EP1133579B1 - Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer - Google Patents

Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer Download PDF

Info

Publication number
EP1133579B1
EP1133579B1 EP99952596A EP99952596A EP1133579B1 EP 1133579 B1 EP1133579 B1 EP 1133579B1 EP 99952596 A EP99952596 A EP 99952596A EP 99952596 A EP99952596 A EP 99952596A EP 1133579 B1 EP1133579 B1 EP 1133579B1
Authority
EP
European Patent Office
Prior art keywords
steel
protective layer
martensitic
temperature
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99952596A
Other languages
German (de)
French (fr)
Other versions
EP1133579A1 (en
Inventor
Heike Glasbrenner
Kathleen Stein-Fechner
Olaf Wedemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1133579A1 publication Critical patent/EP1133579A1/en
Application granted granted Critical
Publication of EP1133579B1 publication Critical patent/EP1133579B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon

Definitions

  • the invention relates to a method for producing a Protective layer on a martensitic steel according to the first Claim and the use of the provided with the protective layer Steel according to the fifth claim.
  • the object of the invention is a further method propose to create a protective layer.
  • the protective layer should be suitable for martensitic steels.
  • the one with the Protective coated martensitic steel is said to be used in nuclear fusion experiments be used, the protective layer Diffusion barrier for the radioactive hydrogen isotope Represents tritium.
  • the steel provided with the protective layer must in this area of application compared to the liquid used here Brood metals such as B. liquid lithium or lithium lead (Pb17% Li).
  • a martensitic steel in particular a Chromium steel, preferably with 8 to 10% chromium, or an unalloyed one or alloy spring steel with the protective layer.
  • the martensitic steel is under a protective gas atmosphere in a melt of aluminum or an aluminum alloy such as B. 90% Al and 10% Si immersed.
  • a Pure aluminum melt preferred.
  • protective gas in particular the noble gases argon and helium, optionally in Combination with a reducing gas like hydrogen.
  • the temperature of the melt is preferably in a temperature range between the melting point and a maximum of 100 ° C above the Melting point.
  • a temperature of 700 ° C is for pure aluminum well suited.
  • the dipping time should be the thickness of the one to be coated Item made of martensitic steel approximately proportional his. Diving times in the range between 5 seconds and 2 minutes are generally well suited.
  • the martensitic steel is then removed from the melt and under the protective gas atmosphere, preferably with natural Cooling rate to a temperature between 100 ° C and cooled to room temperature.
  • the martensitic steel becomes hot isostatic at one Pressure of at least 1500 bar at the austenitizing temperature (Aci final temperature) pressed.
  • the austenitizing temperature is 8 to 10% chromium steels between 1040 ° C and 1075 ° C.
  • the maximum applicable pressure is usually from apparatus Reasons limited to approx. 3000 bar.
  • everyone martensitic components of the steel converted into austenite.
  • the holding time in hot isostatic pressing corresponds to Holding time at austenitizing temperature and should be for 8 to 10 % chromium steels are between 30 and 40 minutes.
  • An approximately 100 to 200 ⁇ m thick protective layer is formed.
  • the steel becomes one Subjected to hardening.
  • the steel is known per se Way quenched and then tempered. Starting can be done in Dependence on the type of steel, for example at a temperature of 750 ° C and a holding time of 1 to 2 hours become. This step will make the martensitic state restored with the desired ductility.
  • the martensitic base body an iron / chrome / aluminum mixed crystal layer which is approx. 100 to 200 ⁇ m thick and its aluminum content is approx. 30% in the areas near the surface, the aluminum content decreases in the direction of the base body.
  • the mixed crystal layer has essentially the same Ductility like the martensitic body.
  • the surface the protective layer is covered by a ceramic layer approx. 1 ⁇ m thick Layer formed from alumina.
  • a major advantage of Invention is that in the event of mechanical damage to the top Aluminum oxide layer in an oxidizing atmosphere can be replicated.
  • the protective layer proves self-healing.
  • Another advantage is that as a result of hot isostatic pressing the pore size and number the pores are greatly reduced.
  • the protective layer turns out as an effective diffusion barrier against hydrogen; the tritium diffusion is compared to uncoated steels reduced by a factor of approx. 1000.
  • the protective layer is also almost against the corrosive attack of liquid metals inert.
  • MANET II is composed as follows: C 0, 10 to 0.11 Si 0.14 to 0.28 Mn 0.75 to 0.96 P 0.003 to 0.007 S 0.004 to 0.005 Cr 10.3 to 10.4 V 0.19 to 0.21 al 0.004 to 0.012 Cu 0.007 to 0.10 B 0.0072 to 0.0089 N 0.027 to 0.032 Ni 0.62 to 0.68 Mo 0.56 to 0.61 Nb 0.14 to 0.16 Zr 0.007 to 0.028 Rest: iron
  • the surface of the steel parts to be coated was initially cleaned by sandblasting. Then the parts in Acetone and ethanol cleaned. To better wettability with to reach the aluminum melt, a flux was created from a saturated saline solution (KCl, NaCl and Na3AlF6 in Ratio 5: 4: 1) applied.
  • the parts prepared in this way were dried before being placed in a box with a protective gas atmosphere (argon with 5% hydrogen), in which there is a crucible with the melt was infiltrated.
  • the temperature of the pure aluminum melt was 700 ° C.
  • the parts were placed in the for 30 seconds Submerged aluminum melt and then under the Protective gas atmosphere cooled to room temperature. after the steel parts coated with aluminum were cooled removed from the box by a lock system.
  • the parts were then placed in a HIP system.
  • the system was first evacuated and then with Ar 4.8 flooded. Then the temperature and pressure were increased at the same time, up to the austenitizing temperature of 1075 ° C and 3000 bar pressure were reached. After a holding time of 0.5 hours the system was switched off, after which the parts with approx. 10 to Cooled 20 K / min at constant pressure. This cooling rate is sufficient to ensure the formation of martensite, d. that is, to harden the parts.
  • the subsequent tempering treatment also took place in the HIP plant. Alternatively, one could other oven can be used.
  • the steel parts were at one Leave the temperature at 750 ° C for 2 hours. Even though the starting step can in principle be carried out without pressure a pressure of 3000 in the HIP system when starting maintain cash. The HIP system was then switched off and the steel parts cooled.

