EP0167102A1 - Process for the production of a protective oxide layer on a moulded article made from high-temperature material - Google Patents

Process for the production of a protective oxide layer on a moulded article made from high-temperature material Download PDF

Info

Publication number
EP0167102A1
EP0167102A1 EP85107906A EP85107906A EP0167102A1 EP 0167102 A1 EP0167102 A1 EP 0167102A1 EP 85107906 A EP85107906 A EP 85107906A EP 85107906 A EP85107906 A EP 85107906A EP 0167102 A1 EP0167102 A1 EP 0167102A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
temperature
hours
aluminum
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85107906A
Other languages
German (de)
French (fr)
Other versions
EP0167102B1 (en
Inventor
Detlev Dr. Stöver
Engelbert Heimes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19843447228 external-priority patent/DE3447228A1/en
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to AT85107906T priority Critical patent/ATE31558T1/en
Publication of EP0167102A1 publication Critical patent/EP0167102A1/en
Application granted granted Critical
Publication of EP0167102B1 publication Critical patent/EP0167102B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for producing an oxidic protective layer on a molded body made of high-temperature material, which contains little or no aluminum, in which a thin aluminum-containing alloy layer is produced in the metallic bare surface and the surface treated in this way is subjected to a diffusion annealing and oxidation process.
  • oxide layers which are either formed by oxidation of the base material itself or - as stated in US Pat. No. 3,129,069 - by alloying the surface with an oxide layer former how especially aluminum and then oxidation are generated.
  • the workpiece to be protected is briefly melted Dipped aluminum and then freed of any aluminum residues, after which the thin aluminum-containing alloy layer of the surface forms an oxide protective layer on the nickel-based alloy when the workpiece is heated in an oxygen-containing environment.
  • the protective layer formation described above was developed in particular for turbine blades which are used in an oxidizing environment.
  • the aim of the invention is therefore a surface protection which better protects the base material against the access of permeating hydrogen.
  • the basic materials used are, in particular, aluminum alloys with low-temperature high-temperature materials as defined in DIN standard 17006, sheet 3.
  • an oxide protective layer of the type mentioned at the outset which is characterized in that the aluminum-containing surface is initially at least ten hours at a temperature of at least 900 ° C. in which the material of the shaped body has not yet changed, glows in hydrogen and, after cooling to a temperature below 700 ° C., is treated for at least 5 to 10 hours in a mixture of inert gas containing steam and with a few vpm of oxygen and finally at 900-950 ° C. a mixture of water vapor-containing inert gas with hydrogen with an H 2 : H 2 0 ratio of about 1: 1 glows for at least one day.
  • the formation of the oxide layer in the manner mentioned surprisingly results in a significantly increased barrier effect of the layer against hydrogen permeation.
  • argon in particular serves as the inert gas.
  • the temperature is at least 900 ° C, but the alloy should not change, which means that the temperature is limited upwards.
  • Hastelloy X ( R ) the temperature of the workpiece should be below 1000 ° C. stay. The usual temperatures are between 900 and 950 ° C.
  • the desired removal of residual oxides and enrichment of chromium in the surface requires a certain reaction time, which should in particular be at least 10 hours.
  • the workpieces provided with an aluminum-containing surface layer are preferably annealed in hydrogen for about 30 hours.
  • the temperature is below 700 ° C down to temperatures of about 300 ° C, below which the reaction and diffusion rates are greatly reduced.
  • the water vapor content of the gas corresponds approximately to the vapor pressure of warm water with temperatures around 50 ° C.
  • the oxygen content is low and is around 10–6 bar at a few vpm 0 2 or on the order of magnitude.
  • This "nucleating treatment” takes place - depending on the temperature - for at least 5 hours, the time period being "unlimited” and only being controlled by practicality considerations.
  • an approximately 0.1 ⁇ m “seed layer” is formed.
  • the "high temperature oxidation" in stage 3 takes place at the highest possible temperature, which with the Structural stability of the base material is compatible. Temperatures between 900 and 950 ° C. are expediently used.
  • the cations diffuse through the oxide layer, the growth of which can be described by a parabolic time law, with the formation of protective layers about 1 - 2 ⁇ m thick in a hydrogen / water vapor mixture in the region of 1: 1, some of which Percentages are present in inert gas.
  • Mixtures of argon with about 5% hydrogen, which are saturated with water vapor at ambient temperature, are useful, for example.
  • the treatment time is about 30-70 hours and gives layer thicknesses in the range of 1-2 ⁇ m.
  • the hydrogen content in this mixture determines the oxidation potential of the gas, which is in the range of 10 -16 . Under these conditions, iron and nickel are not oxidized and only Cr 2 0 3 and Al 2 0 3 are formed.
  • Hastelloy X (R) sample was provided with an oxide layer which offers considerable resistance to the permeation of hydrogen.
  • the aluminum alloy layer to be subjected to the three-stage oxide layer formation is obtained in the following way: An aluminum bath is used for the immersion treatment, the temperature of which is only slightly above the melting point lies. The cleaned, not preheated workpiece is briefly immersed in this bath, on average for about 30 to 40 seconds. During this time, only the areas close to the surface are accessible to the aluminum, since the diffusion rate of the aluminum in the solid material is so slow at about 700 ° C that it does not penetrate deeper. The diffusion layer thickness achieved will generally be about 5 to 10 microns.
  • the workpiece is cleaned before diving.
  • pretreatment of the surface with medium-fine emery paper in particular 220 grit; grain size of about 100 ⁇ m
  • medium-fine emery paper in particular 220 grit; grain size of about 100 ⁇ m
  • the surface is freed of all impurities and, in particular, degreased, for which a treatment in an ultrasonic bath, which consists of a fat-dissolving solvent or solvent mixture, has proven useful.
  • the immersion treatment in the molten aluminum bath creates an aluminum coating in addition to the aluminum-containing diffusion layer adjacent to the surface.
  • the oxidation of this aluminum coating would generally result in an aluminum oxide surface layer.
  • a protective layer is formed in this way, but this protective layer prevents complete oxidation of "foreign aluminum" so that adjacent to the protective layer there are areas of the workpiece which are near the surface and which may or may show undesired changes, in particular embrittlement.
  • the aluminum layer produced is removed again by etching treatment, which is only intended to remove the surface application of aluminum.
  • Dipping into warm 20 to 25% sodium hydroxide solution (depending on the thickness of the aluminum coating for about 10 to 15 minutes) with subsequent treatment in approximately half-concentrated nitric acid with intermediate rinsing and subsequent thorough removal of the etching agents has proven effective.
  • a time limitation of the etching process largely prevents the etching agents from penetrating into the workpiece surface and removing the diffused aluminum.
  • Hastelloy X ( R ) Disc-shaped alloy samples of Hastelloy X ( R ) with a diameter of 45 mm and a thickness of 2.5 mm were cleaned and treated with emery paper (220 grit) to achieve a smooth sanded surface. These disks were then placed in an ultrasonic bath with an acetone / methanol mixture (1: 1) and cleaned for approximately 60 seconds. These samples were immersed in a molten aluminum bath of pure aluminum (99.8%) at approximately 700 ° C. for approximately 40 seconds.
  • This immersion treatment leads, as metallographic follow-up examinations have shown, to a sample surface with a two-layer layer, the outer zone of which consists almost exclusively of aluminum, while a second zone in the form of an aluminum diffusion layer is formed adjacent to the sample surface, the thickness of which is approximately 1 to 5 ⁇ m .
  • the cooled samples were chemically etched to remove the aluminum coating and expose the aluminum diffusion layer.
  • the samples were first immersed in warm (80 ° C) 20% sodium hydroxide solution for 10 minutes, which removes the aluminum layer.
  • the intermediate rinsed samples were then immersed in a nitric acid bath made of 1: 1 65% nitric acid diluted with water. This aftertreatment is used to remove a dark coating that remains in sodium hydroxide solution after the immersion treatment.
  • the samples treated in this way were heated to 950 ° C. in a hydrogen atmosphere in 10 hours and left there for 30 hours. After cooling to 650 ° C within 13 hours, the hydrogen was replaced by a water vapor-containing argon / oxygen mixture, which 2.5 vpm 0 2 and 180 mbar H 2 0 contained. The samples were left in this atmosphere for 29 hours, after which the oxygen content of the argon was replaced by 5% hydrogen and the water vapor content was reduced to 30 mbar. In this atmosphere, the samples were heated to 950 ° C. within 10 hours and kept at this temperature for 72 hours. The samples in the argon / hydrogen / water vapor mixture were then cooled to room temperature in about 12 hours.
  • the hydrogen inhibition factors of the samples treated in this way were between 1800 and 2200, while untreated comparative samples usually give values between 400 and 600.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • ing And Chemical Polishing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

