EP0186528B1 - Magnetisches Granatmaterial, magnetische Schicht mit starker Faraday-Rotation, welche solches Material enthält und Verfahren zu seiner Herstellung - Google Patents

Magnetisches Granatmaterial, magnetische Schicht mit starker Faraday-Rotation, welche solches Material enthält und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP0186528B1
EP0186528B1 EP85402075A EP85402075A EP0186528B1 EP 0186528 B1 EP0186528 B1 EP 0186528B1 EP 85402075 A EP85402075 A EP 85402075A EP 85402075 A EP85402075 A EP 85402075A EP 0186528 B1 EP0186528 B1 EP 0186528B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
oxide
magnetic material
film
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402075A
Other languages
English (en)
French (fr)
Other versions
EP0186528A1 (de
Inventor
Marie Françoise Armand
Jacques Daval
Bernard Ferrand
Hubert Moriceau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0186528A1 publication Critical patent/EP0186528A1/de
Application granted granted Critical
Publication of EP0186528B1 publication Critical patent/EP0186528B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/28Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids by liquid phase epitaxy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature

Definitions

  • the subject of the present invention is a magnetic material of the garnet type, a Faraday magnetic film with high rotation comprising such a material and its manufacturing process.
  • the principle of such devices is to obtain a light contrast by using the Faraday effect induced on a monochromatic light when passing through a magnetic material.
  • a transparent monocrystalline substrate is used on which is deposited a thin monocrystalline layer of ferrimagnetic garnet in which the magnetization is normal to the plane, this layer is subdivided by etching into magnetic elementary cells whose magnetization can be oriented in a one way or the other.
  • These cells can thus be viewed in polarized light thanks to the Faraday effect: cells oriented in one direction will thus appear in clear, while cells oriented in the other direction will appear in dark.
  • this result is obtained by magnetic effect by selectively activating, in the presence of a polarization field, thin conductors deposited on the magnetic layer in two independent and perpendicular networks, surrounding the elementary magnetic cells.
  • the magnetic material used to produce the film must have very precise characteristics, but these are different depending on whether the thermomagnetic effect or the magnetic effect is used.
  • the reversal of the direction of magnetization is obtained by the application of a polarization field associated with a localized heating pulse on certain cells. Therefore, the material must have a compensation temperature close to ambient temperature so that the action of the applied external field is zero on the unheated cells, which occurs when one is in the vicinity of the compensation temperature. where the result of the magnetizations of the garnet sub-networks cancels out and nullifies the action of an external field.
  • the magnetic cells which will have been brought to a higher temperature, will see their magnetization align in the direction of the field applied simultaneously and one will thus obtain the reversal of the direction of the magnetization.
  • Magnetic garnets capable of meeting these characteristics correspond to composition (GdBi) 3 (FeGaAI) 5 0 12 .
  • the switching of these is done using currents flowing in crossed conductors in the presence of a polarization field.
  • the magnetic material used must have characteristics very different from those of materials using the thermomagnetic effect. In fact, this material must not have a compensation temperature close to ambient temperature, but it must have a low magnetization and a low anisotropy.
  • the use of the second technique proves to be particularly advantageous since it makes it possible to obtain much more quickly the reversal of the direction of magnetization of the magnetic cells, which constitutes an important advantage, in particular in display devices.
  • the present invention specifically relates to magnetic materials with high Faraday rotation, therefore with a high proportion of bismuth, capable of being used in devices using this second technique for switching magnetic cells.
  • the magnetic material according to the invention is characterized in that it corresponds to the formula: in which M represents either one or more rare earth elements chosen from lutetium, thulium and ytterbium, or yttrium, and xi, x 2 , y 1 and y 2 are such that: provided that y i and y 2 are not both equal to 0 and that y i + y 2 is at most equal to 1.