Abstract

The aim of the invention is to provide a method for the production of a protective layer on a martensitic steel. This is achieved by a method comprising the following steps: a) dipping the martensitic steel into a melt consisting of aluminium or an aluminium alloy under a protective gas atmosphere; b) withdrawing the steel from the melt and cooling it to a temperature which ranges from 100 DEG C to room temperature under said protective gas atmosphere; c) hot-isostatic pressing (HIP) of said steel under a pressure of at least 1,500 bar at the austenitisation temperature; d) quenching and tempering of said steel. Said steel which has been coated with said protective layer in this manner can be used as a structural material for nuclear fusion experiments in which said steel is brought into contact with tritium and/or a liquid metal.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Schutzschicht auf einem martensitischen Stahl gemäß dem ersten Patentanspruch und die Verwendung des mit der Schutzschicht versehenen Stahls gemäß dem fünften Patentanspruch.The invention relates to a method for producing a Protective layer on a martensitic steel according to the first Claim and the use of the provided with the protective layer Steel according to the fifth claim.

Der Übersichtsartikel von J. R. Nicholls und D. J. Stephenson: "Applications of coating technology and HIP to advanced materials processing" in Materials at High Temperatures Vol. 9 No. 2 (1991) pp. 110-120 beschreibt eine Reihe von Verfahren zur Herstellung von Schutz- und Diffusionssperrschichten auf Werkstoffen. Hierzu wird der Werkstoff mit Hilfe einer Reihe unterschiedlicher Methoden beschichtet und anschließend einem Verfestigungsprozeß unterworfen. Als einsetzbare Werkstoffe werden eine Vielzahl von Metallen und Metallegierungen vorgeschlagen, nicht jedoch martensitische Stähle. In einer Tabelle (Tabelle 1) werden miteinander kombinierbare Beschichtungs- und Verfestigungsverfahren aufgeführt. Für das sogenannte "dip coating" wird als Verfestigungsverfahren das Sintern angegeben. Das Heißisostatische Pressen wird bei Gegenständen, die durch physikalische Dampfabscheidung (PVD) beschichtet wurden, eingesetzt. Eine Nachbehandlung im Anschluß an das Verfestigungsverfahren findet bei den beschriebenen Methoden nicht statt.The review by J. R. Nicholls and D. J. Stephenson: "Applications of coating technology and HIP to advanced materials processing "in Materials at High Temperatures Vol. 9 No. 2 (1991) pp. 110-120 describes a number of manufacturing processes of protective and diffusion barrier layers on materials. For this, the material is made using a number of different Methods coated and then a solidification process subjected. As usable materials proposed a variety of metals and metal alloys but not martensitic steels. In a table (Table 1) coating and consolidation processes that can be combined with one another listed. For the so-called "dip coating" sintering was specified as the solidification process. The Hot isostatic presses are used on objects caused by physical Vapor deposition (PVD) were used. Post-treatment after the solidification process does not take place with the methods described.

Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren zur Herstellung einer Schutzschicht vorzuschlagen. Die Schutzschicht soll sich für martensitische Stähle eignen. Der mit der Schutzschicht versehene martensitische Stahl soll in Kernfusionsexperimenten einsetzbar sein, wobei die Schutzschicht eine Diffusionssperrschicht für das radioaktive Wasserstoffisotop Tritium darstellt. Der mit der Schutzschicht versehene Stahl muß bei diesem Einsatzgebiet gegenüber den hier verwendeten flüssigen Brutmetallen wie z. B. flüssiges Lithium oder Lithium-Blei (Pb17%Li) beständig sein. The object of the invention is a further method propose to create a protective layer. The protective layer should be suitable for martensitic steels. The one with the Protective coated martensitic steel is said to be used in nuclear fusion experiments be used, the protective layer Diffusion barrier for the radioactive hydrogen isotope Represents tritium. The steel provided with the protective layer must in this area of application compared to the liquid used here Brood metals such as B. liquid lithium or lithium lead (Pb17% Li).

Die Aufgabe wird durch das im ersten Patentanspruch beschriebene Verfahren und die im fünften Patentanspruch angegebene Verwendung gelöst. In den übrigen Ansprüchen werden bevorzugte Ausgestaltungen des Verfahrens beschrieben.The object is achieved by that described in the first claim Method and the use specified in the fifth claim solved. Preferred embodiments are in the remaining claims described the procedure.

Erfindungsgemäß wird ein martensitischer Stahl, insbesondere ein Chromstahl, vorzugsweise mit 8 bis 10 % Chrom, oder ein unlegierter oder legierter Federstahl mit der Schutzschicht versehen. In einem ersten Schritt wird der martensitische Stahl unter einer Schutzgasatmosphäre in eine Schmelze von Aluminium oder einer Aluminiumlegierung wie z. B. 90 % Al und 10% Si eingetaucht. Für die Verwendung in Kernfusionsexperimenten wird eine Schmelze von Reinaluminium bevorzugt. Als Schutzgas eignen sich insbesondere die Edelgase Argon und Helium, gegebenenfalls in Kombination mit einem reduzierend wirkenden Gas wie Wasserstoff.According to the invention, a martensitic steel, in particular a Chromium steel, preferably with 8 to 10% chromium, or an unalloyed one or alloy spring steel with the protective layer. In a first step, the martensitic steel is under a protective gas atmosphere in a melt of aluminum or an aluminum alloy such as B. 90% Al and 10% Si immersed. For use in nuclear fusion experiments, a Pure aluminum melt preferred. Are suitable as protective gas in particular the noble gases argon and helium, optionally in Combination with a reducing gas like hydrogen.

Die Temperatur der Schmelze liegt bevorzugt in einem Temperaturbereich zwischen dem Schmelzpunkt und maximal 100°C oberhalb des Schmelzpunkts. Für Reinaluminium ist eine Temperatur von 700°C gut geeignet. Die Tauchzeit soll der Dicke des zu beschichtenden Gegenstands aus dem martensitischen Stahl ungefähr proportional sein. Tauchzeiten im Bereich zwischen 5 Sekunden und 2 Minuten sind im allgemeinen gut geeignet.The temperature of the melt is preferably in a temperature range between the melting point and a maximum of 100 ° C above the Melting point. A temperature of 700 ° C is for pure aluminum well suited. The dipping time should be the thickness of the one to be coated Item made of martensitic steel approximately proportional his. Diving times in the range between 5 seconds and 2 minutes are generally well suited.

Anschließend wird der martensitische Stahl aus der Schmelze entnommen und unter der Schutzgasatmosphäre vorzugsweise mit natürlicher Abkühlgeschwindigkeit auf eine Temperatur zwischen 100°C und Raumtemperatur abgekühlt.The martensitic steel is then removed from the melt and under the protective gas atmosphere, preferably with natural Cooling rate to a temperature between 100 ° C and cooled to room temperature.