1. A process for producing a protective oxide layer on a shaped article made from high-temperature material with no or little aluminium content, in which a thin alloy layer containing aluminium is produced in the untarnished surface and the surface thus treated is subjected to a diffusion annealing and oxidizing operation, characterised by first (a) annealing the surface containing aluminium in hydrogen for at least ten hours at a temperature not less than 900 degrees C but at which the material of the shaped article is not yet altered, and after cooling (b) to a temperature below 700 degrees C treating it for not less than 5 hours in a mixture of steam-containing inert gas and some vpm oxygen, and finally (c) annealing it at 900-950 degrees C for at least 24 hours in a mixture of steam-containing inert gas and hydrogen in a volume ratio of H2 : H2 O of about 1 : 1.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Erzeugung einer oxidischen Schutzschicht auf einem Formkörper aus Hochtemperaturwerkstoff, der kein oder wenig Aluminium enthält, bei dem in der metallisch blanken Oberfläche eine dünne aluminiumhaltige Legierungsschicht erzeugt und die so behandelte Oberfläche einem Diffusionsglühen und Oxidationsprozeß unterworfen wird.The invention relates to a method for producing an oxidic protective layer on a molded body made of high-temperature material, which contains little or no aluminum, in which a thin aluminum-containing alloy layer is produced in the metallic bare surface and the surface treated in this way is subjected to a diffusion annealing and oxidation process.

Es ist bekannt, metallische Werkstoffe gegen Korrosion und insbesondere Oxidation speziell bei hohen Temperaturen durch deckende Oxidschichten zu schützen, die entweder durch Oxidation des Basismaterials selbst gebildet werden oder - wie in der US-PS 3 129 069 angegeben - durch Legieren der Oberfläche mit einem Oxidschichtbildner wie insbesondere Aluminium und anschließend Oxidation erzeugt werden.It is known to protect metallic materials against corrosion and in particular oxidation, especially at high temperatures, by covering oxide layers, which are either formed by oxidation of the base material itself or - as stated in US Pat. No. 3,129,069 - by alloying the surface with an oxide layer former how especially aluminum and then oxidation are generated.

Letzteres Verfahren wurde insbesondere für Nickelbasislegierungen entwickelt, die selbst zu wenig Aluminium für die Bildung einer dichten deckenden Aluminiumoxidschicht enthalten.The latter process was developed especially for nickel-based alloys, which themselves contain too little aluminum to form a dense covering aluminum oxide layer.

Gemäß der oben genannten US-PS wird das zu schützende Werkstück kurzzeitig in geschmolzenes Aluminium getaucht und dann von anhängenden Aluminiumresten befreit, wonach die dünne aluminiumhaltige Legierungsschicht der Oberfläche bei zyklischer Aufheizung des Werkstücks in sauerstoffhaltigem Milieu eine Oxidschutzschicht auf der Nickelbasislegierung bildet.According to the above-mentioned US patent, the workpiece to be protected is briefly melted Dipped aluminum and then freed of any aluminum residues, after which the thin aluminum-containing alloy layer of the surface forms an oxide protective layer on the nickel-based alloy when the workpiece is heated in an oxygen-containing environment.

Die vorstehend beschriebene Schutzschichtbildung wurde insbesondere für Turbinenschaufeln entwickelt, die in oxidierendem Milieu eingesetzt werden.The protective layer formation described above was developed in particular for turbine blades which are used in an oxidizing environment.

Es wurde nun festgestellt, daß derart geschützte Werkstücke in nichtoxidierender Atmosphäre, insbesondere in wasserstoffhaltigen Gasen Veränderungen erleiden, da die gebildeten Oxidschutzfilme eine gewisse Durchlässigkeit für Wasserstoff haben.It has now been found that workpieces protected in this way undergo changes in a non-oxidizing atmosphere, in particular in gases containing hydrogen, since the oxide protective films formed have a certain permeability to hydrogen.

Ziel der Erfindung ist daher ein Oberflächenschutz, der das Basismaterial besser gegen den Zugriff von permeierendem Wasserstoff schützt. Als Basismateralien kommen dabei insbesondere mit Aluminium niedrig legierte Hochtemperaturwerkstoffe in Betracht, wie sie in der DIN-Norm 17006, Blatt 3, definiert sind.The aim of the invention is therefore a surface protection which better protects the base material against the access of permeating hydrogen. The basic materials used are, in particular, aluminum alloys with low-temperature high-temperature materials as defined in DIN standard 17006, sheet 3.

Dieses Ziel wird gemäß der Erfindung durch eine Oxidschutzschichtbildung der eingangs genannten Art erreicht, die dadurch gekennzeichnet ist, daß man die aluminiumhaltige Oberfläche zunächst zumindest zehn Stunden lang bei einer Temperatur von zumindest 900 °C, bei der sich das Material des Formkörpers jedoch noch nicht verändert, in Wasserstoff glüht und nach Abkühlung auf eine Temperatur unter 700 °C wenigstens 5 bis 10 Stunden in einer Mischung von wasserdampfhaltigem Inertgas mit einigen vpm Sauerstoff behandelt und schließlich bei 900 - 950 °C in einer Mischung von wasserdampfhaltigem Inertgas mit Wasserstoff mit einem H2 : H20-Verhältnis von etwa 1 : 1 zumindest einen Tag lang glüht.This object is achieved according to the invention by forming an oxide protective layer of the type mentioned at the outset, which is characterized in that the aluminum-containing surface is initially at least ten hours at a temperature of at least 900 ° C. in which the material of the shaped body has not yet changed, glows in hydrogen and, after cooling to a temperature below 700 ° C., is treated for at least 5 to 10 hours in a mixture of inert gas containing steam and with a few vpm of oxygen and finally at 900-950 ° C. a mixture of water vapor-containing inert gas with hydrogen with an H 2 : H 2 0 ratio of about 1: 1 glows for at least one day.

Durch die Oxidschichtbildung in der genannten Art wird überraschenderweise eine deutlich erhöhte Barrierenwirkung der Schicht gegenüber einer Wasserstoffpermeation erreicht. Bei der genannten Oxidschichtbildung dient insbesondere Argon als Inertgas.The formation of the oxide layer in the manner mentioned surprisingly results in a significantly increased barrier effect of the layer against hydrogen permeation. In the case of the oxide layer formation mentioned, argon in particular serves as the inert gas.

Die erfindungsgemäße Oxidschichtbildung umfaßt im wesentlichen drei Abschnitte:

  • 1) ein Glühen in Wasserstoff;
  • 2) eine sog. "Tieftemperaturoxidation" und
  • 3) eine "Hochtemperaturoxidation".
The oxide layer formation according to the invention essentially comprises three sections:
  • 1) a glow in hydrogen;
  • 2) a so-called "low temperature oxidation" and
  • 3) "high temperature oxidation".

In der ersten Stufe erfolgt (bei chromhaltigen Legierungen) eine gewisse Chromanreicherung in der Oberfläche und gleichzeitig eine Entfernung restlicher Zunderschichten und Oxide. Zu diesem Zweck beträgt die Temperatur zumindest 900 °C, wobei sich jedoch die Legierung nicht ändern soll, was eine Begrenzung der Temperatur nach oben bedingt. Bei Hastelloy X(R) soll die Temperatur des Werkstücks dabei unter 1000 °C . bleiben. übliche Temperaturen liegen mithin zwischen 900 und 950 °C.In the first stage (with chromium-containing alloys) there is a certain amount of chromium in the surface and at the same time a removal of remaining scale layers and oxides. For this purpose, the temperature is at least 900 ° C, but the alloy should not change, which means that the temperature is limited upwards. With Hastelloy X ( R ) the temperature of the workpiece should be below 1000 ° C. stay. The usual temperatures are between 900 and 950 ° C.

Die gewünschte Entfernung von Restoxiden und Anreicherung von Chrom in der Oberfläche erfordert eine gewisse Reaktionsdauer, die insbesondere zumindest 10 Stunden betragen soll. Vorzugsweise werden die mit aluminiumhaltiger Oberflächenschicht versehenen Werkstücke etwa 30 Stunden in Wasserstoff geglüht.The desired removal of residual oxides and enrichment of chromium in the surface requires a certain reaction time, which should in particular be at least 10 hours. The workpieces provided with an aluminum-containing surface layer are preferably annealed in hydrogen for about 30 hours.

In der zweiten Phase erfolgt bei relativ niedriger Temperatur ein oberflächennaher Angriff durch Sauerstoff. In dieser zweiten Phase liegt die Temperatur unter 700 °C bis herab zu Temperaturen von etwa 300 °C, unterhalb derer die Reaktions- und Diffusionsgeschwindigkeit stark vermindert sind. Der Wasserdampfanteil des Gases entspricht etwa dem Dampfdruck von warmem Wasser mit Temperaturen um 50 °C. Der Sauerstoffanteil ist gering und liegt bei einigen vpm 02 bzw. größenordnungsmäßig bei etwa 10-6 bar. Diese "keimbildende Behandlung" erfolgt - je nach Temperatur - mindestens 5 Stunden lang, wobei die Zeitdauer "nach oben unbegrenzt" ist und lediglich von Praktikabilitätsüberlegungen beherrscht wird. Es bildet sich in dieser zweiten Verfahrensstufe eine etwa 0,1 µm "Keimschicht".In the second phase, oxygen attacks the surface at a relatively low temperature. In this second phase, the temperature is below 700 ° C down to temperatures of about 300 ° C, below which the reaction and diffusion rates are greatly reduced. The water vapor content of the gas corresponds approximately to the vapor pressure of warm water with temperatures around 50 ° C. The oxygen content is low and is around 10–6 bar at a few vpm 0 2 or on the order of magnitude. This "nucleating treatment" takes place - depending on the temperature - for at least 5 hours, the time period being "unlimited" and only being controlled by practicality considerations. In this second stage of the process, an approximately 0.1 μm “seed layer” is formed.

Die "Hochtemperaturoxidation" in Stufe 3 erfolgt bei möglichst hoher Temperatur, die mit der Gefügestabilität des Basiswerkstoffs vereinbar ist. Zweckmäßigerweise werden Temperaturen zwischen 900 und 950 °C angewandt. In dieser Phase erfolgt eine Diffusion der Kationen durch die Oxidschicht, deren Wachstum durch ein parabolisches Zeitgesetz zu beschreiben ist, unter Bildung von etwa 1 - 2 µm dicken Schutzschichten in einer Wasserstoff/Wasserdampf-Mischung in der Gegend von 1 : 1, die zu einigen Prozenten in Inertgas vorliegen. Zweckmäßig sind beispielsweise Mischungen von Argon mit etwa 5 % Wasserstoff, die bei Umgebungstemperatur mit Wasserdampf aufgesättigt werden. Die Behandlungsdauer beträgt etwa 30 - 70 Stunden und ergibt Schichtdicken im Bereich von 1 - 2 µm. Der Wasserstoffanteil in dieser Mischung bestimmt das Oxidationspotential des Gases, das in der Gegend von 10-16 liegt. Unter diesen Bedingungen werden Eisen und Nickel nicht oxidiert und nur Cr203 und Al203 gebildet.The "high temperature oxidation" in stage 3 takes place at the highest possible temperature, which with the Structural stability of the base material is compatible. Temperatures between 900 and 950 ° C. are expediently used. In this phase, the cations diffuse through the oxide layer, the growth of which can be described by a parabolic time law, with the formation of protective layers about 1 - 2 µm thick in a hydrogen / water vapor mixture in the region of 1: 1, some of which Percentages are present in inert gas. Mixtures of argon with about 5% hydrogen, which are saturated with water vapor at ambient temperature, are useful, for example. The treatment time is about 30-70 hours and gives layer thicknesses in the range of 1-2 µm. The hydrogen content in this mixture determines the oxidation potential of the gas, which is in the range of 10 -16 . Under these conditions, iron and nickel are not oxidized and only Cr 2 0 3 and Al 2 0 3 are formed.