  • the magnetic material of the invention is thus a garnet of the Gd 2 Bii Fe 5 Oi 2 type in which part of the gadolinium has been replaced, on the one hand, by at least one element of the rare earths belonging to the lutetium group, thulium, ytterbium or by yttrium, and, on the other hand, by praseodymium, and in which part of the iron has been replaced by a non-magnetic element such as gallium and / or aluminum.
  • the presence either of at least one element of rare earths belonging to the group of lutetium, thulium, ytterbium, or of yttrium makes it possible to reduce the compensation temperature below the ambient temperature;
  • the presence of gallium and / or aluminum makes it possible to adjust the magnetization;
  • the presence of praseodymium makes it possible to adjust the uniaxial magnetic anisotropy field of the material to any value between 0 and 2 ⁇ 10 5 ⁇ A ⁇ m -1 , while retaining the optimized magneto-optical properties of the material due in particular to the presence of bismuth, gallium and / or aluminum, and one or more rare earths chosen from Lu, Tm, Yb or Y.
  • a single element of rare earths for example thulium, is used to decrease the compensation temperature.
  • rare earth elements chosen from Lu, Tm, Yb or Y
  • their respective contents (in atoms) in the material are such that the sum of these contents corresponds to x i .
  • a single element is generally used to adjust the magnetization. This can in particular be gallium, y 2 being equal to 0 in the formula given above.
  • Magnetic materials of this type can be obtained by epitaxy on a substrate. This makes it possible to obtain magnetic films with high Faraday rotation constituted by a thin monocrystalline layer of a magnetic material corresponding to the formula given above and by its non-magnetic monocrystalline substrate.
  • the substrate used for the epitaxy has practically the same crystal lattice constant as the magnetic material to be deposited.
  • the conventional technique for the deposition by epitaxy in the liquid phase of the layer, the conventional technique is used which consists in preparing an epitaxy bath from the oxides of the various constituents of the layer to be deposited, ie a bath containing gadolinium oxide, praseodymium oxide, at least one oxide of a metal M, bismuth oxide, iron oxide, gallium oxide and / or aluminum oxide and use is made a solvent for dissolving these different oxides.
  • This solvent can in particular be a mixture of lead oxide and boron oxide.
  • the quantities of the various oxides are such that they correspond to the composition of the layer which it is desired to deposit.
  • a substrate is then introduced into the bath by driving it in rotation and the deposition temperature Td is adjusted as a function of the saturation temperature Ts of the bath, in order to obtain the growth of a monocrystalline layer of desired composition.
  • the deposition temperature is generally 10 to 30 ° C lower than the saturation temperature.
  • the crucible is then introduced into an oven at 1000 ° C for several hours to melt the mixture, then it is subjected to stirring using a platinum stirrer and the temperature of the mixture is brought back to 950 ° C.
  • the stirring is continued mechanical for 4 h and after removing the agitator, the temperature of the bath is brought down as quickly as possible to 800 ° C.
  • a polished substrate is then introduced into the bath, of composition (Gd Ca) 3 (Ga Mg Zr) s O 12 oriented (111) having a diameter of 5.08 cm and a thickness of 500 ⁇ m, by dipping it horizontally in the bath and subjecting it to a rotational movement of 80 revolutions / minute.
  • the substrate-magnetic layer assembly is extracted from the bath without rotation, then it is subjected to an accelerated rotational movement up to 900 rpm to eject the remainder of the solvent by centrifugation, and it is taken out finally from the oven.
  • the epitaxial layer corresponds to the composition Bi 1 Gd 1.4 Tm 0.4 Pr 0.2 Fe 4.5 Ga 0.5 O 12 and its magnetic characteristics are given in the attached table. It also has a Faraday ⁇ f rotation of 1,750,000 ° / m measured at a wavelength of 632.8nm and an absorption a of 100,000 / m at this same wavelength.
  • the anisotropy constant Ku was determined from the following formula: in which H k represents the uniaxial anisotropy field and M s the saturation magnetic induction, in order to take account of the value of the saturation magnetic induction which can vary from one film to another.
  • the anisotropy constant of the film decreases sharply when the praseodymium content of the bath is increased and consequently the praseodymium content of the film.
  • the films obtained all have a Faraday rotation measured at 6328 A (632.8 nm) of approximately 17500 ° / cm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Iron (AREA)