Danach wird der martensitische Stahl heißisostatisch bei einem Druck von mindestens 1500 bar bei der Austenitisierungstemperatur (Aci-Endtemperatur) gepreßt. Die Austenitisierungstemperatur liegt bei 8 bis 10 %-igen Chromstählen zwischen 1040°C und 1075°C. Der maximal anwendbare Druck ist in der Regel aus apparativen Gründen auf ca. 3000 bar begrenzt. Hierbei werden alle martensitischen Bestandteile des Stahls in Austenit umgewandelt. Then the martensitic steel becomes hot isostatic at one Pressure of at least 1500 bar at the austenitizing temperature (Aci final temperature) pressed. The austenitizing temperature is 8 to 10% chromium steels between 1040 ° C and 1075 ° C. The maximum applicable pressure is usually from apparatus Reasons limited to approx. 3000 bar. Here, everyone martensitic components of the steel converted into austenite.

Die Haltezeit beim heißisostatischen Pressen entspricht der Haltezeit bei Austenitisierungstemperatur und soll für 8 bis 10 %ige Chromstähle im Bereich zwischen 30 und 40 Minuten liegen. Dabei wird eine ca. 100 bis 200 um dicke Schutzschicht gebildet.The holding time in hot isostatic pressing corresponds to Holding time at austenitizing temperature and should be for 8 to 10 % chromium steels are between 30 and 40 minutes. An approximately 100 to 200 μm thick protective layer is formed.

Im Anschluß an das heißisostatische Pressen wird der Stahl einer Härtung unterzogen. Hierzu wird der Stahl in an sich bekannter Weise abgeschreckt und danach angelassen. Das Anlassen kann in Abhängigkeit von der Stahlsorte beispielsweise bei einer Temperatur von 750°C und einer Haltezeit von 1 bis 2 Stunden vorgenommen werden. Durch diesen Schritt wird der martensitische Zustand mit der gewünschten Duktilität wieder hergestellt.Following the hot isostatic pressing, the steel becomes one Subjected to hardening. For this purpose, the steel is known per se Way quenched and then tempered. Starting can be done in Dependence on the type of steel, for example at a temperature of 750 ° C and a holding time of 1 to 2 hours become. This step will make the martensitic state restored with the desired ductility.

Beim erfindungsgemäß beschichteten Stahl schließt sich an den martensitischen Grundkörper eine Eisen/Chrom/Aluminium-Mischkristallschicht an, die ca. 100 bis 200 um dick ist und deren Aluminiumgehalt in den oberflächennahen Bereichen ca. 30 % beträgt, wobei der Aluminiumgehalt in Richtung auf den Grundkörper abnimmt. Die Mischkristallschicht weist im wesentlichen dieselbe Duktilität auf wie der martensitische Grundkörper. Die Oberfläche der Schutzschicht wird durch eine ca. 1 um dicke keramische Schicht aus Aluminiumoxid gebildet. Ein wesentlicher Vorteil der Erfindung ist, daß bei einer mechanischen Beschädigung der obersten Aluminiumoxidschicht in einer oxidierenden Atmosphäre Aluminiumoxid nachgebildet werden kann. Die Schutzschicht erweist sich damit als selbstheilend. Ein weiterer Vorteil ist, daß infolge des heißisostatischen Pressens die Porengröße und die Zahl der Poren stark vermindert ist. Die Schutzschicht erweist sich als wirkungsvolle Diffusionssperrschicht gegenüber Wasserstoff; die Tritiumdiffusion ist gegenüber unbeschichteten Stählen um einen Faktor von ca. 1000 vermindert. Die Schutzschicht ist zudem gegen den korrosiven Angriff von Flüssigmetallen nahezu inert.In the steel coated according to the invention, the martensitic base body an iron / chrome / aluminum mixed crystal layer which is approx. 100 to 200 µm thick and its aluminum content is approx. 30% in the areas near the surface, the aluminum content decreases in the direction of the base body. The mixed crystal layer has essentially the same Ductility like the martensitic body. The surface the protective layer is covered by a ceramic layer approx. 1 µm thick Layer formed from alumina. A major advantage of Invention is that in the event of mechanical damage to the top Aluminum oxide layer in an oxidizing atmosphere can be replicated. The protective layer proves self-healing. Another advantage is that as a result of hot isostatic pressing the pore size and number the pores are greatly reduced. The protective layer turns out as an effective diffusion barrier against hydrogen; the tritium diffusion is compared to uncoated steels reduced by a factor of approx. 1000. The protective layer is also almost against the corrosive attack of liquid metals inert.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert. The invention is described below using an exemplary embodiment explained in more detail.

