EP0173833A2 - Schaltung und Verfahren zur Messung und Digitalisierung eines Widerstandes - Google Patents

Schaltung und Verfahren zur Messung und Digitalisierung eines Widerstandes Download PDF

Info

Publication number
EP0173833A2
EP0173833A2 EP85108822A EP85108822A EP0173833A2 EP 0173833 A2 EP0173833 A2 EP 0173833A2 EP 85108822 A EP85108822 A EP 85108822A EP 85108822 A EP85108822 A EP 85108822A EP 0173833 A2 EP0173833 A2 EP 0173833A2
Authority
EP
European Patent Office
Prior art keywords
circuit
resistance
resistor
measuring
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85108822A
Other languages
English (en)
French (fr)
Other versions
EP0173833B1 (de
EP0173833A3 (en
Inventor
Arthur Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mettler Toledo GmbH Germany
Original Assignee
Mettler Instrumente AG
Mettler Toledo AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mettler Instrumente AG, Mettler Toledo AG filed Critical Mettler Instrumente AG
Publication of EP0173833A2 publication Critical patent/EP0173833A2/de
Publication of EP0173833A3 publication Critical patent/EP0173833A3/de
Application granted granted Critical
Publication of EP0173833B1 publication Critical patent/EP0173833B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/028Means for indicating or recording specially adapted for thermometers arrangements for numerical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval

Definitions

  • the invention relates to a circuit and a method for measuring and digitizing a resistor, in particular a temperature sensor.
  • the object of the present invention was to provide a circuit and a method with the greatest possible elimination of possible sources of error, with which resistance measurements, in particular of temperature sensors, are possible which are very precise and accessible to a high resolution of measured values.
  • a corresponding circuit is characterized in that the measuring resistor is both a component of an A / D converter working according to the charge equalization principle and also a component of a resistance network in such a way that a pure resistance measurement is made possible and that a circuit for processing an integrated one Measured value from a plurality of individual values is provided.
  • This concept means, among other things, that the transducer and A / D converter are merged into a 'closed' system: As can be seen from the description below, the A / D converter affects the wiring of the measuring resistor. This fact, in conjunction with the integration of several individual values into one measurement result, leads to the desired high result resolution.
  • the present concept has the advantage of not requiring highly precise references for voltage or current; only precision resistors are required, which are much cheaper with comparable long-term stability.
  • the invention further relates to a method of the type mentioned at the outset, in which a current i, which is dependent on the size of the resistor and is determined by a predetermined voltage, is used as a measure of the size of the resistor and is converted into a digital value by means of the charge equalization principle, which is characterized in that is that the current i flowing through the resistance to be measured is maintained by the charge equalization circuit used for digitization.
  • This method is preferably designed in such a way that a timer circuit generates time intervals of constant magnitude, which are divided into a first and a second part-time, that the current i is obtained alternately from a supply voltage during the first part-time and partly from the integrator of the charge-balancing circuit during the second part-time is subtracted that during the first part-time a current i 1, also taken from the supply voltage, flows into the integrator, the output voltage of which is compared in a comparator with a periodic sawtooth voltage, that during the first or the second part-time, high-frequency clock pulses are fed into a counting and evaluation circuit via a gate circuit arrive, the sum of the clock pulses forming a measure of the size of the resistor, and that a plurality of clock pulse sums is evaluated to represent the size of the resistor.
  • FIG. 1 illustrates known arrangements: A resistor 10 to be measured is part of a sensor circuit 12. The generated analog measurement signal goes into an A / D converter 14. The resulting digital measurement signal is transmitted to a circuit 16, if necessary after making corrections. prepared for display in a digital display 18.
  • the generation and conversion (e.g. amplification) of the analog measurement signal is independent of the subsequent conversion into a digital variable, i.e. it is an open system.