Claims (7)

1. Magnetisches Material, dadurch gekennzeichnet, daß es der Formel entspricht:
Figure imgb0024
worin M entweder ein oder mehrere Elemente der Seltenen Erden, ausgewählt aus Lutetium, Thulium und Ytterbium oder Yttrium darstellt und xi, x2, yi und y2 den Bedingungen genügen:
Figure imgb0025
Figure imgb0026
Figure imgb0027
Figure imgb0028
mit der Maßgabe, daß y1 und y2 nicht beide gleich 0 sind und y1 + y2 höchstens gleich 1 ist.
2. Magnetisches Material nach Anspruch 1, dadurch gekennzeichnet, daß M Thulium darstellt.
3. Magnetisches Material nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß y2 gleich 0 ist.
4. Magnetisches Material nach Anspruch 1, dadurch gekennzeichnet, daß es der Formel entspricht: Bi1Gd1,4Tm0,4Pro0,2Fe4,5Ga0.5O12
5. Magnetischer Film mit starker Faraday-Rotation, bestehend aus einem Substrat, das von einer epitaxialen Schicht aus einem magnetischen Material bedeckt ist, dadurch gekennzeichnet, daß es sich bei dem magnetischen Material um ein Material nach einem der Ansprüche 1 bis 4 handelt.
6. Film nach Anspruch 5, dadurch gekennzeichnet, daß das Substrat der Formel entspricht: Gd3-xCaxGa5-x-2yMgyZrx+yOi2 worin x und y den folgenden Bedingungen genügen:
0 < x ≤ 0,7
0 < y ≤ 0,7
x + y ≤ 0,8
7. Verfahren zur Herstellung eines magnetischen Films nach einem der Ansprüche 5 und 6 durch epitaxiale Ablagerung eines Granat-Films der nachstehend angegebenen Formel in flüssiger Phase auf einem Substrat:
Figure imgb0029
worin M entweder ein oder mehrere Elemente der Seltenen Erden, ausgewählt aus Lutetium, Thulium und Ytterbium oder Yttrium darstellt und bei dem man ein epitaxiales Bad verwendet, das enthält
1) Gadoliniumoxid,
2) Praseodymoxid,
3) mindestens ein Oxid eines Metalls M,
4) Wismutoxid,
5) Eisenoxid,
6) Galliumoxid und/oder Aluminiumoxid und
7) ein Lösungsmittel, das Bleioxid und Boroxid enthält,
dadurch gekennzeichnet, daß die Zusammensetzung des Bades so ist, daß die Molverhältnisse Fe203/Bi203, PbO/B1203 und PbO/B20s den folgenden Bedingungen genügen:
Figure imgb0030
Figure imgb0031
und
EP85402075A 1984-11-02 1985-10-25 Magnetisches Granatmaterial, magnetische Schicht mit starker Faraday-Rotation, welche solches Material enthält und Verfahren zu seiner Herstellung Expired EP0186528B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8416763 1984-11-02
FR8416763A FR2572844B1 (fr) 1984-11-02 1984-11-02 Materiau magnetique du type grenat, film magnetique a forte rotation faraday comportant un tel materiau et son procede de fabrication

Publications (2)

Publication Number Publication Date
EP0186528A1 EP0186528A1 (de) 1986-07-02
EP0186528B1 true EP0186528B1 (de) 1989-03-22

Family

ID=9309230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402075A Expired EP0186528B1 (de) 1984-11-02 1985-10-25 Magnetisches Granatmaterial, magnetische Schicht mit starker Faraday-Rotation, welche solches Material enthält und Verfahren zu seiner Herstellung

Country Status (5)

Country Link
US (1) US4698281A (de)
EP (1) EP0186528B1 (de)
JP (1) JPS61110408A (de)
DE (1) DE3569059D1 (de)
FR (1) FR2572844B1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043231A (en) * 1988-11-04 1991-08-27 National Institute For Research In Inorganic Materials Gadolinium-lutetium-gallium garnet crystal, process for its production and substrate for magneto-optical device made thereof
JPH0782164B2 (ja) * 1991-04-25 1995-09-06 松下電器産業株式会社 磁気光学素子及び磁界測定装置
EP0522388A1 (de) * 1991-07-01 1993-01-13 Murata Manufacturing Co., Ltd. Geräte für magnetostatische Wellen
WO1995016269A1 (fr) * 1993-12-06 1995-06-15 Kirbitov, Viktor Mikhailovich Materiau ferromagnetique et son procede de production
US5925474A (en) * 1996-10-14 1999-07-20 Mitsubishi Gas Chemical Company, Inc. Bismuth-substituted rare earth iron garnet single crystal film
JP3649935B2 (ja) * 1999-03-15 2005-05-18 Tdk株式会社 磁性ガーネット材料およびそれを用いたファラデー回転子
US7268946B2 (en) * 2003-02-10 2007-09-11 Jian Wang Universal broadband polarizer, devices incorporating same, and method of making same
JP5459243B2 (ja) * 2011-03-08 2014-04-02 住友金属鉱山株式会社 ビスマス置換型希土類鉄ガーネット結晶膜と光アイソレータ
CN113860367B (zh) * 2021-10-18 2023-03-28 安徽工业大学 一种氧化镨/氧化铋/镨酸铋复合纳米片及其合成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225000B2 (de) * 1972-08-11 1977-07-05
JPS49129700A (de) * 1973-04-18 1974-12-12
CA1050862A (en) * 1973-10-04 1979-03-20 Richard E. Novak Magnetic bubble devices and garnet films therefor
US3949386A (en) * 1973-11-12 1976-04-06 International Business Machines Corporation Bubble domain devices using garnet materials with single rare earth ion on all dodecahedral sites
JPS6011450B2 (ja) * 1976-10-08 1985-03-26 株式会社日立製作所 泡磁区素子用ガ−ネツト単結晶膜
FR2469477A1 (fr) * 1979-11-09 1981-05-22 Rhone Poulenc Ind Procede de fabrication de grenat polycristallin, grenat polycristallin et monocristal correspondant
FR2469478A1 (fr) * 1979-11-09 1981-05-22 Rhone Poulenc Ind Procede de fabrication de grenat polycristallin comportant l'aluminium et/ou le gallium et/ou l'indium et au moins un element pris dans le groupe constitue par les terres rares et l'yttrium, monocristaux correspondants
NL8004201A (nl) * 1980-07-22 1982-02-16 Philips Nv Inrichting voor de voortbeweging van magnetische domeinen.
US4647514A (en) * 1981-11-09 1987-03-03 At&T Bell Laboratories Magnetic domain device having a wide operational temperature range
JPS58153309A (ja) * 1982-03-05 1983-09-12 Hitachi Ltd イオン打込み素子用ガ−ネツト膜
US4433034A (en) * 1982-04-12 1984-02-21 Allied Corporation Magnetic bubble layer of thulium-containing garnet
JPS5972707A (ja) * 1982-10-20 1984-04-24 Hitachi Ltd 磁性ガーネット膜