Zur Beschichtung wurden verschiedene Stahlteile aus dem aus K. Anderko, K. Ehrlich, L. Schäfer und M. Schirra: "CETA, ein Entwicklungsschritt zu einem schwach aktivierbaren martensitischen Stahl", Kernforschungszentrum Karlsruhe Kfk 5060 (Juni 1993) als MANET II bekannten martensitischen Stahl eingesetzt. MANET II ist wie folgt zusammengesetzt: C 0, 10 bis 0,11 Si 0,14 bis 0,28 Mn 0,75 bis 0, 96 P 0,003 bis 0,007 S 0,004 bis 0,005 Cr 10,3 bis 10,4 V 0,19 bis 0,21 Al 0,004 bis 0,012 Cu 0,007 bis 0,10 B 0,0072 bis 0,0089 N 0,027 bis 0,032 Ni 0,62 bis 0,68 Mo 0,56 bis 0,61 Nb 0,14 bis 0,16 Zr 0,007 bis 0,028 Rest: Eisen Various steel parts from the martensitic steel known from MANET II from K. Anderko, K. Ehrlich, L. Schäfer and M. Schirra: "CETA, a development step towards a weakly activated martensitic steel" were used for coating Steel used. MANET II is composed as follows: C 0, 10 to 0.11 Si 0.14 to 0.28 Mn 0.75 to 0.96 P 0.003 to 0.007 S 0.004 to 0.005 Cr 10.3 to 10.4 V 0.19 to 0.21 al 0.004 to 0.012 Cu 0.007 to 0.10 B 0.0072 to 0.0089 N 0.027 to 0.032 Ni 0.62 to 0.68 Mo 0.56 to 0.61 Nb 0.14 to 0.16 Zr 0.007 to 0.028 Rest: iron

Die Oberfläche der zu beschichtenden Stahlteile wurde zunächst durch Sandstrahlen gesäubert. Anschließend wurden die Teile in Aceton und Ethanol gereinigt. Um eine bessere Benetzbarkeit mit der Aluminiumschmelze zu erreichen, wurde ein Flußmittel bestehend aus einer gesättigten Salzlösung (KCl, NaCl und Na3AlF6 im Verhältnis 5:4:1) aufgetragen. Die so präparierten Teile wurden getrocknet, bevor sie in eine Box mit Schutzgasatmosphäre (Argon mit 5 % Wasserstoff), in der sich ein Tiegel mit der Schmelze befand, eingeschleust wurden. Die Temperatur der Reinaluminium-Schmelze betrug 700°C. Die Teile wurden 30 Sekunden lang in die Aluminium-Schmelze eingetaucht und anschließend unter der Schutzgasatmosphäre auf Raumtemperatur abgekühlt. Nachdem die mit Aluminium beschichteten Stahlteile abgekühlt waren, wurden sie durch ein Schleusensystem aus der Box entnommen.The surface of the steel parts to be coated was initially cleaned by sandblasting. Then the parts in Acetone and ethanol cleaned. To better wettability with to reach the aluminum melt, a flux was created from a saturated saline solution (KCl, NaCl and Na3AlF6 in Ratio 5: 4: 1) applied. The parts prepared in this way were dried before being placed in a box with a protective gas atmosphere (argon with 5% hydrogen), in which there is a crucible with the melt was infiltrated. The temperature of the pure aluminum melt was 700 ° C. The parts were placed in the for 30 seconds Submerged aluminum melt and then under the Protective gas atmosphere cooled to room temperature. after the steel parts coated with aluminum were cooled removed from the box by a lock system.

Die Teile wurden anschließend in eine HIP-Anlage eingebracht. Die Anlage wurde zunächst evakuiert und anschließend mit Ar 4.8 geflutet. Danach wurden Temperatur und Druck gleichzeitig erhöht, bis die Austenitisierungstemperatur von 1075°C und 3000 bar Druck erreicht waren. Nach einer Haltezeit von 0,5 Stunden wurde die Anlage abgeschaltet, wonach die Teile mit ca. 10 bis 20 K/min bei konstantem Druck abkühlten. Diese Abkühlrate ist ausreichend, um die Bildung von Martensit zu gewährleisten, d. h., um die Teile zu härten. Die anschließende Anlaßbehandlung erfolgte ebenfalls in der HIP-Anlage. Alternativ könnte auch ein anderer Ofen verwendet werden. Die Stahlteile wurden bei einer Temperatur von 750°C für eine Zeit von 2 Stunden angelassen. Obwohl der Anlaßschritt prinzipiell drucklos vorgenommen werden kann, wurde in der HIP-Anlage beim Anlassen ein Druck von 3000 bar aufrechterhalten. Danach wurde die HIP-Anlage abgeschaltet und die Stahlteile abgekühlt.The parts were then placed in a HIP system. The system was first evacuated and then with Ar 4.8 flooded. