EP0167461B1 - Kohlenstoffhaltige Anode mit teilweise verengten Zapfen für Öfen zur Aluminiumherstellung durch Elektrolyse - Google Patents

Kohlenstoffhaltige Anode mit teilweise verengten Zapfen für Öfen zur Aluminiumherstellung durch Elektrolyse Download PDF

Info

Publication number
EP0167461B1
EP0167461B1 EP85420101A EP85420101A EP0167461B1 EP 0167461 B1 EP0167461 B1 EP 0167461B1 EP 85420101 A EP85420101 A EP 85420101A EP 85420101 A EP85420101 A EP 85420101A EP 0167461 B1 EP0167461 B1 EP 0167461B1
Authority
EP
European Patent Office
Prior art keywords
anode
upper portion
steel conductor
section
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85420101A
Other languages
English (en)
French (fr)
Other versions
EP0167461A1 (de
Inventor
Bernard Langon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Priority to AT85420101T priority Critical patent/ATE28904T1/de
Publication of EP0167461A1 publication Critical patent/EP0167461A1/de
Application granted granted Critical
Publication of EP0167461B1 publication Critical patent/EP0167461B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon

Definitions

  • the present invention relates to an anode assembly comprising a carbon anode with partially shrunk logs, intended for tanks for the production of aluminum by electrolysis.
  • Its main purpose is to allow a reduction in ohmic drops at the connection of anode carbon, while reducing heat losses through the anode system of these tanks and increasing the service life of aluminum-steel connections. It is particularly suitable for electrolytic cells with prebaked anodes, but can be used for electrolytic cells with continuous anodes called Soderberg.
  • Aluminum is mainly produced by electrolysis of alumina dissolved in a cryolitic bath.
  • the electrolysis furnace which allows this operation is constituted by a carbon cathode placed in a steel box and insulated by refractory insulating products surmounted by an anode or a plurality of carbon anodes immersed in the cryolitic bath which is progressively oxidized by oxygen from the decomposition of alumina.
  • the flow of current is done from top to bottom.
  • the cryolite is maintained in the liquid state, at a temperature close to its solidification temperature.
  • the usual tank operating temperatures are between 930 and 980 ° C.
  • the aluminum produced is therefore liquid and it is deposited by gravity on the cathode which is sealed.
  • the aluminum produced, or part of the aluminum produced, is regularly sucked up by a ladle and transferred to foundry furnaces and the used anodes are replaced by new anodes.
  • the operating intensities of these electrolysers are today between 100,000 and 300,000 amperes.
  • the conductors for connecting and distributing the curant are therefore chosen from industrial metals with high electrical conductivity, that is to say pure and alloyed copper and aluminum.
  • the steel part and the connection elements are at decreasing temperature from carbon to the copper or aluminum conductor. They are therefore the support of a considerable heat flux representing a significant energy loss in the electrolysis process.
  • thermal insulation of the steel part leads to an excessive rise in its temperature which will lead to an irreversible deterioration of the connection between the conductor and the steel, or even a degradation of the conductor in aluminum or copper. There is a risk that the degradation of these elements will lead to a break in electrical continuity and therefore a partial or total stoppage of the electrolysis.
  • the steel-carbon electrical connection element operating at temperatures above 700 °, introduces into the current flow a very large parasitic resistance consisting of a contact resistance and a local resistance in the carbon of the anode. where the flow of current is very concentrated around the seal. Measured under the current connection conditions, it reaches 30 to 50% of the total resistance of the anode. Many methods have been used to lower this contact resistance.
  • An effective method consists in increasing the contact surface by increasing the number or the size of the housings provided in the anode for placing the steel conductors there. Unfortunately, it comes up against an unfortunate consequence: by increasing the number and size of steel conductors, the conductive heat flux passing through these elements increases proportionally to the sections. The thermal equilibrium of the electrolytic cell is then disturbed and energy compensation is necessary. The overall balance is unfavorable, the increase in thermal losses being greater than the gain in resistance obtained on the anodic connection.
  • the object of the present invention is to allow the reduction of the contact resistances at the connection of the carbon anodes of the aluminum electrolysis cells, without however increasing the thermal losses of the electrolysis cell through the steel conductors. penetrating into the carbon anode.
  • the object of the invention is an anode assembly, intended for tanks for the production of aluminum by igneous electrolysis, according to the Hall-Héroult process, including the connection of a carbon anode at the arrival of positive current is carried out by at least one steel conductor comprising a lower part which penetrates into the carbon anode and an upper part connected to the positive current inlet, characterized in that the upper part of the steel conductor has, on at minus 30% of the length of its upper part, a cross section at most equal to 60% of the cross section of the lower part.
  • the steel conductor is a sealed log, by a known process such as casting iron, in a recess made at the top of the pre-baked anode or a stud, whose lower end is tapered, and which is forced into the Sôderberg carbonge paste.
  • FIGS 1 to 6 illustrate the implementation of the invention. These are vertical section representations.
  • Figure 1 shows the temperature distribution on a partially narrowed anode log, according to the invention.
  • FIG. 2 shows the distribution of the temperature on an anode log according to the prior art, for comparison.
  • Figures 3 to 5 show, by way of non-limiting example, different embodiments of the invention on so-called prebaked anodes.
  • FIG. 6 shows, by way of nonlimiting example, two modes of implementation of the invention on continuous anodes called Soderberg.
  • the precooked anode (1) conventionally comprises a cavity (2) in which the log (3) is sealed, most often by casting iron (4).
  • the section of the log (3) has been locally reduced (5). It is known that, on the prebaked anode tanks (3), approximately half of the heat flux passing through the anodes is discharged by the steel.
  • the mode of heat transport is essentially simple conduction.
  • the dotted line XX represents the limit between the lower part of the conductor, sealed in carbon, and the upper part.
  • FIG. 1 which relates to the invention, it has been found that the partial reduction of the section of the steel in the upper part makes it possible to locally obtain high temperature gradients. This makes it possible to precisely locate the hot and cold zones in the steel.
  • a temperature drop of 650 ° C. to 320 ° C. is obtained over 10 cm in length.
  • FIG. 2 shows how, according to the prior art and under identical conditions, the temperatures are established in the anode system when the log (8) has a constant section.
  • FIG. 1 It thus appears in FIG. 1 that the increase in temperature of the steel source of thermal losses by convection and radiation, is located just above the anode. It will therefore suffice to insulate this zone, by means of conventional thermal insulators such as alumina, or the ground electrolysis bath, or the granules of carbonaceous paste, to eliminate most of the thermal losses which occur there, while the middle and upper parts of the log and its connections (6, 7) on the conductors (9), can easily be left in the open due to their moderate temperature, of the order of 300 ° C or lower.
  • thermal insulators such as alumina, or the ground electrolysis bath, or the granules of carbonaceous paste
  • the increase in ohmic drop in the narrowed part (5) can be compensated for, and even beyond, by an increase in section of the hot part of the steel where the electrical resistivity is high; the temperature coefficient of the electrical resistivity of iron is, in fact, from 0.0147 to 500 ° C, which is an exceptionally high value among metals and it is maximum around 500 ° C.
  • the choice of the dimensions of the shrunk and non-shrunk portions of the log is not arbitrary.
  • the sections and lengths of these two parts must be such that the total thermal resistance obtained is equal to or preferably slightly greater than that of the assembly according to the prior art, the calculation being able to be easily made by those skilled in the art.
  • the invention has been found to be particularly effective if the ratio between the cross-section of the area (5). and the section of area (3) was 0.6 or less.
  • the length of the reduced part should be at least 35% of the total length of the upper part of the log.
  • the anode (1) has 4 sealing holes (2).
  • Each log has a lower part (10) 200 mm high and 150 mm in diameter, sealed with cast iron (4) in the anode, the upper part (11), over a height of 170 mm, has its section transverse reduced to 36% of the section of the lower part (90 mm in diameter).
  • the four logs (11) are connected by a rectangular cross-member (12) of large section (150 x 80 mm) which is itself connected by an aluminum-iron clad (13) to the rod (14), in aluminum which ensures the electrical connection with the anodic frame (anodic bus bar) not shown.
  • the thermal insulation of the hot zone is ensured by an alumina or crushed bath cover, up to the approximate level indicated by the dotted line AA '(2 to 3 centimeters above the connection with the narrowed part of the log).
  • the constricted part (11) of the log has been formed by a tube (15), which has the advantage of an equal current density. better heat dissipation by radiation in case of excessive overload. It can have, for example, 150 mm of external diameter and 120 mm of internal diameter, on 150 mm of height.
  • a tube which can have, for example, 150 mm of external diameter and 120 mm of internal diameter, on 150 mm of height.
  • Such an assembly can be obtained by electric welding of these components, but also by molding, because the large number of elements required on a series of one or more hundreds of electrolysis cells, each comprising several tens of anodes, makes it easy to amortize the cost of molds.
  • Another possibility consists in sawing the upper part of the log (fig. 4) so as to reduce it to a rectangular plate (16) whose cross section represents, for example, only 40% of the initial cross section.
  • the thermal insulation of the upper part of the anode is, in this case, ensured by the granules of carbonaceous paste (19) which are added periodically to reconstitute the anode as it wears through the lower part.
  • the granules of carbonaceous paste (19) which are added periodically to reconstitute the anode as it wears through the lower part.
  • mounting using a tube with the same outside diameter as the lower part is preferable.
  • the implementation of the invention makes it possible to obtain a gain of the order of 200 to 300 kwh / t of aluminum, and a considerable increase in the life of the aluminum-steel clads which becomes at least equal to that steel elements themselves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Discharge Heating (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Secondary Cells (AREA)

Claims (7)

1. Anodenanordnung für Behälter zur Herstellung von Aluminium mittels Schmelzelektrolyse nach dem Hall-Héroult-Verfahren, bei dem die Verbindung einer kohlenstoffhaltigen Anode mit der Zuleitung eines positiven Stroms durch mindestens einen Leiter aus Stahl erfolgt, der einen inneren Bereich aufweist, der in die kohlenstoffhaltige Anode eindringt und einen oberen Bereich, der mit der Zuleitung positiven Stroms verbunden ist,
dadurch gekennzeichnet, daß der obere Bereich des Stahlleiters auf mindestens 30 % der Länge des oberen Teils einen Querschnitt hat, der höchstens gleich 60 % des Querschnitts des unteren Bereichs ausmacht.
2. Anodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Stahlleiter ein gegossener Rundstab ist, der z. B. durch einen Kokillenguß in einen Hohlraum (2), der in dem oberen Teil der zuvor gehärteten Anode ausgebildet ist, hergestellt wird.
3. Anodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Stahlleiter ein Bolzen ist, dessen unteres Ende spitz zuläuft und unter Krafteinwirkung in die kohlenstoffhaltige Masse nach Söderberg, die die Anode bildet, eingeführt wird.
4. Anodenanordnung nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß der obere Teil des Stahlleiters mit reduziertem Querschnitt massiv ist.
5. Anodenanordnung nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß der obere Bereich des Stahlleiters mit reduziertem Querschnitt rohrförmig ist.
6. Anodenanordnung nach Anspruch 2, dessen Anode aus einem Block einer kohlenstoffhaltigen Masse besteht, der zuvor bei hoher Temperatur gehärtet ist und in seinem oberen Ende mit mindestens einem Gienhohlraum (2) versehen ist, dadurch gekennzeichnet, daß der untere Teil des Stahlleiters, der aus Guß besteht, in eine Gußform durch eine Gußöffnung eingelassen wird, bis auf eine Höhe, die mindestens gleich der Tiefe der Gußöffnung entspricht.
7. Anodenanordnung nach einem der Ansprüche 2-6, dadurch gekennzeichnet, daß der untere Bereich des Stahlleiters bis auf eine Höhe, die mindestens bis zur Verbindung zwischen dem unteren und dem oberen verjüngten Bereich des Stahlleiters reicht, mit einer wärmeisolierenden Substanz, wie z. B. Aluminiumoxid, das erstarrte und zerkleinerte cryolithhaltige Elektrolysenbad oder die kohlenstoffhaltige und granulierte Masse bedeckt ist.
EP85420101A 1984-05-29 1985-05-28 Kohlenstoffhaltige Anode mit teilweise verengten Zapfen für Öfen zur Aluminiumherstellung durch Elektrolyse Expired EP0167461B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85420101T ATE28904T1 (de) 1984-05-29 1985-05-28 Kohlenstoffhaltige anode mit teilweise verengten zapfen fuer oefen zur aluminiumherstellung durch elektrolyse.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8408816 1984-05-29
FR8408816A FR2565258B1 (fr) 1984-05-29 1984-05-29 Anode carbonee a rondins partiellement retrecis destinee aux cuves pour la production d'aluminium par electrolyse

Publications (2)

Publication Number Publication Date
EP0167461A1 EP0167461A1 (de) 1986-01-08
EP0167461B1 true EP0167461B1 (de) 1987-08-12

Family

ID=9304740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85420101A Expired EP0167461B1 (de) 1984-05-29 1985-05-28 Kohlenstoffhaltige Anode mit teilweise verengten Zapfen für Öfen zur Aluminiumherstellung durch Elektrolyse

Country Status (24)

Country Link
US (1) US4612105A (de)
EP (1) EP0167461B1 (de)
JP (1) JPS60258490A (de)
KR (1) KR850008192A (de)
CN (1) CN85104086A (de)
AT (1) ATE28904T1 (de)
AU (1) AU564143B2 (de)
BR (1) BR8502538A (de)
DE (1) DE3560463D1 (de)
ES (1) ES296536Y (de)
FR (1) FR2565258B1 (de)
GB (1) GB2159538B (de)
GR (1) GR851303B (de)
HU (1) HU195261B (de)
IS (1) IS1291B6 (de)
NO (1) NO852120L (de)
OA (1) OA08025A (de)
PH (1) PH20844A (de)
PL (1) PL143780B1 (de)
RO (1) RO91393B (de)
SU (1) SU1419522A3 (de)
TR (1) TR22577A (de)
YU (1) YU88885A (de)
ZA (1) ZA854050B (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO162083C (no) * 1986-06-06 1989-11-01 Norsk Hydro As Anodehenger for fastholdelse av karbonholdig anode i celler for fremstilling av aluminium.
US5380416A (en) * 1993-12-02 1995-01-10 Reynolds Metals Company Aluminum reduction cell carbon anode power connector
US5538607A (en) * 1995-04-12 1996-07-23 Pate; Ray H. Anode assembly comprising an anode bar for the production of molten metal by electrolysis
AUPQ218899A0 (en) 1999-08-13 1999-09-02 Jakovac, Vjekoslav Anode assembly comprising separation of electrical and mechanical functions of the assembly
NO315090B1 (no) * 2000-11-27 2003-07-07 Servico As Anordninger for å före ström til eller fra elektrodene i elektrolyseceller,fremgangsmåter for fremstilling derav, samt elektrolysecelle forfremstilling av aluminium ved elektrolyse av alumina löst i en smeltetelektrolytt
US7118666B2 (en) * 2001-08-27 2006-10-10 Alcoa Inc. Protecting an inert anode from thermal shock
AU2004200431B8 (en) * 2003-02-25 2009-03-12 Alcoa Usa Corp. Protecting an inert anode from thermal shock
EP2006419A1 (de) * 2007-06-22 2008-12-24 Sgl Carbon Ag Anodenanordnung mit verringertem Spannungsabfall für eine Aluminiumelektrolysezelle
WO2012100340A1 (en) * 2011-01-28 2012-08-02 UNIVERSITé LAVAL Anode and connector for a hall-heroult industrial cell
CN102108525B (zh) * 2011-04-11 2012-07-25 商丘市鑫科节能技术服务有限公司 电解铝阳极免浇注连接方法
RU2485216C1 (ru) * 2012-02-21 2013-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Электролизер для производства алюминия
RU2509831C1 (ru) * 2012-12-11 2014-03-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Анододержатель алюминиевого электролизера
RU2535438C1 (ru) * 2013-06-24 2014-12-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Кронштейн анододержателя
FR3016897B1 (fr) * 2014-01-27 2017-08-04 Rio Tinto Alcan Int Ltd Ensemble anodique et procede de fabrication associe.
AU2015282392B2 (en) * 2014-07-04 2019-03-14 Rio Tinto Alcan International Limited Anode assembly
EP3786314B1 (de) * 2014-09-08 2022-07-20 Elysis Limited Partnership Anodenvorrichtung
CN105543895B (zh) * 2016-02-26 2018-08-14 周俊和 一种预焙铝电解槽用的机械式阳极钢爪结构
CN110257860B (zh) * 2019-07-25 2020-09-25 山西双宇新能源有限公司 一种复合成型的阳极导电装置及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236753A (en) * 1961-03-21 1966-02-22 Aluminium Lab Ltd Prebake anodes for electrolytic production of aluminum and coating therefor
DE1251962B (de) * 1963-11-21 1967-10-12 The British Aluminium Company Limited, London Kathode fur eine Elektrolysezelle zur Herstellung von Aluminium und Verfahren zur Herstellung derselben
FR1536838A (fr) * 1967-09-15 1968-08-16 Huta Aluminium Goujon anodique dans les cuves électrolytiques de fabrication de l'aluminium
AU543106B2 (en) * 1980-05-23 1985-04-04 Swiss Aluminium Ltd. Cathod for aluminium production
US4526669A (en) * 1982-06-03 1985-07-02 Great Lakes Carbon Corporation Cathodic component for aluminum reduction cell