  • the digitized variable has an effect on the generation and processing of the analog measurement signal, symbolized in FIG. 2 by a feedback line 20.
  • a closed system (12 ', 14', 20) in the manner of a control loop, which - in contrast to open systems - suppresses faults from amplifiers and other components (faults or errors that cannot be eliminated even by integrating many individual values in open systems!) .
  • FIG. 3 shows the structure of the circuit of an embodiment.
  • a resistor network comprises two precision resistors R and R 2 in series and a resistor R 1 in between , which does not have to be particularly precise.
  • a second row is connected in parallel with these resistors, consisting of a precision resistor R 3 and the measuring resistor R m (in the present case a temperature sensor in a calorimeter).
  • the network is connected to an operating voltage U.
  • a current sink is provided in its lower part (differential amplifier V 2 , field effect transistor T 1 ).
  • An integrator 21 is connected in the upper part (differential amplifier V 1 , capacitor C 1 ). Between .
  • a switch S 1 is provided, which alternately closes either the current path between R3 and R m or between the positive pole and R m .
  • the output of the integrator 20 is followed by a comparator K 1 , the second input of which is connected to a sawtooth voltage generator 22 (current source 23, capacitor C 2 , switch S 2 ).
  • the output of the comparator K 1 is connected to the D input of a flip-flop 24, which controls the switch S 1 and a gate 26 synchronously with the clock frequency.
  • clock clock
  • RAR ramp reset
  • counting and arithmetic circuit the control for a digital display 30.
  • the structure of the dicital part 28, the essential core of which is a suitably programmed microcomputer, is not part of the invention, but is conventionally designed and therefore requires no explanation. The mode of operation of the circuit will now be described with reference to the signal diagram in FIG.
  • the integrator 21 is discharged with the current i 1 - i X (iX> i 1 :) (the current sink V 2 , T 1 draws the current i X partially from the integrator 21), and the output voltage U V1 increases again linearly until the cycle starts again with the signal RAR after the period T has ended.
  • the integrator 21 receives the same amount of charge (current i 1 .t) as withdrawn (current (i 1 - i x ). (Tt) with i X > i 1 ).
  • the clock pulses P counted during the period t are a measure of the unknown resistance R.
  • the size of the resistance R m results from the formula that is, a pure ratio measurement takes place in which only the values of the precision resistors R o , R 2 and R 3 and the time periods T and t occur. An accurate measurement is thus made possible in a simple manner and with simple means.
  • the individual sums of the clock pulses P from a plurality of periods T are added up and then, as is known, filtering and linearization and rounding carried out in the microcomputer, as a result, are transmitted to the display 30 .
  • thermometer in a range from - 100 to + 200 ° could be realized with a resolution of 0.001 °.
  • FIG. A variant is presented in FIG. If the structure of the circuit is practically unchanged (only the control programs in the digital part have to be adapted accordingly), it allows switching between different measuring resistors by inserting a few additional switches.
  • Three M es sw id resistors Rm 31 R m4 and R m5 are each via a pair of switches S 30 ' S 31 and S 40 .
  • a precision resistor R 6 with switches S 60 , S 61 is provided, with the aid of which a calibration can be carried out (during the calibration, a predetermined value for the time period t should be established over a plurality of measuring periods (ramps)).
  • both the time t (as in the example above) and the time (T - t) can be used to count the clock pulses P.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Nonlinear Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Es wird eine Schaltung sowie ein Verfahren zur Messung und Digitalisierung von Widerständen beschrieben. Dabei ist der Messwiderstand (Rm) sowohl Bestandteil eines nach dem Ladungsausgleichsprinzip arbeitenden A/D-Wandlers als auch Bestandteil eines Widerstandsnetzwerkes, so, dass eine reine Widerstandsmessung stattfindet, wobei ferner eine Schaltung (28) zur Aufbereitung eines integrierten Messwertes aus einer Mehrzahl von Einzelwerten vorgesehen ist.
Die vorliegende Methode ermöglicht hochgenaue Widerstandsmessungen mit hoher Resultatauflösung in einer Grössenordnung von 105 Punkten.
Anwendung der beschriebenen Methode insbesondere zur Temperaturerfassung, beispielsweise in Kalorimetern oder in Präzisionswaagen, aber auch für andere Widerstandsmessungen.

Description

  • Die Erfindung betrifft eine Schaltung und ein Verfahren zur Messung und Digitalisierung eines Widerstandes, insbesonders eines Temperaturfühlers.
  • Konventionelle Schaltungen dieser Art umfassen regelmässig offene Systeme, das heisst, dem Analog-/Digital-Wandler (A/D-Wandler) wird das Signal eines Messwertaufnehmers zugeführt, ohne dass eine Rückkupplung bzw. Rückführung vom Wandler zur Sensorschaltung stattfindet. Dies wird beispielsweise deutlich im Artikel 'Mikrovolt messen'(Funkschau 14/1983, S.37/ 38), in welchem ein A/D-Wandler-Baustein nach dem Ladungsausgleichsprinzip (Charge Balancing, im folgenden kurz ChB genannt) beschrieben ist, an dessen Eingang das Signal beispielsweise eines Temperaturfühlers gelegt werden kann. Das ChB-Verfahren selbst ist bekannt z.B. aus 'Elektronik', Heft 12/1974, Seiten 469-472, und der US-fatentschrift 3,790,886. Spezielle Temperaturmessschaltungen dieser Art sind bekannt aus den deutschen Offenlegungsschriften 31 29 476 sowie 31 30 499. Beide verwenden ebenfalls ein 'offenes' System aus Messwertaufnehmer und A/D-Wandler. Darüber hinaus liegen in beiden Fällen keine reinen Verhältnismessungen von Widerständen vor: Im einen Fall gehen die Widerstände der Schalter, welche den Referenz- bzw. den Messwiderstand an den A/D-Wandler anschalten, in die Messung ein (31 29 476). Im anderen Fall (31 30 499) ist es die Kapazität eines Kondensators, die in die Messwertermittlung eingeht und die Genauigkeit des Ergebnisses zu beeinträchtigen vermag.
  • Die vorliegende Erfindung hatte sich die Aufgabe gestellt, unter weitestgehender Ausschaltung möglicher Fehlerquellen eine Schaltung und ein Verfahren bereitzustellen, mit denen sehr präzise und einer hohen Messwertauflösung zugängliche Widerstandsmessungen, insbesondere von Temperaturfühlern, möglich sind.
  • Gemäss der Erfindung ist hierzu eine entsprechende Schaltung dadurch gekennzeichnet, dass der Messwiderstand sowohl Bestandteil eines nach dem Ladungsausgleichsprinzip arbeitenden A/D-Wandlers als auch Bestandteil eines Widerstandsnetzwerkes ist, dergestalt, dass eine reine Widerstandsmessung ermöglicht wird, und dass eine Schaltung zur Aufbereitung eines integrierten Messwertes aus einer Mehrzahl von Einzelwerten vorgesehen ist. Dieses Konzept bedeutet u.a., dass Messwertaufnehmer und A/D-Wandler zu einem 'geschlossenen' System verschmolzen sind: Wie anhand der weiter unten folgenden Beschreibung deutlich wird, wirkt der A/D-Wandler auf die Beschaltung des Messwiderstandes zurück. Diese Tatsache, in Verbindung mit der Integration mehrerer Einzelwerte zu einem Messergebnis, bewirkt die angestrebte hohe Resultatauflösung. Ausserdem hat das vorliegende Konzept den Vorteil, ohne hochgenaue Referenzen für Spannung bzw. Strom auszukommen; es werden lediglich Präzisionswiderstände benötigt, welche bei vergleichbarer Langzeitstabilität wesentlich billiger sind.
  • Es ist üblich, den Komparator eines ChB-Wandlers gegen ein festes Potential arbeiten zu lassen. Dies würde jedoch bedeuten, dass die einzelnen Wandlungsintervalle unterschiedliche Längen abhängig vom Messwert hätten. Es wird daher eine Ausbildung bevorzugt, bei der der Komparator an eine periodische Sägezahnspannung geschaltet ist. Diese Ausfüh- rungsform erlaubt das Arbeiten mit festen zeitlichen Intervallen, was wiederum Vorteile bei der Aufbereitung des digitalen Messwertes hat. So ist eine die Qualität des Messergebnisses weiter verbessernde digitale Filterung einfacher möglich.
  • Für Fälle, in denen verschiedene Messwiderstände erfasst werden sollen, sieht eine Weiterbildung der Schaltung vor, dass zusätzliche Schalter vorgesehen sind, die ein Umschalten zwischen mehreren Messwiderständen erlauben. Damit könnten beispielsweise mehrere Temperaturmessstellen in einem Wärmeflusskalorimeter erfasst werden.
  • Die Erfindung betrifft ferner ein Verfahren der eingangs genannten Art, bei welchem ein von der Grösse des Widerstandes abhängiger, von einer vorgegebenen Spannung bestimmter Strom i als Mass für die Grösse des Widerstandes verwendet und mittels des Ladungsausgleichsprinzips in einen digitalen Wert gewandelt wird, welches dadurch gekennzeichnet ist, dass der den zu messenden Widerstand durchfliessende Strom i von der zur Digitalisierung dienenden Ladungsausgleichsschaltung aufrechterhalten wird.
  • Vorzugsweise ist dieses Verfahren so ausgestaltet, dass eine Zeitgeberschaltung zeitliche Intervalle konstanter Grösse erzeugt, die in eine erste und eine zweite Teilzeit aufgeteilt werden, dass der Strom i alternierend während der ersten Teilzeit von einer Speisespannung bezogen und während der zweiten Teilzeit teilweise vom Integrator der Ladungsausgleichsschaltung abgezogen wird, dass während der ersten Teilzeit ein ebenfalls von der Speisespannung bezogener Strom i1 in den Integrator fliesst, dessen Ausgangsspannung in einem Komparator mit einer periodischen Sägezahnspannung verglichen wird, dass während der ersten oder der zweiten Teilzeit über eine Torschaltung hochfrequente Taktimpulse in eine Zähl- und Auswerteschaltung gelangen, wobei die Summe der Taktimpulse ein Mass für die Grösse des Widerstandes bildet, und dass für die Darstellung der Grösse des Widerstandes eine Mehrzahl von Taktimpulssummen ausgewertet wird.
  • Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der Zeichnungen erläutert. In den Zeichnungen ist
    • Figur 1 eine schematische Darstellung der konventionellen Anordnungen,
    • Figur 2 eine schematische Darstellung der Anordnung gemäss der Erfindung,
    • Figur 3 ein Schaltbild des Ausführungsbeispiels,
    • Figur 4 ein Signaldiagramm, und
    • Figur 5 eine Variante zu Figur 3.
  • Das Schema der Figur 1 veranschaulicht bekannte Anordnungen: Ein zu messender Widerstand 10 ist Bestandteil einer Sensorschaltung 12. Das erzeugte analoge Messsignal gelangt in einen A/D-Wandler 14. Das resultierende digitale Messsignal wird in einer Schaltung 16, gegebenenfalls nach Vornahme von Korrekturen, zur Darstellung in einer Digitalanzeige 18 aufbereitet. Bei der konventionellen Methode ist die Erzeugung und Umformung (z.B. Verstärkung) des analogen Messsignals unabhängig von der anschliessenden Wandlung in eine digitale Grösse, d.h. es handelt sich um ein offenes System.
  • Anders gemäss der Erfindung. Hier wirkt die digitalisierte Grösse auf die Erzeugung und Aufbereitung des analogen Messsignals zurück, symbolisiert in Figur 2 durch eine Rückführungsleitung 20. Es ergibt sich ein geschlossenes System (12', 14', 20) nach Art eines Regelkreises, welches - im Gegensatz zu offenen Systemen - Störungen aus Verstärkern und anderen Bauteilen unterdrückt (Störungen bzw. Fehler, die auch durch Integration vieler Einzelwerte in offenen Systemen nicht ausgeschaltet werden können!).
  • Figur 3 zeigt den Aufbau der Schaltung eines Ausführungsbeispiels. Ein Widerstandsnetzwerk umfasst in Reihe zwei Präzisionswiderstände R und R2 und dazwischen einen Widerstand R1, der nicht besonders genau sein muss. Parallel zu diesen Widerständen ist eine zweite Reihe geschaltet, bestehend aus einem Präzisionswiderstand R3 und dem Messwiderstand Rm (im vorliegenden Fall ein Temperaturfühler in einem Kalorimeter). Das Netzwerk liegt an einer Betriebsspannung U . In seinem unteren Teil ist eine Stromsenke vorgesehen (Differenzverstärker V2, Feldeffekttransistor T1). Im oberen Teil ist ein Integrator 21 angeschlossen (Differenzverstärker V1, Kondensator C1). Zwischen .R3 und T1 ist ein Schalter S1 vorgesehen, der alternierend entweder den Strompfad zwischen R3 und Rm oder zwischen dem Pluspol und Rm schliesst. Dem Ausgang des Integrators 20 ist ein Komparator K1 nachgeschaltet, dessen zweiter Eingang an einem Sägezahnspannungsgenerator 22 liegt (Stromquelle 23, Kondensator C2, Schalter S2). Der Ausgang des Komparators K1 ist an den D-Eingang eines Flipflop 24 geführt, welches synchron zur Taktfrequenz (clock) den Schalter S1 und ein Tor 26 steuert. Mit 28 ist der Digitalteil der Schaltung bezeichnet, welcher u.a. einen Oszillator für die Taktimpulse (clock), einen Zeitgeber für den Sägezahnspannungsgenerator 22 (Signal RAR = ramp reset), eine Zähl- und Rechenschaltung sowie die Ansteuerung für eine Digitalanzeige 30 umfasst. Der Aufbau des Dicitalteils 28, dessen wesentlichen Kern ein entsprechend programmierter Mikrocomputer bildet, ist nicht Bestandteil der Erfindung, sondern konventionell gestaltet und bedarf daher keiner Erläuterung. Anhand des Signaldiagramms der Figur 4 sei nun die Arbeitsweise der Schaltung beschrieben.
  • Zu Beginn einer einzelnen Messperiode (Rampe) T wird mit dem Signal RAR der Schalter S2 des Sägezahngenerators 22 für eine festgelegte kurze Zeitspanne geschlossen (z.B. 16 Taktimpulse). In dieser Zeitspanne sinkt die Sägezahnspannung UC2 auf Null ab. Dabei unterschreitet sie die Ausgangsspannung UV1 des Integrators 21. In diesem Moment kippt der Ausgang des Komparators K1 auf logisch Eins und bringt über das Flipflop 24 mit dem nächsten Taktimpuls
    • - den Schalter S1 in die in Figur 3 gezeichnete Stellung, und
    • - öffnet das Tor 26.
  • Dies bedeutet, dass
    • - in den Integrator 21 ein Strom i1 fliesst, so dass dessen Ausgangsspannung UV1 linear abfällt,
    • - der den Messwiderstand R durchfliessende, diesem proportionale Strom i von der Betriebsspannung gezogen wird, und
    • - Taktimpulse P durch das Tor 26 in die Zählschaltung des Digitalteils 28 gelangen.
  • Sobald die Spannung UV1die Sägezahnspannung UC2 unterschreitet, kippt der Ausgang des Komparators R1 auf logisch Null. Dies bewirkt über den Flipflop 24, dass auf den nächsten Taktimpuls
    • - das Tor 26 geschlossen und
    • - der Schalter S1 umgeschaltet wird.
  • Nun wird der Integrator 21 mit dem Strom i1 - iX (iX > i1:) entladen (die Stromsenke V2, T1 zieht den Strom iX teilweise aus dem Integrator 21 ab), und die Ausgangsspannung UV1 steigt wieder linear an, bis der Zyklus nach Abschluss der Periode T mit dem Signal RAR reu beginnt.
  • Man erkennt das Funktionsprinzip des charge balancing: Im Mittel wird dem Integrator 21 gleich viel Ladung zugeführt (Strom i1.t) wie entzogen (Strom (i1 - ix).(T-t) mit iX>i1).
  • Die während der Zeitspanne t gezählten Taktimpulse P sind ein Mass für den unbekannten Widerstand R . Wie sich leicht ableiten lässt, ergibt sich die Grösse des Widerstandes Rm aus der Formel
    Figure imgb0001

    das heisst, es findet eine reine Verhältnismessung statt, in der nur die Werte der Präzisionswiderstände Ro, R2 und R3 sowie die Zeitabschnitte T und t vorkommen. Auf einfache Weise und mit einfachen Mitteln wird also eine genaue Messung ermöglicht.
  • Zur weiteren Verbesserung der Genauigkeit und zur Erzielung der gewünschten hohen Auflösung des Ergebnisses werden die Einzelsummen der Taktimpulse P aus einer Mehrzahl von Perioden T aufsummiert und anschliessend, nach in bekannter Manier im Mikrocomputer vorgenommener Filterung'und Linearisierung sowie Rundung, als Resultat zur Anzeige 30 übermittelt.
  • Einige approximative Zahlenwerte mögen zur Verdeutlichung beitragen:
    • - Taktfrequenz (clock) 5 MHz
    • - Periode T 1 ms (wobei maximal nutzbar ca. 4.000 Impulse je Periode)
    • - Anzahl Perioden je Resultat: 1.000, d.h. Rohergebnis 4 Millionen Punkte, Anzeigeumfang (nach Rundung) 400.000 Punkte.
  • Damit konnte z.B. ein digitales Thermometer in einem Bereich von - 100 bis + 200° mit einer Auflösung von 0,001° realisiert werden.
  • Es versteht sich, dass die genannten Zahlenwerte (Taktfrequenz, Periodendauer, Anzahl Perioden je Resultat) je nach den Gegebenheiten in einem weiten Rahmen variiert werden können.
  • In Figur 5 ist eine Variante vorgestellt. Sie erlaubt bei im übrigen praktisch unverändertem Aufbau der Schaltung (lediglich die Steuerprogramme im Digitalteil müssen entsprechend angepasst werden) durch Einfügen einiger zusätzlicher Schalter ein Umschalten zwischen verschiedenen Messwiderständen.
  • Drei Messwiderstände Rm31 Rm4 und Rm5 sind über je ein Schalterpaar S30' S31 bzw. S40. S41 bzw.S50, S51 mit der Stromsenke V2, T1 verknüpft. Zusätzlich ist ein Präzisionswiderstand R6 mit Schaltern S60, S61 vorgesehen, mit dessen Hilfe eine Kalibrierung vorgenommen werden kann (bei der Kalibrierung soll sich über eine Mehrzahl von Messperioden (Rampen) ein vorgegebener Wert für die Zeitspanne t einstellen).
  • Wie in Figur 5 ersichtlich, ist jeweils nur dasjenige Schalterpaar geschlossen (z.B. S30' S31) das zum gerade zu messenden Widerstand gehört; alle anderen Schalter sind offen. Die Widerstände der Schalter bleiben ohne Einfluss auf das Resultat. Die Schaltersteuerung wird in bekannter Weise durch Signale der Zeitgeberschaltung des Digitalteils 28 vorgenommen (nicht gezeichnet), was durch entsprechendes Programmieren des Mikrocomputers geschehen kann. Ein typischer Anwendungsfall dieser Variante wäre z.B. die abwechselnde Erfassung mehrerer Temperaturmessstellen in einem System.
  • Bei entsprechender Anpassung der Auswerterechnungen im Digitalteil 28 können sowohl die Zeit t (wie im obigen Beispiel) als auch die Zeit (T - t) zur Zählung der Taktimpulse P herangezogen werden.