Also Published As

Publication number Publication date
US4698281A (en) 1987-10-06
EP0186528A1 (de) 1986-07-02
FR2572844B1 (fr) 1986-12-26
FR2572844A1 (fr) 1986-05-09
JPS61110408A (ja) 1986-05-28
DE3569059D1 (en) 1989-04-27

Similar Documents

Publication Publication Date Title
Ando et al. Magneto-optic effect of the ferromagnetic diluted magnetic semiconductor Ga 1− x Mn x As
EP2047489B1 (de) Magnetische vorrichtung aus dünnen schichten mit einer starken polarisation senkrecht zur schichtoberfläche, magnetischer tunnelkontakt und spinventil bei denen diese vorrichtung eingesetzt wird
Lairson et al. Enhanced magneto‐optic Kerr rotation in epitaxial PtFe (001) and PtCo (001) thin films
Weller et al. Magnetic and magneto‐optical properties of cobalt‐platinum alloys with perpendicular magnetic anisotropy
EP0186528B1 (de) Magnetisches Granatmaterial, magnetische Schicht mit starker Faraday-Rotation, welche solches Material enthält und Verfahren zu seiner Herstellung
Liu et al. High TC ferromagnetism of Zn (1− x) CoxO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy
US4728178A (en) Faceted magneto-optical garnet layer and light modulator using the same
FR2595479A1 (fr) Element de commutation de lumiere magneto-optique et son procede de fabrication
EP0076184B1 (de) Verfahren zur Erzeugung einer Schicht mit ebener homogener Magnetisierung in einem ferrimagnetischen Granat
JP2786078B2 (ja) ファラデー回転子および光アイソレータ
Hwang et al. Induced high-temperature ferromagnetism by structural phase transitions in strained antiferromagnetic γ-Fe50Mn50 epitaxial films
Wang et al. Annealing effects and perpendicular magnetic properties of sputtered Co2FeSi alloy films
EP1162635B1 (de) Material für mit Wismut substituierte Granat-Dickschicht und zugehöriges Herstellungsverfahren
EP0480789B1 (de) Verfahren zur Herstellung von Kristall-Dünnschichten von Typ Oxide durch eine schnelle thermische Behandlung
EP2364499A1 (de) Prozess zum herstellen eines films aus einem antiferromagnetischen material mit kontrollierten magnetischen strukturen
Akishige Temperature dependence of the optical absorption edge in hexagonal BaTiO3
Vasiliev et al. Nanostructured engineered materials with high magneto-optic performance for integrated photonics applications
NL7902293A (nl) Magnetische beldomein structuur en magnetische beldomeininrichting.
WO2007090946A1 (fr) Semi-conducteur ferromagnetique, son procede de fabrication, composants l&#39;incorporant et utilisations de ce semi-conducteur s&#39;y rapportant
EP0027073A1 (de) Verfahren zum Regeln der Dimension der Blasen von Elementen mit magnetischen Blasen
EP0166924A2 (de) Magnetooptische Granatschicht mit Facettenstruktur
FR2922560A1 (fr) Procede de production de films ultra-minces de ferrites et articles en resultant
Murayama et al. Effect of an ultrathin Au interlayer at a Co/Cu (111) interface on the magnetic properties
FR2783357A1 (fr) Couche mince monocristalline de grenat magnetique a faible teneur en plomb, son procede de fabrication et dispositif a ondes hyperfrequences le contenant
Lee et al. Optical characterization of Cd1− x Mn x Te epilayers grown by liquid‐phase epitaxy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19861204

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 19880525

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3569059

Country of ref document: DE

Date of ref document: 19890427

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900918

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901022

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701