Also Published As

Publication number Publication date
AU564143B2 (en) 1987-07-30
CN85104086A (zh) 1986-11-26
EP0167461A1 (de) 1986-01-08
PL143780B1 (en) 1988-03-31
GB2159538B (en) 1988-01-13
ATE28904T1 (de) 1987-08-15
YU88885A (en) 1988-04-30
HUT37963A (en) 1986-03-28
FR2565258B1 (fr) 1986-08-29
GB2159538A (en) 1985-12-04
ES296536Y (es) 1988-04-16
GB8513425D0 (en) 1985-07-03
AU4304085A (en) 1985-12-05
OA08025A (fr) 1987-01-31
ZA854050B (en) 1986-01-29
PH20844A (en) 1987-05-08
KR850008192A (ko) 1985-12-13
HU195261B (en) 1988-04-28
TR22577A (tr) 1987-02-02
RO91393A (ro) 1988-03-30
NO852120L (no) 1985-12-02
US4612105A (en) 1986-09-16
GR851303B (de) 1985-11-25
JPS60258490A (ja) 1985-12-20
SU1419522A3 (ru) 1988-08-23
BR8502538A (pt) 1986-02-04
PL253648A1 (en) 1986-04-08
DE3560463D1 (en) 1987-09-17
FR2565258A1 (fr) 1985-12-06
ES296536U (es) 1987-10-16
IS1291B6 (is) 1987-07-07
IS3013A7 (is) 1985-11-30
RO91393B (ro) 1988-03-31

Similar Documents

Publication Publication Date Title
EP0167461B1 (de) Kohlenstoffhaltige Anode mit teilweise verengten Zapfen für Öfen zur Aluminiumherstellung durch Elektrolyse
CA2559372C (fr) Element cathodique pour l'equipement d'une cellule d'electrolyse destinee a la production d'aluminium
NO315090B1 (no) Anordninger for å före ström til eller fra elektrodene i elektrolyseceller,fremgangsmåter for fremstilling derav, samt elektrolysecelle forfremstilling av aluminium ved elektrolyse av alumina löst i en smeltetelektrolytt
FR2591325A1 (fr) Electrode de fond pour fours de fusion
EP0169100B1 (de) Wandelektrode eines metallurgischen Gefässes in Kontakt mit geschmolzenem Metall
EP0169152B1 (de) Modulartiger Kathodenblock und Kathode mit geringem Spannungsverlust für Hall-Heroult-Elektrolyseöfen
CA2496683C (fr) Procede de prechauffage d'une cuve pour la production d'aluminium par electrolyse
Felicia et al. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product
RU2348743C2 (ru) Катодный токоведущий стержень алюминиевого электролизера
NO20180882A1 (en) Anode hanger, and method of production thereof
EP1678349B1 (de) Vorrichtung und verfahren zum verbinden von inerten anoden zur herstellung von aluminium durch schmelzflusselektrolyse
FR2560613A2 (fr) Perfectionnement aux barres cathodiques comportant une semelle metallique, pour cuves d'electrolyse hall-heroult
FR2546183A1 (fr) Ecran sous-cathodique comportant des zones deformables, pour les cuves d'electrolyse hall-heroult
CA3122500A1 (fr) Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique
CN218503287U (zh) 一种铜合金真空连续铸造用加热流槽
EP4323564A1 (de) Mehrbeinige struktur und anodenanordnung
WO2020124209A1 (fr) Ensemble anodique et procede de fabrication associe
US627573A (en) Electrode.
CA2952166C (fr) Ensemble anodique
BE851926A (fr) Four electrique a resistance
CH470106A (fr) Electrode destinée à être mise en contact avec un fluide à haute température
CH342375A (fr) Dispositif d'amenée de courant dans l'alliage anodique d'une cuve de raffinage de l'aluminium
FR2495981A1 (fr) Procede de soudage sous laitier electroconducteur, flux de soudage utilise dans ledit procede, dispositif pour la mise en oeuvre dudit procede et assemblages soudes ainsi obtenus
CH396423A (fr) Cuve électrolytique pour la production d'aluminium
BE897949A (fr) Four electrique a arc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860116

17Q First examination report despatched

Effective date: 19870129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 28904

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 3560463

Country of ref document: DE

Date of ref document: 19870917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880531

Ref country code: CH

Effective date: 19880531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19881201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890528

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed

Ref document number: 85420101.9

Effective date: 19890518