represented By The United States Energy Research And Development Administration Superconducting dipole electromagnet
DE3148100A1 (de) * 1981-12-04 1983-06-09 Uwe Hanno Dr. 8050 Freising Trinks "synchrotron-roentgenstrahlungsquelle"
GB8421867D0 (en) * 1984-08-29 1984-10-03 Oxford Instr Ltd Devices for accelerating electrons
US4641057A (en) * 1985-01-23 1987-02-03 Board Of Trustees Operating Michigan State University Superconducting synchrocyclotron

Also Published As

Publication number Publication date
US4745367A (en) 1988-05-17
DE3668525D1 (de) 1990-03-01
JPS61227400A (ja) 1986-10-09
EP0195926A3 (en) 1987-12-16
ATE49839T1 (de) 1990-02-15
DE3511282C1 (de) 1986-08-21
EP0195926A2 (fr) 1986-10-01

Similar Documents

Publication Publication Date Title
EP0195926B1 (fr) Système à aimants supraconducteurs pour accélérateur de particules pour source de radiation synchrotron
EP0193837B1 (fr) Générateur de champ magnétique pour système d'accélération de particules
DE3928037C2 (de) Vorrichtung zum Beschleunigen und Speichern von geladenen Teilchen
DE3853507T2 (de) Ablenkmagnet.
EP0208163B1 (fr) Dispositif à champ magnétique pour un appareil d'accélération et/ou de stockage de particules chargées
EP0348403B1 (fr) Systeme de deflexion magnetique pour particules chargees
DE3530446C2 (fr)
EP0276360B1 (fr) Dispositif magnétique à bobines courbées
EP0277521B1 (fr) Source de radiation synchrotron avec fixation de ses bobines courbées
DE3505281A1 (de) Magnetfelderzeugende einrichtung
DE3506562A1 (de) Magnetfeldeinrichtung fuer eine teilchenbeschleuniger-anlage
DE4000666A1 (de) Elektromagnet fuer teilchenbeschleuniger
DE1298646B (de) Permanentmagnetisches Fokussierungssystem zur Erzeugung eines wenigstens angenaehert homogenen Magnetfeldes fuer die gebuendelte Fuehrung eines Elektronenstrahls ueber eine groessere Wegstrecke, insbesondere fuer Wanderfeldroehren
DE102015115347A1 (de) Magnetanordnung für einen elektrischen Motor
DE102006056052A1 (de) Planar-helischer Undulator
DE10147129A1 (de) Hochspannungstransformatorwicklung und Verfahren zur Herstellung
EP0538556A1 (fr) Accélerateur électromagnétique avec des bobines en configuration plane
DE2255273C2 (de) Magnetisches Ablenkjoch zum Parallelausrichten der divergierenden Strahlen eines Strahlenbündels elektrisch geladener Teilchen, insbesondere bei einem Elektronenbeschleuniger
DE102014213276A1 (de) Linearantrieb mit hoher Kraftdichte
EP2082626B1 (fr) Betatron comprenant un bloc accelerateur amovible
EP0185955A1 (fr) Procédé pour fabriquer une bobine magnétique en forme de disque cambré et dispositifs pour exécuter ce procédé
DE3027605A1 (de) Vorrichtung zur uebertragung grosser kraefte
DE1098625B (de) Magnetisches Buendelungssystem zur gebuendelten Fuehrung einer (mehrerer) Elektronenstroemung (en) mittels eines homogenen Magnetfeldes laengs einer groesseren Wegstrecke, insbesondere fuer Wanderfeldroehren
DE2800750A1 (de) Eisenkern fuer einen hochspannungstransformator niedriger leistung
EP2082624B1 (fr) Betatron a rayon orbital variable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880412

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

Owner name: ASEA BROWN BOVERI AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19890705

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 49839

Country of ref document: AT

Date of ref document: 19900215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3668525

Country of ref document: DE

Date of ref document: 19900301

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19901024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901221

Year of fee payment: 6

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AKTIENGESELLSCHAFT

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911206

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911209

Year of fee payment: 7

Ref country code: FR

Payment date: 19911209

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911210

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920229

Year of fee payment: 7

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930218

Ref country code: AT

Effective date: 19930218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930228

Ref country code: CH

Effective date: 19930228

NLR2 Nl: decision of opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930218

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86102069.1

Effective date: 19930912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050218