Claims (5)

1. Schaltung zur Messung und Digitalisierung eines Widerstandes, insbesondere eines Temperaturfühlers, dadurch gekennzeichnet, dass der Messwiderstand (Rm ) sowohl Bestandteil eines nach dem Ladungsausgleichsprinzip arbeitenden A/D-Wandlers als auch Bestandteil eines Widerstandsnetzwerkes ist, dergestalt, dass eine reine Widerstandsmessung ermöglicht wird, und dass eine Schaltung (28) zur Aufbereitung eines integrierten Messwertes aus einer Mehrzahl von Einzelwerten vorgesehen ist.
2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, dass der Komparator (K1) des A/D-Wandlers an eine periodische Sägezahnspannung (UC2) geschaltet ist.
3. Schaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzliche Schalter (S30, S31..S60, S61) vorgesehen sind, die ein Umschalten zwischen mehreren Messwiderständen .(Rm3...Rm5) erlauben.
4. Verfahren zur Messung eines elektrischen Widerstandes, insbesondere eines Temperaturfühlers, bei welchem ein von der Grösse des Widerstandes abhängiger, von einer vorgegebenen Spannung bestimmter Strom i als Mass für die Grösse des Widerstandes verwendet und mittels des Ladungsausgleichsprinzips in einen digitalen Wert gewandelt wird, dadurch gekennzeichnet, dass der den zu messenden Widerstand (R ) durchfliessende Strom ix von der zur Digitalisierung dienenden Ladungsausgleichsschaltung aufrechterhalten wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet,
- dass eine Zeitgeberschaltung (28) zeitliche Intervalle konstanter Grösse erzeugt, die in eine erste und eine zweite Teilzeit aufgeteilt werden,
- dass der Strom i alternierend
- während der ersten Teilzeit von einer Speisespannung bezogen und
- während der zweiten Teilzeit teilweise vom Integrator (21) der Ladungsausgleichsschaltung abgezogen wird,
- dass während der ersten Teilzeit ein ebenfalls von der Speisespannung bezogener Strom i1 in den Integrator fliesst, dessen Ausgangsspannung in einem Komparator (K1) mit einer periodischen Sägezahnspannung (UC2) verglichen wird,
- dass während der ersten oder der zweiten Teilzeit über eine Torschaltung (26) hochfrequente Taktimpulse in eine Zähl- und Auswerteschaltung (28) gelangen, wobei die Summe der Taktimpulse ein Mass für die Grösse des Widerstandes bildet, und
- dass für die Darstellung der Grösse des Widerstandes eine Mehrzahl von Taktimpulssummen ausgewertet wird.
EP85108822A 1984-09-06 1985-07-15 Schaltung und Verfahren zur Messung und Digitalisierung eines Widerstandes Expired - Lifetime EP0173833B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4254/84A CH665027A5 (de) 1984-09-06 1984-09-06 Verfahren zur messung und digitalisierung eines widerstandes und schaltung zur durchfuehrung des verfahrens.
CH4254/84 1984-09-06

Publications (3)

Publication Number Publication Date
EP0173833A2 true EP0173833A2 (de) 1986-03-12
EP0173833A3 EP0173833A3 (en) 1988-03-23
EP0173833B1 EP0173833B1 (de) 1992-12-09

Family

ID=4272688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108822A Expired - Lifetime EP0173833B1 (de) 1984-09-06 1985-07-15 Schaltung und Verfahren zur Messung und Digitalisierung eines Widerstandes

Country Status (5)

Country Link
US (1) US4814692A (de)
EP (1) EP0173833B1 (de)
JP (1) JPS6166971A (de)
CH (1) CH665027A5 (de)
DE (1) DE3586884D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489959A1 (de) * 1990-12-12 1992-06-17 Dieter Bohn Verfahren und Schaltungsanordnung zur Umsetzung der Signale von Brückenschaltungen mit einer aktiven Messimpedanz und wenigstens einer passiven Vergleichsimpedanz in messsignalproportionale Digitalwerte
EP0528784A1 (de) * 1991-08-16 1993-02-24 Hans O. Univ.-Prof. Dr. Leopold Verfahren zur Bestimmung einer Messgrösse
EP0675347A1 (de) * 1994-04-01 1995-10-04 Schlumberger Industries S.A. Schaltung zur Messung einer physikalischen Grösse
WO1995027189A1 (en) * 1994-04-05 1995-10-12 Philips Electronics N.V. Resistance measuring circuit, and thermal appliance, electrical thermometer and cold-generating appliance including such a measuring circuit
EP2701028A1 (de) * 2012-07-11 2014-02-26 Rohm Co., Ltd. Integrierte Schaltung mit einem externen Referenzwiderstandsnetzwerk

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3940537A1 (de) * 1989-12-07 1991-06-13 Endress Hauser Gmbh Co Anordnung zur verarbeitung von sensorsignalen
US5183124A (en) * 1990-09-07 1993-02-02 John Borchard Compact self-adjusting weighing system having stable measurement resolution
US5295746A (en) * 1992-02-05 1994-03-22 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services High resolution digital thermometer
US6215635B1 (en) * 1998-09-01 2001-04-10 Dallas Semiconductor Corporation Direct-to-digital temperature sensor
US6259615B1 (en) 1999-07-22 2001-07-10 O2 Micro International Limited High-efficiency adaptive DC/AC converter
US7038610B2 (en) * 2001-07-19 2006-05-02 Rohm Co., Ltd. Integration type A/D converter, and battery charger utilizing such converter
US7515446B2 (en) * 2002-04-24 2009-04-07 O2Micro International Limited High-efficiency adaptive DC/AC converter
US7006078B2 (en) * 2002-05-07 2006-02-28 Mcquint, Inc. Apparatus and method for sensing the degree and touch strength of a human body on a sensor
WO2004097868A2 (en) * 2003-04-25 2004-11-11 Maxwell Technologies, Inc. Charge balancing circuit for double-layer capacitors
US6806686B1 (en) 2003-04-25 2004-10-19 Maxwell Technologies, Inc. Charge balancing circuit
US6903558B1 (en) * 2003-04-25 2005-06-07 National Semiconductor Corporation Digitizing ohmmeter system
US7394209B2 (en) * 2004-02-11 2008-07-01 02 Micro International Limited Liquid crystal display system with lamp feedback
US7250777B2 (en) * 2005-03-30 2007-07-31 Mini-Mitter Co., Inc. Method and device for measuring resistance
DE102006051365B4 (de) * 2006-10-27 2011-04-21 Sartorius Ag Messverstärkungsvorrichtung und -verfahren
GB201102562D0 (en) * 2011-02-14 2011-03-30 Nordic Semiconductor Asa Analogue-to-digital converter
US9182295B1 (en) * 2011-09-09 2015-11-10 Sitime Corporation Circuitry and techniques for resistor-based temperature sensing
DE102012204569B3 (de) * 2012-03-22 2013-08-22 Continental Automotive Gmbh Vorrichtung und Verfahren zum Messen des Wertes eines Widerstands
JP6553164B2 (ja) * 2017-12-26 2019-07-31 ルネサスエレクトロニクス株式会社 アナログディジタル変換回路及び電子装置
JP7089203B1 (ja) * 2021-01-07 2022-06-22 ミツミ電機株式会社 温度測定回路及び温度測定装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2024925C3 (de) * 1969-05-28 1974-10-03 Societe D'instrumentation Schlumberger, Paris Analog-numerischer Wandler
FR2041678A5 (de) * 1969-05-28 1971-01-29 Schlumberger Cie N
US3790886A (en) * 1971-10-04 1974-02-05 Keithley Instruments Electrical measurement instrument having an improved analog to digital converter
US3895376A (en) * 1971-10-26 1975-07-15 Iwatsu Electric Co Ltd Dual slope integrating analog to digital converter
US3786350A (en) * 1972-08-21 1974-01-15 Weston Instruments Inc Linear input ohmmeter
US3810152A (en) * 1972-10-13 1974-05-07 Becton Dickinson Co Method and apparatus for conversion of a variable resistance to a time modulated signal and for analogue restoration
JPS5650232B2 (de) * 1972-11-15 1981-11-27
JPS5648835B2 (de) * 1972-11-15 1981-11-18
JPS5340473B2 (de) * 1973-08-17 1978-10-27
US3975727A (en) * 1974-06-28 1976-08-17 Technicon Instruments Corporation Automated calibration and standardization apparatus
US3918050A (en) * 1974-11-18 1975-11-04 Rockwell International Corp Analog-to-digital conversion apparatus
CA1079858A (en) * 1975-05-19 1980-06-17 Adrian K. Dorsman Analog-to-digital converter
CA1109562A (en) * 1977-01-12 1981-09-22 Robert B. Turner Voltage to rate converter circuit
US4117722A (en) * 1977-11-14 1978-10-03 Honeywell Inc. Measuring apparatus providing separate analog and digital outputs
US4309692A (en) * 1978-11-14 1982-01-05 Beckman Instruments, Inc. Integrating analog-to-digital converter
US4228394A (en) * 1978-11-16 1980-10-14 Beckman Instruments, Inc. Digital ohmmeter with electrical continuity tester
JPS5672350A (en) * 1979-11-19 1981-06-16 Advantest Corp Variable current source
GB2076547A (en) * 1980-05-16 1981-12-02 Honeywell Inc Resistance Measuring Circuit
US4390864A (en) * 1981-05-11 1983-06-28 Ormond A Newman Analog to digital converter without zero drift
DE3130499A1 (de) * 1981-07-23 1983-02-10 Abel, Konrad, Prof. Dipl.-Ing., 6834 Ketsch Verfahren und schaltungsanordnung zum messen einer temperaturdifferenz
DE3129476A1 (de) * 1981-07-25 1983-02-10 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur analog/digital-wandlung des wertes eines widerstandes
US4588984A (en) * 1983-12-12 1986-05-13 Rockwell International Corporation Clocked precision integrating analog-to-digital converter system
US4598270A (en) * 1984-10-04 1986-07-01 Rockwell International Corporation Precision integrating analog-to-digital converter system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489959A1 (de) * 1990-12-12 1992-06-17 Dieter Bohn Verfahren und Schaltungsanordnung zur Umsetzung der Signale von Brückenschaltungen mit einer aktiven Messimpedanz und wenigstens einer passiven Vergleichsimpedanz in messsignalproportionale Digitalwerte
EP0528784A1 (de) * 1991-08-16 1993-02-24 Hans O. Univ.-Prof. Dr. Leopold Verfahren zur Bestimmung einer Messgrösse
US5351010A (en) * 1991-08-16 1994-09-27 Hans Leopold Resistance ratio measurement utilizing measuring currents of opposite plural direction
EP0675347A1 (de) * 1994-04-01 1995-10-04 Schlumberger Industries S.A. Schaltung zur Messung einer physikalischen Grösse
FR2718242A1 (fr) * 1994-04-01 1995-10-06 Schlumberger Ind Sa Circuit de mesure d'une grandeur physique.
WO1995027189A1 (en) * 1994-04-05 1995-10-12 Philips Electronics N.V. Resistance measuring circuit, and thermal appliance, electrical thermometer and cold-generating appliance including such a measuring circuit
EP2701028A1 (de) * 2012-07-11 2014-02-26 Rohm Co., Ltd. Integrierte Schaltung mit einem externen Referenzwiderstandsnetzwerk