Nachfolgend wird die Erfindung anhand eines Beispiels beschrieben, und zwar wurde eine Hastelloy X(R) Probe mit einer Oxidschicht versehen, die der Permeation von Wasserstoff einen beachtlichen Widerstand entgegensetzt.The invention is described below using an example, namely a Hastelloy X (R) sample was provided with an oxide layer which offers considerable resistance to the permeation of hydrogen.

Die der dreistufigen Oxidschichtbildung zu unterwerfende Aluminiumlegierungsschicht wird auf folgende Weise erhalten: Für die Tauchbehandlung wird ein Aluminiumbad verwendet, dessen Temperatur nur wenig über dem Schmelzpunkt liegt. In dieses Bad wird das gereinigte, nicht vorgewärmte Werkstück kurzzeitig getaucht, und zwar im Mittel für etwa 30 bis 40 Sekunden. In dieser Zeit werden nur die oberflächennahen Bereiche für das Aluminium zugänglich, da die Diffusionsgeschwindigkeit des Aluminiums im festen Material bei etwa 700 °C so langsam verläuft, daß ein tieferes Eindringen nicht erfolgt. Die erreichte Diffusionsschichtdicke wird dabei im allgemeinen bei etwa 5 bis 10 µm liegen.The aluminum alloy layer to be subjected to the three-stage oxide layer formation is obtained in the following way: An aluminum bath is used for the immersion treatment, the temperature of which is only slightly above the melting point lies. The cleaned, not preheated workpiece is briefly immersed in this bath, on average for about 30 to 40 seconds. During this time, only the areas close to the surface are accessible to the aluminum, since the diffusion rate of the aluminum in the solid material is so slow at about 700 ° C that it does not penetrate deeper. The diffusion layer thickness achieved will generally be about 5 to 10 microns.

Vor dem Tauchen wird das Werkstück gereinigt. Insbesondere wird durch Vorbehandlung der Oberfläche mit mittelfeinem Schmirgelpapier (insbesondere 220 grit; Körnung von etwa 100 µm) für eine "gestörte" Oberflächenschicht gesorgt, die rasch Aluminium aufnehmen kann. Die Oberfläche wird vor der Tauchbehandlung von allen Verunreinigungen befreit und insbesondere entfettet, wofür sich eine Behandlung im Ultraschallbad bewährt hat, das aus einem fettlösenden Lösungsmittel oder Lösungsmittelgemisch besteht.The workpiece is cleaned before diving. In particular, pretreatment of the surface with medium-fine emery paper (in particular 220 grit; grain size of about 100 μm) ensures a "disturbed" surface layer which can quickly absorb aluminum. Before the immersion treatment, the surface is freed of all impurities and, in particular, degreased, for which a treatment in an ultrasonic bath, which consists of a fat-dissolving solvent or solvent mixture, has proven useful.

Durch die Tauchbehandlung im Aluminiumschmelzbad wird neben der an die Oberfläche angrenzenden aluminiumhaltigen Diffusionsschicht ein Aluminium- überzug gebildet. Die Oxidation dieses Aluminiumüberzuges würde generell zu einer Aluminiumoxidoberflächenschicht führen. Es hat sich jedoch gezeigt, daß auf diese Weise zwar eine Schutzschicht gebildet wird, jedoch verhindert diese Schutzschicht eine vollständige Oxidation des "Fremdaluminiums", so daß angrenzend an die Schutzschicht oberflächennahe Bereiche des Werkstückes vorliegen, die unerwünschte Veränderungen, insbesondere Versprödungen, zeigen oder zeigen können.The immersion treatment in the molten aluminum bath creates an aluminum coating in addition to the aluminum-containing diffusion layer adjacent to the surface. The oxidation of this aluminum coating would generally result in an aluminum oxide surface layer. However, it has been shown that a protective layer is formed in this way, but this protective layer prevents complete oxidation of "foreign aluminum" so that adjacent to the protective layer there are areas of the workpiece which are near the surface and which may or may show undesired changes, in particular embrittlement.

Aus diesem Grunde wird die erzeugte Aluminiumschicht durch Ätzbehandlung wieder entfernt, die lediglich den Oberflächenauftrag von Aluminium entfernen soll. Bewährt hat sich ein Tauchen in warme etwa 20- bis 25%ige Natronlauge (je nach Dicke des Aluminiumüberzuges etwa 10 bis 15 Minuten lang) mit nachfolgender Behandlung in etwa halbkonzentrierter Salpetersäure mit Zwischenspülung und abschließender gründlicher Entfernung der Ätzmittel. Durch eine zeitliche Begrenzung des Ätzvorgangs wird das Eindrigen der Ätzmittel in die Werkstückoberfläche und das Herauslösen des eindiffundierten Aluminiums weitestgehend vermieden.For this reason, the aluminum layer produced is removed again by etching treatment, which is only intended to remove the surface application of aluminum. Dipping into warm 20 to 25% sodium hydroxide solution (depending on the thickness of the aluminum coating for about 10 to 15 minutes) with subsequent treatment in approximately half-concentrated nitric acid with intermediate rinsing and subsequent thorough removal of the etching agents has proven effective. A time limitation of the etching process largely prevents the etching agents from penetrating into the workpiece surface and removing the diffused aluminum.

Nachfolgend wird die Erfindung anhand eines Beispiels beschrieben.The invention is described below using an example.

Beispielexample

Scheibenförmige Legierungsproben von Hastelloy X(R) mit einem Durchmesser von 45 mm und einer Dicke von 2,5 mm wurden gesäubert und mit Schmirgelpapier (220 grit) behandelt zur Erzielung einer glatten geschmirgelten Oberfläche. Diese Scheiben wurden dann in ein Ultraschallbad mit einem Aceton/Methanol-Gemisch (1 : 1) gebracht und ca. 60 Sekunden lang gereinigt. Diese Proben wurden in ein Aluminiumschmelzbad von Reinaluminium (99,8 %) von etwa 700 °C für ca. 40 sec getaucht. Diese Tauchbehandlung führt, wie metallographische Nachuntersuchungen zeigten, zu einer Probenoberfläche mit einer zweilagigen Schicht, deren äußere Zone fast ausschließlich aus Aluminium besteht, während angrenzend an die Probenoberfläche eine zweite Zone in Form einer Aluminiumdiffusionsschicht ausgebildet ist, deren Dicke etwa bei 1 bis 5 µm liegt.Disc-shaped alloy samples of Hastelloy X ( R ) with a diameter of 45 mm and a thickness of 2.5 mm were cleaned and treated with emery paper (220 grit) to achieve a smooth sanded surface. These disks were then placed in an ultrasonic bath with an acetone / methanol mixture (1: 1) and cleaned for approximately 60 seconds. These samples were immersed in a molten aluminum bath of pure aluminum (99.8%) at approximately 700 ° C. for approximately 40 seconds. This immersion treatment leads, as metallographic follow-up examinations have shown, to a sample surface with a two-layer layer, the outer zone of which consists almost exclusively of aluminum, while a second zone in the form of an aluminum diffusion layer is formed adjacent to the sample surface, the thickness of which is approximately 1 to 5 μm .

Die erkalteten Proben wurden zur Entfernung des Aluminiumüberzuges und Freilegung der Aluminiumdiffusionsschicht chemisch abgeätzt.The cooled samples were chemically etched to remove the aluminum coating and expose the aluminum diffusion layer.

Dazu wurden die Proben zunächst 10 Minuten in warme (80 °C) 20%ige Natronlauge getaucht, wodurch die Aluminiumschicht entfernt wird. Die zwischengespülten Proben wurden dann in ein Salpetersäurebad aus 1 : 1 mit Wasser verdünnter 65%iger Salpetersäure getaucht. Diese Nachbehandlung dient zur Entfernung eines dunklen Belages, der nach der Tauchbehandlung in Natronlauge verbleibt.For this purpose, the samples were first immersed in warm (80 ° C) 20% sodium hydroxide solution for 10 minutes, which removes the aluminum layer. The intermediate rinsed samples were then immersed in a nitric acid bath made of 1: 1 65% nitric acid diluted with water. This aftertreatment is used to remove a dark coating that remains in sodium hydroxide solution after the immersion treatment.

Die so behandelten Proben wurden in 10 Stunden in Wasserstoffatmosphäre auf 950 °C aufgeheizt und dort 30 Stunden lang belassen. Nach Abkühlung auf 650 °C innerhalb von 13 Stunden wurde der Wasserstoff gegen eine wasserdampfhaltige Argon/Sauerstoffmischung ausgetauscht, die 2,5 vpm 02 und 180 mbar H20 enthielt. In dieser Atmosphäre wurden die Proben 29 Stunden lang belassen, wonach der Sauerstoffanteil des Argons gegen 5 % Wasserstoff ausgetauscht und der Wasserdampfanteil auf 30 mbar abgesenkt wurde. In dieser Atmosphäre wurden die Proben innerhalb von 10 Stunden auf 950 °C aufgeheizt und 72 Stunden lang bei dieser Temperatur gehalten. Danach wurden die Proben in der Argon/Wasserstoff/Wasserdampfmischung innerhalb von etwa 12 Stunden auf Zimmertemperatur abgekühlt.The samples treated in this way were heated to 950 ° C. in a hydrogen atmosphere in 10 hours and left there for 30 hours. After cooling to 650 ° C within 13 hours, the hydrogen was replaced by a water vapor-containing argon / oxygen mixture, which 2.5 vpm 0 2 and 180 mbar H 2 0 contained. The samples were left in this atmosphere for 29 hours, after which the oxygen content of the argon was replaced by 5% hydrogen and the water vapor content was reduced to 30 mbar. In this atmosphere, the samples were heated to 950 ° C. within 10 hours and kept at this temperature for 72 hours. The samples in the argon / hydrogen / water vapor mixture were then cooled to room temperature in about 12 hours.

Die Wasserstoffhemmfaktoren der so behandelten Proben lagen zwischen 1800 und 2200, während unbehandelte Vergleichsproben üblicherweise Werte zwischen 400 und 600 ergeben.The hydrogen inhibition factors of the samples treated in this way were between 1800 and 2200, while untreated comparative samples usually give values between 400 and 600.

Claims (5)

1. Verfahren zur Erzeugung einer oxidischen Schutzschicht auf einem Formkörper aus Hochtemperaturwerkstoff, der kein oder wenig Aluminium enthält, bei dem in der metallisch blanken Oberfläche eine dünne aluminiumhaltige Legierungsschicht erzeugt und die so behandelte Oberfläche einem Diffusionsglühen und Oxidationsprozeß unterworfen wird,
dadurch gekennzeichnet, daß man die aluminiumhaltige Oberfläche (a) zunächst zumindest zehn Stunden lang bei einer Temperatur von zumindest 900 °C, bei der sich das Material des Formkörpers jedoch noch nicht verändert, in Wasserstoff glüht und nach Abkühlung (b) auf eine Temperatur unter 700 °C wenigstens 5 bis 10 Stunden in einer Mischung von wasserdampfhaltigem Inertgas mit einigen vpm Sauerstoff behandelt und schließlich (c) bei 900 - 950 °C in einer Mischung von wasserdampfhaltigem Inertgas mit Wasserstoff mit einem H2 : H20-Verhältnis von etwa 1 : 1 zumindest einen Tag lang glüht.
1. A process for producing an oxidic protective layer on a molded body made of high-temperature material, which contains little or no aluminum, in which a thin aluminum-containing alloy layer is produced in the bare metal surface and the surface treated in this way is subjected to a diffusion annealing and oxidation process,
characterized in that the aluminum-containing surface (a) is initially annealed in hydrogen for at least ten hours at a temperature of at least 900 ° C, at which the material of the shaped body does not change, however, and after cooling (b) to a temperature below 700 ° C for at least 5 to 10 hours in a mixture of water vapor-containing inert gas with some vpm oxygen and finally (c) at 900 - 950 ° C in a mixture of water vapor-containing inert gas with hydrogen with an H 2 : H 2 0 ratio of about 1: 1 glows for at least a day.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß man als Inertgas Argon verwendet.
2. The method according to claim 1,
characterized in that argon is used as the inert gas.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß man die Wasserstoff-Glühbehandlung (a) 30 Stunden lang bei 900 - 950 °C durchführt.
3. The method according to claim 1 or 2,
characterized, that the hydrogen annealing treatment (a) is carried out at 900-950 ° C. for 30 hours.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Tieftemperaturoxidation (b) bei 625 °C etwa einen Tag lang in einer 2 - 3 vpm 02 enthaltenden Mischung von Argon mit etwa 10 - 20 % Wasserstoff durchführt.4. The method according to any one of the preceding claims, characterized in that the low-temperature oxidation (b) at 625 ° C for about a day in a 2-3 vpm 0 2 containing mixture of argon with about 10 - 20% hydrogen. 5. Verfahren nach zumindest einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß man die Hochtemperaturoxidation (c) 30 bis 70 Stunden lang in einer bei Zimmertemperatur mit Wasserdampf gesättigten Mischung von Argon mit 5 % Wasserstoff durchführt.
5. The method according to at least one of the preceding claims,
characterized in that the high-temperature oxidation (c) is carried out for 30 to 70 hours in a mixture of argon with 5% hydrogen saturated with water vapor at room temperature.
EP85107906A 1984-06-30 1985-06-26 Process for the production of a protective oxide layer on a moulded article made from high-temperature material Expired EP0167102B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85107906T ATE31558T1 (en) 1984-06-30 1985-06-26 PROCESS FOR CREATING AN OXIDE PROTECTIVE LAYER ON A MOLDED BODY MADE FROM HIGH TEMPERATURE MATERIAL.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3424164 1984-06-30
DE3424164 1984-06-30
DE3447228 1984-12-22
DE19843447228 DE3447228A1 (en) 1984-12-22 1984-12-22 Process for generating an oxidic protective layer on a high-temperature material moulding

Publications (2)

Publication Number Publication Date
EP0167102A1 true EP0167102A1 (en) 1986-01-08
EP0167102B1 EP0167102B1 (en) 1987-12-23

Family

ID=25822526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85107906A Expired EP0167102B1 (en) 1984-06-30 1985-06-26 Process for the production of a protective oxide layer on a moulded article made from high-temperature material

Country Status (2)

Country Link
EP (1) EP0167102B1 (en)
DE (1) DE3561250D1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576067A1 (en) * 1992-06-25 1993-12-29 General Motors Corporation Hydrogen-water vapour pre-treatment of Fe-Cr-Al alloys
DE10065924A1 (en) * 2000-11-27 2002-09-26 Alstom Switzerland Ltd Metallic component used for a steam power plant comprises a protective layer containing aluminum and further elements and/or an aluminum alloy
EP1318206A1 (en) * 2001-12-06 2003-06-11 Wieland-Werke AG Use of a copper-aluminium alloy with defined coatings as bearings material for the fabrication of wear resistant sliding bearings
US20100183254A1 (en) * 2007-09-05 2010-07-22 Siemens Aktiengesellschaft Component for the sliding support of another component, and process for producing it
DE102021118766A1 (en) 2021-07-20 2023-01-26 Kamax Holding Gmbh & Co. Kg Component with integrated aluminum diffusion layer and aluminum oxide layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150178A (en) * 1977-04-20 1979-04-17 Toyo Kogyo Co., Ltd. Aluminum diffusion layer forming method
US4300956A (en) * 1980-04-14 1981-11-17 Matthey Bishop, Inc. Method of preparing a metal substrate for use in a catalytic converter
DE3029488A1 (en) * 1980-08-02 1982-03-04 GHT Gesellschaft für Hochtemperaturreaktor-Technik mbH, 5060 Bergisch Gladbach METHOD FOR PRODUCING A PROTECTIVE LAYER ON METAL WORKPIECES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150178A (en) * 1977-04-20 1979-04-17 Toyo Kogyo Co., Ltd. Aluminum diffusion layer forming method
US4300956A (en) * 1980-04-14 1981-11-17 Matthey Bishop, Inc. Method of preparing a metal substrate for use in a catalytic converter
DE3029488A1 (en) * 1980-08-02 1982-03-04 GHT Gesellschaft für Hochtemperaturreaktor-Technik mbH, 5060 Bergisch Gladbach METHOD FOR PRODUCING A PROTECTIVE LAYER ON METAL WORKPIECES

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576067A1 (en) * 1992-06-25 1993-12-29 General Motors Corporation Hydrogen-water vapour pre-treatment of Fe-Cr-Al alloys
DE10065924A1 (en) * 2000-11-27 2002-09-26 Alstom Switzerland Ltd Metallic component used for a steam power plant comprises a protective layer containing aluminum and further elements and/or an aluminum alloy
EP1318206A1 (en) * 2001-12-06 2003-06-11 Wieland-Werke AG Use of a copper-aluminium alloy with defined coatings as bearings material for the fabrication of wear resistant sliding bearings
US6933054B2 (en) 2001-12-06 2005-08-23 Weiland-Werke Ag Bearing material for the manufacture of wear-resistant slide bearings made of a copper-aluminum-alloy with defined cover layers
US20100183254A1 (en) * 2007-09-05 2010-07-22 Siemens Aktiengesellschaft Component for the sliding support of another component, and process for producing it
US8314053B2 (en) * 2007-09-05 2012-11-20 Siemens Aktiengesellschaft Component for the sliding support of another component, and process for producing it
DE102021118766A1 (en) 2021-07-20 2023-01-26 Kamax Holding Gmbh & Co. Kg Component with integrated aluminum diffusion layer and aluminum oxide layer

Also Published As

Publication number Publication date
DE3561250D1 (en) 1988-02-04
EP0167102B1 (en) 1987-12-23

Similar Documents

Publication Publication Date Title
DE3108160C2 (en) Process for the production of oxide layers on chrome and / or nickel alloy steels
DE3243283C2 (en)
DE3104112C2 (en) Process for the production of oxide layers
DE3215314C2 (en) Process for the production of oxide layers on a titanium-based alloy surface
DE3637447C2 (en)
DE2263858A1 (en) PROCESS FOR IMPROVING THE COMPRESSIBILITY AND SINTERING PERFORMANCE OF FINISHED SPHAEROLITHIC METAL POWDERS
EP0167102B1 (en) Process for the production of a protective oxide layer on a moulded article made from high-temperature material
DE2261877B2 (en) Process for the manufacture of a superconductor
DE2151127C3 (en) Process for depositing a metallization pattern and its application
EP0327831A2 (en) Method and device for increasing the thermal fatigue resistance of heat-conducting materials
EP1133579B1 (en) Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer
DE3447228A1 (en) Process for generating an oxidic protective layer on a high-temperature material moulding
EP0045416B1 (en) Process to produce a protective layer on metallic pieces
DE3039658C2 (en)
DE3145236C2 (en) Process for the production of deformation-resistant oxidic protective layers
DE2843571A1 (en) Radiation absorption surface for metal solar energy collectors - consists of oxide layer pref. formed by heat or chemical or electrolytic oxidn.
DE3715397C2 (en)
DE4204447A1 (en) COATING PROCESS
DE19546614C2 (en) Oxidation-resistant, chromium oxide-forming alloy
DE946060C (en) Containers and other apparatus parts that come into contact with iodine and iodides
DE1521394A1 (en) Nickel alloy article and process for its manufacture
DE1458558C (en) Process for improving the superconducting properties of superconducting in termetallic compounds of the A deep 3 B type, which are afflicted with strong disturbances in the crystal structure and produced by deposition
DE1521996C (en) Process for protecting metallic bodies against the penetration of interstitial elements by applying a silicide coating
DE1533342C (en) Process for the production of oxidation-resistant copper alloys
DE1496639C (en) Process for producing a glass of increased breaking strength

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19860512

17Q First examination report despatched

Effective date: 19870317

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 31558

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3561250

Country of ref document: DE

Date of ref document: 19880204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920616

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920625

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920720

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930626

Ref country code: AT

Effective date: 19930626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85107906.1

Effective date: 19940110