EP0188976B1 - Cryostat à dilution - Google Patents

Cryostat à dilution Download PDF

Info

Publication number
EP0188976B1
EP0188976B1 EP19850420228 EP85420228A EP0188976B1 EP 0188976 B1 EP0188976 B1 EP 0188976B1 EP 19850420228 EP19850420228 EP 19850420228 EP 85420228 A EP85420228 A EP 85420228A EP 0188976 B1 EP0188976 B1 EP 0188976B1
Authority
EP
European Patent Office
Prior art keywords
dilution
circuit
evaporator
enclosure
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850420228
Other languages
German (de)
English (en)
Other versions
EP0188976A1 (fr
Inventor
Alain Daniel Benoit
Serge Pujol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0188976A1 publication Critical patent/EP0188976A1/fr
Application granted granted Critical
Publication of EP0188976B1 publication Critical patent/EP0188976B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/12Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0518Semiconductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Definitions

  • the invention relates to dilution cryostats according to the first part of claim 1, that is to say to devices or installations for achieving very low temperatures, of the order of 1 Kelvin.
  • the invention relates to apparatuses of the above type which can be used for laboratory research purposes, or even for industrial purposes, for example for the analysis of the physical properties of various materials or, more particularly, of materials. superconductors.
  • the invention relates, more specifically, to devices or installations making it possible to reach very low temperatures, less than 1 Kelvin.
  • Dilution cryostats can be classified into two categories.
  • this cold point is formed either by a wall of the dilution chamber, or by the latter which is arranged in a sealed enclosure.
  • the operating principle of these cryostats consists of introducing helium in the gaseous phase into the sealed enclosure, in order to perform precooling prior to the subsequent operating mode in dilution.
  • An embodiment of this type is provided by the publication EP-A-0 015 728.
  • the second category relates to dilution apparatus comprising, in order to remedy the above drawbacks, a sample changer placed in relation to the cold point, as may be considered on the basis of the publication DE-A-2 744 346.
  • a sample changer placed in relation to the cold point, as may be considered on the basis of the publication DE-A-2 744 346.
  • the object of the invention is to remedy the above drawbacks by proposing a new dilution cryostat designed to allow rapid commissioning, from the sole components of said device or installation, as well as access quick to change the sample.
  • the single figure is a schematic view illustrating the structure of the dilution cryostat according to the invention.
  • the dilution cryostat according to the invention comprises a suspension framework 1 to which is suspended a first precooling stage 2 under which is fixed a second precooling stage 3 associated with a suspended dilution unit 4.
  • the frame 1 mainly comprises a plate 5 under which a sealed enclosure 6 is fitted, by means of a removable seal 7.
  • the assembly makes it possible to isolate the internal volume which can be evacuated using the pump 8 and the valve 9.
  • the first precooling stage 2 comprises an exchange plate 10 made of a metal having very good thermal conductivity characteristics and, for example, of copper.
  • the plate 10 is suspended from the plate 5 by the pumping tubes described below and having a low thermal conductivity.
  • the plate 10 is extended downwards by a removable enclosure 11 with a closed bottom.
  • This enclosure constructed of a conductive material, such as copper or aluminum, is not waterproof and only serves as a barrier to thermal radiation.
  • the first precooling stage 2 comprises an evaporator 16 carried by the exchange plate 10.
  • the evaporator 16 is connected to an evacuation pipe 17 controlled by a valve 18.
  • the evaporator 16 is also connected to its inlet , via a line 19, to a reservoir 20 of a cryogenic liquid, such as liquid nitrogen.
  • the reservoir 20 is enclosed in a sealed compartment 21.
  • the reservoir 20 is placed in charge with respect to the evaporator 16.
  • the pipe 17 is responsible for discharging, in the open air, the vaporized nitrogen.
  • the precooling plate 10 also supports an exchanger-condenser 22 with two independent circuits, the function of which appears in the following.
  • the second precooling stage 3 comprises an exchange plate 23 which is suspended from the plate 10 by the pumping and circulation tubes described below and having a low thermal conductivity.
  • the plate 23 is made of a metal which is a very good conductor of heat and, for example, of copper.
  • the plate 23 is extended downwards by a removable enclosure 24, with a closed bottom. This enclosure, constructed of a conductive material, such as copper or aluminum, is not waterproof and only serves as a barrier to thermal radiation.
  • the plate 23 supports an evaporator 29 comprising a discharge line 30 passing through the plate 10 and the plate 5 and comprising, outside the latter, a valve 31 placed upstream of an extraction pump 32.
  • the evaporator 29 is connected, by a pipe 33 including a valve 34, to a tank 35 containing a cryogenic product, such as liquid helium.
  • the tank 35 is enclosed in the sealed compartment 21.
  • a screen 36 connected to the liquid nitrogen tank 20, protects it from thermal radiation.
  • the pipes 17, 19 and 33 pass through the plate 5 by a thermal insulation sheath formed by the compartment 21.
  • the plate 23 also supports an exchanger-condenser 37 with two independent internal circuits, the function of which appears in the following.
  • the dilution unit 4 comprises, according to the invention, a main evaporator-distiller 40, suspended from the plate 23 by a main pumping circuit 41 rising vertically and passing through the plates 10 and 5 successively.
  • the main evaporator-distiller 40 is connected at its base by a pipe 43 to a dilution chamber 44 constituting the cold point of the dilution unit 4.
  • the dilution chamber 44 is shaped so that its bottom represents a fixing support of a sample 45 to be analyzed.
  • the main pumping circuit 41 comprises a pump 46, the outlet of which is connected, by a valve 47, to a main discharge circuit 48 constituted by a small section pipe passing through the exchanger-condenser 22 and 37.
  • the circuit 48 comprises, at beyond the exchanger-condenser 37, an expansion restrictor 49 beyond which it passes through an exchanger 50 placed in relation to the main evaporator-distiller 40.
  • the circuit 48 includes a second expansion restrictor 51 beyond which it passes through an exchanger 52 concentrically surrounding the tube 43 The circuit 48 then opens into the upper part of the dilution chamber 44.
  • the dilution cryostat further comprises a bypass pumping circuit 53 comprising an evaporator-distiller 54 suspended from the plate 23 by a column 55 also passing through the plates 10 and 5.
  • the column 55 is controlled by a valve 57 at the -from which it is connected to the main circuit 41.
  • the evaporator 54 is connected, by a pipe 56, to the dilution chamber 44.
  • the dilution cryostat further comprises a branched discharge circuit 58 also connected to the outlet of the pump 46 by a valve 59.
  • the circuit 58 passes through the exchanger-condenser 22, then the exchanger-condenser 37 beyond which it is connected to column 55 in the part of the latter located above the plate 23 of the second precooling stage 3.
  • a reserve 42 containing the quantities of 3 He and 4 He necessary for operation and mixed in gaseous form.
  • a valve 100 allows the reserve to be emptied using the pump 46, a valve 101 allowing the 3 He, 4 He mixture to return to the reserve at the end of use.
  • the structure described above has the advantage of allowing easy installation and removal of the sample 45. In fact, for all these operations, it suffices to establish the normal pressure in the enclosure 6 by the valve 9, then successively dismantle the speakers 6, 11 and 24.
  • the structure of the cryostat is also chosen so that the effective commissioning of the device can take place quickly.
  • the structure of the device is chosen so that the pre-cooling phase is carried out more simply and more quickly than according to the prior art.
  • a pumping and vacuuming phase can occur simultaneously with a precooling which is ensured in the following manner.
  • the valve 18 is open, so that the liquid nitrogen passes by gravity through the evaporator 16, in order to ensure the cooling of the plate 10. Simultaneously, the valves 31 and 34 are open and the pump 32 is turned on. running, so as to create a circulation of helium in the evaporator 29 responsible for cooling the exchange plate 23.
  • the valve 57 is then closed, as is the valve 47, while the valve 59 is, on the contrary, open.
  • the pump 46 is started, so as to discharge the cryogenic mixture extracted from the reserve 42 into the branched discharge circuit 58.
  • the cryogenic mixture in the gas phase is cooled by passing through the exchanger-condenser 22, then from the exchanger-condenser 27, before being introduced into column 55 where it arrives at low temperature.
  • the cold mixture then borrows the pipe 56, crosses the dilution chamber 44 and rises through the main pumping circuit 41, before being recycled by the pump 46.
  • This circulation has the effect of cooling the dilution unit by internal circulation, while the dilution cryostats, of the known type, provide a pre-cooling phase by external circulation of a cryogenic product in the vapor phase, such as helium.
  • valves 47 and 57 are open, while the valve 59 is closed.
  • the pump 46 then delivers cryogenic mixture into the main circuit 48. After being cooled in the exchanger 22, the mixture condenses in the exchanger-condenser 37, before expanding through the restrictors 49 and 51. The liquid thus obtained accumulates in the lower parts of the apparatus until completely filling the mixing chamber 44, then the tube 56, as well as the exchanger 52, finally, partially, the evaporators 40 and 54 where the levels balance .
  • the reserve 42 begins the distillation of the mixture in the two evaporators.
  • the 4 He fraction remains at the bottom of the cryostat and the 3 He fraction is pumped by the pump 46.
  • the pure 3 He fraction thus obtained is then discharged by the valve 47, cooled in the exchanger 22, condensed in the exchanger 37, expanded in 49, further cooled in 50, expanded in 51 and, finally, cooled by the exchanger 52, before diluting in the fraction 4 He contained in the dilution chamber 44 thereby cooling the sample.
  • the 3 He fraction rises to the two evaporators by diffusing into the 4 He fraction, cooling the exchanger 52 in passing and preventing any heat from descending along the tubes 56 and 43.
  • the structure of the dilution cryostat according to the invention makes it possible, using the same cryogenic mixture, to ensure precooling by circulation of the mixture in the gas phase inside the constituent elements of the dilution unit 4, then d '' maintain operation in dilution mode by circulating the same mixture in the liquid phase, switching from one operating mode to another being effected by the control of valves 47, 59 and 57. It thus becomes possible to put into service quickly such an apparatus and thus fully benefit from the advantages of rapid change of samples due to the structure of the removable concentric envelopes 6, 11 and 24. It also becomes possible to apply to the sample 45 all the desired temperature ranges, since this depends only on the circulation mode and not on the temperature of the cryogenic liquid reserves 20 and 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

  • L'invention est relative aux cryostats à dilution selon la première partie de la revendication 1, c'est'-à-dire aux appareils ou installations permettant d'atteindre des températures très basses, de l'ordre de 1 Kelvin.
  • L'invention concerne les appareils du type ci-dessus pouvant être utilisés à des fins de recherche en laboratoire, ou, encore, à des fins industrielles, par exemple pour l'analyse des propriétés physiques de matériaux divers ou, plus particulièrement, de matériaux supraconducteurs.
  • L'invention vise, plus spécialement, les appareils ou installations permettant d'atteindre de très basses températures, inférieures à 1 Kelvin.
  • Les cryostats à dilution peuvent être classés en deux catégories.
  • La première concerne les appareils ou installations dans lesquels l'échantillon devant être analysé est placé en relation avec le point froid. En règle générale, ce point froid est constitué, soit par une paroi de la chambre de dilution, soit par cette dernière qui est disposée dans une enceinte étanche. Le principe de fonctionnement de ces cryostats consiste à introduire de l'hélium en phase gazeuse dans l'enceinte étanche, afin de réaliser un prérefroidissement préalable au mode de fonctionnement ultérieur en dilution. Une réalisation de ce type est fournie par la publication EP-A-0 015 728.
  • La mise en service d'un appareil du type ci-dessus est longue, étant donné que pour chaque échantillon il convient d'ouvrir l'enceinte, d'adapter l'échantillon, de refermer l'enceinte, d'introduire dans cette dernière de l'hélium gazeux, afin d'assurer le prérefroidissement de la chambre de dilution jusqu'à environ 4° Kelvin puis, ensuite, de pomper totalement ce gaz avant d'engager le fonctionnement en mode dilution du mélange cryogénique.
  • Les manipulations longues, voire délicates, devant être conduites pour permettre le montage ou le démontage d'un échantillon à traiter, ainsi que la durée préalable de mise en service, s'opposent à une application industrielle d'un tel type d'appareil.
  • La seconde catégorie concerne des appareils à dilution comportant, dans le but de remédier aux inconvénients ci-dessus, un changeur d'échantillons placé en relation avec le point froid, comme cela peut être considéré sur la base de la publication DE-A-2 744 346. L'existence d'un changeur d'échantillon, s'il permet de faciliter le changement, ne résoud pas le problème du prérefroidissement assuré par le gaz d'échange en phase gazeuse dans l'enceinte entourant la chambre de dilution.
  • L'objet de l'invention est de remédier aux inconvénients ci-dessus en proposant un nouveau cryostat à dilution conçu pour permettre une mise en service rapide, à partir des seuls éléments constitutifs dudit appareil ou de l'installation, ainsi qu'un accès rapide pour le changement de l'échantillon.
  • Pour atteindre les buts ci-dessus, l'objet de l'invention se caractérise en ce qu il comprend:
    • - un circuit de pompage dérivé comportant un évaporateur placé entre la chambre de dilution et le second étage de prérefroidissement et une vanne placée entre la chambre de dilution et la pompe de circulation,
    • - et un circuit de refoulement dérivé contrôlé au-delà de la pompe par une vanne d'admission passant par les premier et second étages et aboutissant dans le circuit de pompage dérivé en aval de l'évaporateur par rapport à la chambre de dilution.
  • Diversesautres caractéristiques ressortent de la description faite ci-dessous en référence au dessin annexé qui montre, à titre d'exemple non limitatif, une forme de réalisation de l'objet de l'invention.
  • La figure unique est une vue schématique illustrant la structure du cryostat à dilution selon t'invention.
  • Le cryostat à dilution selon l'invention comprend une ossature de suspension 1 à laquelle est suspendu un premier étage de prérefroidissement 2 sous lequel est fixé un second étage de prérefroidissement 3 associé à une unité de dilution suspendue 4.
  • L'ossature 1 comprend, principalement, une platine 5 sous laquelle s'adapte une enceinte étanche 6, par l'intermédiaire d'un joint démontable 7.
  • L'ensemble permet d'isoler le volume interne que l'on peut mettre sous vide à l'aide de la pompe 8 et la vanne 9.
  • Le premier étage de prérefroidissement 2 comprend une platine d'échange 10 réalisée en un métal présentant de très bonnes caractéristiques de conductibilité thermique et, par exemple, en cuivre. La platine 10 est suspendue à la platine 5 par les tubes de pompage décrits ci-après et présentant une faible conductivité thermique.
  • La platine 10 est prolongée vers le bas par une enceinte démontable 11 à fond fermé. Cette enceinte, construite en un matériau conducteur, tel que cuivre ou aluminium, n'est pas étanche et sert uniquement de barrière aux radiations thermiques.
  • Le premier étage de prérefroidissement 2 comporte un évaporateur 16 porté par la platine d'échange 10. L'évaporateur 16 est relié à une conduite d'évacuation 17 contrôlée par une vanne 18. L'évaporateur 16 est raccordé, également, à son entrée, par une canalisation 19, à un réservoir 20 d'un liquide cryogénique, tel que de l'azote liquide. Le réservoir 20 est enfermé dans un compartiment 21 étanche. Le réservoir 20 est placé en charge par rapport à l'évaporateur 16. La canalisation 17 est chargée d'évacuer, à l'air libre, l'azote vaporisé.
  • La platine de prérefroidissement 10 supporte, par ailleurs, un échangeur-condenseur 22 à deux circuits indépendants, dont la fonction apparaît dans ce qui suit.
  • Le second étage de prérefroidissement 3 comprend une platine d'échange 23 qui est suspendue à la platine 10 par les tubes de pompage et de circulation décrits ci-après et présentant une faible conductivité thermique. La platine 23 est réalisée en un métal très bon conducteur de la chaleur et, par exemple, en cuivre. La platine 23 est prolongée vers le bas par une enceinte démontable 24, à fond fermé. Cette enceinte, construite en un matériau conducteur, tel que cuivre ou aluminium, n'est pas étanche et sert uniquement de barrière aux radiations thermiques.
  • La platine 23 supporte un évaporateur 29 comprenant une canalisation de refoulement 30 traversant la platine 10 et la platine 5 et comportant, à l'extérieur de cette dernière, une vanne 31 placée en amont d'une pompe d'extraction 32. L'évaporateur 29 est raccordé, par une canalisation 33 incluant une vanne 34, à un réservoir 35 contenant un produit cryogénique, tel que de l'hélium liquide. Le réservoir 35 est enfermé dans le compartiment étanche 21. Un écran 36, relié au réservoir d'azote liquide 20, le protège des radiations thermiques.
  • Les canalisations 17, 19 et 33 traversent la platine 5 par une gaine d'isolation thermique formée par le compartiment 21.
  • La platine 23 supporte, également, un échangeur-condenseur 37 à deux circuits internes indépendants, dont la fonction apparaît dans ce qui suit.
  • L'unité de dilution 4 comprend, selon l'invention, un évaporateur-distillateur 40 principal, suspendu à la platine 23 par un circuit de pompage principal 41 s'élevant verticalement et traversant les platines 10 et 5 successivement. L'évaporateur-distillateur principal 40 est raccordé à sa base par une canalisation 43 à une chambre de dilution 44 constituant le point froid de l'unité de dilution 4. La chambre de dilution 44 est conformée pour que son fond représente un support de fixation d'un échantillon 45 à analyser.
  • Le circuit de pompage principal 41 comporte une pompe 46 dont la sortie est raccordée, par une vanne 47, à un circuit principal de refoulement 48 constitué par une canalisation de faible section traversant les échangeurs- condenseur 22 et 37. Le circuit 48 comporte, au-delà de l'échangeur-condenseur 37, un restricteur de détente 49 au-delà duquel il traverse un échangeur 50 placé en relation avec l'évaporateur-distillateur principal 40. A la sortie de l'échangeur 50, le circuit 48 comprend un deuxième restricteur de détente 51 au-delà duquel il traverse un échangeur 52 entourant concentriquement le tube 43 Le circuit 48 débouche, ensuite, dans la partie haute de la chambre de dilution 44.
  • Le cryostat à dilution comprend, par ailleurs, un circuit de pompage dérivé 53 comportant un évaporateur-distillateur 54 suspendu à la platine 23 par une colonne 55 traversant, également, les platines 10 et 5. La colonne 55 est contrôlée par une vanne 57 au-delà de laquelle elle est raccordée au circuit principal 41. L'évaporateur 54 est relié, par une canalisation 56, à la chambre de dilution 44.
  • Le cryostat à dilution comprend, encore, un circuit de refoulement dérivé 58 également raccordé à la sortie de la pompe 46 par une vanne 59. Le circuit 58 traverse l'échangeur-condenseur 22, puis l'échangeur-condenseur 37 au-delà duquel il est raccordé à la colonne 55 dans la partie de cette dernière située au-dessus de la platine 23 du second étage de prérefroidissement 3.
  • A l'extérieur du cryostat se trouve une réserve 42 contenant les quantités de 3 He et 4 He nécessaires au fonctionnement et mélangées sous forme gazeuse. Une vanne 100 permet de vider la réserve à l'aide de la pompe 46, une soupape 101 permettant le retour du mélange 3 He, 4 He dans la réserve en fin d'utilisation.
  • La structure décrite ci-dessus présente l'avantage de permettre une mise en place et un retrait faciles de l'échantillon 45. En effet, pour toutes ces opérations, il suffit d'établir la pression normale dans l'enceinte 6 par la vanne 9, puis de démonter successivement les enceintes 6, 11 et 24.
  • Pour que cet avantage d'accessibilité soit effectivement pratique, la structure du cryostat est aussi choisie pour que la mise en service effective de l'appareil puisse intervenir rapidement. En d'autres termes, la structure de l'appareil est choisie pour que la phase de prérefroidissement préalable s'effectue plus simplement et plus rapidement que selon la technique antérieure.
  • En effet, selon l'invention, après adaptation d'un échantillon 45 et montage des différentes enveloppes 24, 11 et 6, une phase de pompage et de mise sous vide peut intervenir simultanément à un prérefroidissement qui est assuré de la façon suivante.
  • La vanne 18 est ouverte, de manière que l'azote liquide transite par gravité dans l'évaporateur 16, en vue d'assurer le refroidissement de la platine 10. Simultanément, les vannes 31 et 34 sont ouvertes et la pompe 32 est mise en marche, de manière à créer une circulation d'hélium dans l'évaporateur 29 chargé de refroidir la platine d'échange 23.
  • La vanne 57 est ensuite fermée, de même que la vanne 47, alors que la vanne 59 est, au contraire, ouverte. La pompe 46 est mise en marche, de manière à refouler du mélange cryogénique extrait de la réserve 42 dans le circuit de refoulement dérivé 58. Le mélange cryogénique sous phase gazeuse se refroidit par traversée de l'échangeur-condenseur 22, puis de l'échangeur-condenseur 27, avant d'être introduit dans la colonne 55 où il arrive à basse température. Le mélange froid emprunte alors la canalisation 56, traverse la chambre de dilution 44 et remonte par le circuit de pompage principal 41, avant d'être recyclé par la pompe 46.
  • Cette circulation a pour effet de refroidir l'unité de dilution par circulation interne, alors que les cryostats à dilution, du type connu, assurent une phase de prérefroidissement par circulation externe d'un produit cryogénique en phase vapeur, tel que l'hélium.
  • Lorsque la température la plus basse est atteinte par la phase de circulation décrite ci-dessus, par exemple aux environs de 4° Kelvin, les vannes 47 et 57 sont ouvertes, alors que la vanne 59 est fermée.
  • La pompe 46 refoule alors du mélange cryogénique dans le circuit principal 48. Après être refroidi dans l'échangeur 22, le mélange se condense dans l'échangeur-condenseur 37, avant de se détendre à travers les restricteurs 49 et 51. Le liquide ainsi obtenu s'accumule dans les parties basses de l'appareil jusqu'à remplir complètement la chambre de mélange 44, puis le tube 56, ainsi que l'échangeur 52, enfin, partiellement, les évaporateurs 40 et 54 ou les niveaux s'équilibrent.
  • A ce moment, la réserve 42 étant vide, commence la distillation du mélange dans les deux évaporateurs. La fraction 4 He reste au fond du cryostat et la fraction 3 He est pompée par la pompe 46. La fraction 3 He pure ainsi obtenue est refoulée alors par la vanne 47, refroidie dans l'échangeur 22, condensée dans l'échangeur 37, détendue en 49, refroidie encore en 50, détendue en 51 et, pour finir, refroidie par l'échangeur 52, avant de se diluer dans la fraction 4 He contenue dans la chambre de dilution 44 en refroidissant ainsi l'échantillon. La fraction 3 He remonte vers les deux évaporateurs en diffusant dans la fraction 4 He, refroidissant au passage l'échangeur 52 et empêchant toute chaleur de descendre le long des tubes 56 et 43.
  • Ainsi, la structure du cryostat à dilution selon l'invention permet, en utilisant le même mélange cryogénique, d'assurer un prérefroidissement par circulation du mélange en phase gazeuse à l'intérieur des éléments constitutifs de l'unité de dilution 4, puis d'entretenir le fonctionnement en mode dilution par circulation du même mélange en phase liquide, le passage d'un mode de fonctionnement à l'autre s'effectuant par la commande des vannes 47, 59 et 57. Il devient ainsi possible de mettre en service rapidement un tel appareil et de bénéficier ainsi pleinement des avantages de changement rapide d'échantillons dus à la structure des enveloppes concentriques démontables 6, 11 et 24. Il devient aussi possible d'appliquer à l'échantillon 45 toutes les gammes de températures souhaitées, étant donné que celle-ci dépend uniquement du mode de circulation et non de la température des réserves de liquide cryogénique 20 et 35.
  • Etant donné que les phases de prérefroidissement et de refroidissement interviennent par circulation interne, il devient possible de procéder rapidement au changement de l'échantillon 45. Il suffit, en effet, de rétablir la pression et la température ambiante à l'intérieur de l'enveloppe 24 pour permettre un démontage des enceintes. A cette fin, il suffit de provoquer la vaporisation de la phase liquide du mélange cryogénique occupant les évaporateurs 40 et 54 et la chambre de dilution 44. Dans ce but, ces trois éléments constitutifs sont associés à des résistances électriques 60.
  • Il convient de noter, également, que les réserves de liquide cryogénique, nécessaires au prérefroidissement par l'intermédiaire des platines 10 et 23, sont totalement indépendantes des enveloppes 6, 11 et 24 et de l'unité de dilution 44 qui peut donc ainsi être rapidement réchauffée à température ambiante lors de la phase de changement d'un échantillon 45.

Claims (6)

1. Cryostat à dilution, du type comprenant deux étages de prérefroidissement (2, 3) associés a au moins une réserve de liquide cryogénique indépendante, un réservoir de mélange cryogénique de refroidissement (42), une chambre (44) de dilution dudit mélange et un circuit de refoulement (48) et de pompage (41) comprenant, entre la réserve et la chambre, une pompe (46), un évaporateur(40) placé sur le circuit de pompage et des condenseurs (22, 37) placés sur le circuit de refoulement, caractérisé en ce qu'il comprend:
- un circuit de pompage dérivé (53) comportant un évaporateur (54) placé entre la chambre de dilution (44) et le second étage de prérefroidissement (3) et une vanne (57) placée entre la chambre de dilution (44) et la pompe de circulation (46),
- et un circuit de refoulement dérivé (58) contrôlé au-delà de la pompe par une vanne d'admission (59) passant par les premier et second étages (2, 3) et aboutissant dans le circuit de pompage dérivé (53) en aval de l'évaporateur par rapport à la chambre de dilution.
2. Cryostat à dilution selon la revendication 1, caractérisé en ce que l'évaporateur (54) du circuit de pompage dérivé (53) est placé sensiblement dans le même plan que l'évaporateur (40) du circuit de pompage principal (41) et constitue avec ce dernier et la chambre de dilution (44) une unité de dilution (4) enfermée dans une enveloppe étanche (6).
3. Cryostat à dilution selon la revendication 2, caractérisé en ce que l'unité de dilution (4) est incluse à une enveloppe (24) suspendue au second étage de prérefroidissement (3) qui est disposé en-dessous d'un premier étage (2) auquel est suspendue une enveloppe intermédiaire (11) entourant l'enveloppe (24) de l'unité de dilution et elle-même entourée par une enveloppe extérieure (6) suspendue à une ossature de support (1), lesdites enveloppes étant en relation avec une unité de pompage et de mise sous vide (8, 9).
4. Cryostat à dilution selon la revendication 3, caractérisé en ce que les circuits de pompage et de refoulement principaux et dérivés traversent les premier et second étages de prérefroidissement.
5. Cryostat à dilution selon la revendication 3, caractérisé en ce que les enveloppes (6,11, 24) sont concentriques et adaptées aux étages (2, 3) et à l'ossature (1).
6. Cryostat à dilution selon la revendication 3, caractérisé en ce que les moyens de refroidissement (20, 21 et 35, 36) des premier et second étages sont portés par l'ossature de support.
EP19850420228 1984-12-17 1985-12-16 Cryostat à dilution Expired EP0188976B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8419488A FR2574914B1 (fr) 1984-12-17 1984-12-17 Cryostat a dilution
FR8419488 1984-12-17

Publications (2)

Publication Number Publication Date
EP0188976A1 EP0188976A1 (fr) 1986-07-30
EP0188976B1 true EP0188976B1 (fr) 1989-03-08

Family

ID=9310794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850420228 Expired EP0188976B1 (fr) 1984-12-17 1985-12-16 Cryostat à dilution

Country Status (5)

Country Link
US (1) US4672823A (fr)
EP (1) EP0188976B1 (fr)
JP (1) JPH0621755B2 (fr)
DE (1) DE3568628D1 (fr)
FR (1) FR2574914B1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770006A (en) * 1987-05-01 1988-09-13 Arch Development Corp. Helium dilution refrigeration system
FR2626658B1 (fr) * 1988-02-03 1990-07-20 Centre Nat Etd Spatiales Procede et appareillage pour l'obtention de tres basses temperatures
KR950007694B1 (ko) * 1988-03-28 1995-07-14 부라더 고교 가부시기가이샤 단축복합운동장치
US5060482A (en) * 1990-01-25 1991-10-29 Jackson Henry W Continuously operating 3 He-4 He dilution refrigerator for space flight
US5070702A (en) * 1990-05-07 1991-12-10 Jackson Henry W Continuously operating 3 HE evaporation refrigerator for space flight
GB9609311D0 (en) * 1996-05-03 1996-07-10 Oxford Instr Uk Ltd Improvements in cryogenics
DE10130171B4 (de) * 2001-06-22 2008-01-31 Raccanelli, Andrea, Dr. Verfahren und Vorrichtung zur Tieftemperaturkühlung
GB2493553B (en) 2011-08-11 2017-09-13 Oxford Instr Nanotechnology Tools Ltd Cryogenic cooling apparatus and method
GB2584135A (en) * 2019-05-23 2020-11-25 Oxford Instruments Nanotechnology Tools Ltd Cryogenic cooling system
FR3107586B1 (fr) * 2020-02-21 2022-11-18 Air Liquide Dispositif et procédé de réfrigération à dilution
CN112325498B (zh) * 2020-11-06 2022-03-29 格物致寒(苏州)科学仪器有限公司 一种稀释制冷系统及方法
US20230008279A1 (en) * 2021-07-08 2023-01-12 Maybell Quantum Industries, Inc. Integrated dilution refrigerators
WO2023077222A1 (fr) * 2021-11-02 2023-05-11 Anyon Systems Inc. Réfrigérateur à dilution comprenant un liquéfacteur d'hélium à écoulement continu
FR3129201B1 (fr) * 2021-11-16 2024-01-19 Air Liquide Système de pompage cryogénique et intégration innovante pour la cryogénie Sub Kelvin inférieure à 1,5K
FR3129198B1 (fr) * 2021-11-17 2023-10-27 Air Liquide Dispositif de réfrigération cryogénique

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2744346A1 (de) * 1977-10-01 1979-04-05 Gerd Binnig Direkt ladbarer mischkryostat mit proben-schnellwechsel
US4223540A (en) * 1979-03-02 1980-09-23 Air Products And Chemicals, Inc. Dewar and removable refrigerator for maintaining liquefied gas inventory
NL7902014A (nl) * 1979-03-14 1980-09-16 Philips Nv 3he-4he verdunningskoelmachine.
NL7902438A (nl) * 1979-03-29 1980-10-01 Philips Nv 3he-4he koelmachine.
US4277949A (en) * 1979-06-22 1981-07-14 Air Products And Chemicals, Inc. Cryostat with serviceable refrigerator
IL63517A (en) * 1981-08-06 1984-05-31 Rosenbaum Ralph Multiple-chamber cooling device particularly useful in a dilution refrigerator
JPS5880474A (ja) * 1981-11-06 1983-05-14 株式会社日立製作所 極低温冷却装置
EP0089391B1 (fr) * 1982-03-23 1986-06-04 International Business Machines Corporation Procédé et machine frigorifique à dilution pour un refroidissement à des températures en-dessous de 1 K
US4548053A (en) * 1984-06-05 1985-10-22 The United States Of America As Represented By The United States Department Of Energy Combined cold compressor/ejector helium refrigerator

Also Published As

Publication number Publication date
FR2574914A1 (fr) 1986-06-20
DE3568628D1 (en) 1989-04-13
JPS61191845A (ja) 1986-08-26
FR2574914B1 (fr) 1987-03-06
EP0188976A1 (fr) 1986-07-30
US4672823A (en) 1987-06-16
JPH0621755B2 (ja) 1994-03-23

Similar Documents

Publication Publication Date Title
EP0188976B1 (fr) Cryostat à dilution
FR2700836A1 (fr) Appareil pour produire de l'azote liquide.
CA1219224A (fr) Appareil de refrigeration et piege frigorifique comprenant un tel appareil
DE2715979A1 (de) Mit helium 3 arbeitender tragbarer kryostat
JP2013519041A (ja) 流体を液化し且つ液化流体を貯蔵するシステム及び方法
US3225825A (en) Cold trap
WO1999018387A1 (fr) Procede et installation de remplissage d'un reservoir sous pression
CH370489A (fr) Procédé cryogénique d'irradiation à basse température d'un échantillon de matière et dispositif pour sa mise en oeuvre
EP4006469B1 (fr) Procédé et appareil de vaporisation de liquide de purge d'un vaporiseur de liquide cryogénique
US3306058A (en) Cryostat
EP0177416B1 (fr) Dispositif cryostatique pour détecteurs de rayonnements
EP0706632B1 (fr) Procede d'obtention de tres basses temperatures
FR2624266A1 (fr) Installation de climatisation par absorption
EP0220086B1 (fr) Ligne de transfert de gaz liquéfié comportant un écran thermique muni d'un échangeur
FR3108647A1 (fr) Appareil de séparation et/ou de liquéfaction d’un gaz capable d’opérer à de basses températures
EP0823603A1 (fr) Procédé et installation de reliquéfaction d'hélium gazeux
JP2002162125A (ja) ジュールトムソン冷却装置
US3443390A (en) Space simulator
SU1537949A1 (ru) Криостат
EP1295074A1 (fr) Dispositif de stabilisation thermique d'un objet a refroidir
FR3072443A1 (fr) Dispositif de stockage de fluide cryogenique
EP0327457B1 (fr) Procédé et appareillage pour l'obtention de très basses températures
FR2568350A1 (fr) Col pour reservoir de liquide cryogenique, et reservoir comportant un tel col
FR2793312A1 (fr) Appareil d'echange thermique a contre-courant et son application aux installations de distillation d'air
FR3129198A1 (fr) Dispositif de réfrigération cryogénique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19870123

17Q First examination report despatched

Effective date: 19871012

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3568628

Country of ref document: DE

Date of ref document: 19890413

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041130

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051216

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20051216