Also Published As

Publication number Publication date
US4814692A (en) 1989-03-21
JPS6166971A (ja) 1986-04-05
EP0173833B1 (de) 1992-12-09
CH665027A5 (de) 1988-04-15
DE3586884D1 (de) 1993-01-21
EP0173833A3 (en) 1988-03-23

Similar Documents

Publication Publication Date Title
EP0173833B1 (de) Schaltung und Verfahren zur Messung und Digitalisierung eines Widerstandes
DE69031498T2 (de) Analog-digital-umwandlung mit rauschverminderung
AT397311B (de) Verfahren zur bestimmung einer messgrösse sowie schaltungsanordnung zur durchführung des verfahrens
DE69508003T2 (de) Differentialkapazitivgeber
DE1288632B (de) Analog/Digital-Umsetzer mit einem Integrierverstaerker
DE3623136C2 (de)
DE2626899B2 (de) Verfahren und Vorrichtung zur Genauigkeitsüberprüfung eines Analog-Digitalwandlers
DE2258691A1 (de) Geraet zur direkten anzeige von kapazitiv gemessenen abmassen
DE3887593T2 (de) Mehrfrequenz Kapazitäts-Sensor.
DE2614697A1 (de) Verfahren und vorrichtung zur digitalen messung elektrischer spannungen sowie sehr geringer elektrischer widerstaende
DE2062073A1 (de) Integrationsgenerator zur Angabe des Numerus einer loganthmischen Funktion
DE102006028642A1 (de) Verfahren und Einrichtung zum Messen eines Zeitintervalls
DE19638204C1 (de) Vorrichtung zur Luftgütemessung
DE4039006C1 (de)
EP0376024A2 (de) Verfahren und Vorrichtung zur Korrektur von Bauteiltoleranzen bei der Verarbeitung von Signalen
DE3689556T2 (de) Gerät und Verfahren zur Umwandlung einer Spannung in einen digitalen Zählwert.
DE69101438T2 (de) Analog-digitalumsetzer.
DE2822509B2 (de) Meßschaltungsanordnung zur Messung analoger elektrischer Größen und analoger physikalischer Größen
DE2547746C3 (de) Vorrichtung zur Bildung des arithmetischen Mittelwertes einer Meßgröße
EP0877261B1 (de) PC basiertes Dosis/Dosisleistungsmesseinrichtung für ionisierende Strahlung
DE102008042765A1 (de) Vorrichtung und Verfahren zum Messen eines Widerstandswerts
DE2932371C2 (de) Analog-Digital-Konverter mit einem Komparator zur Verarbeitung bipolarer Eingangsspannungen
EP1378755B1 (de) Messschaltung mit einer Messbrücke und Messvorrichtung
DE4104172A1 (de) Verfahren zur digitalen messung eines widerstandswerts eines sensorwiderstands
DE2936722A1 (de) Verfahren und vorrichtung zur bestimmung von charakteristischen werten einer fernsprechleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: METTLER-TOLEDO AG

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: METTLER-TOLEDO AG

17Q First examination report despatched

Effective date: 19901207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921207

REF Corresponds to:

Ref document number: 3586884

Country of ref document: DE

Date of ref document: 19930121

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030704

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030710

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030711

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST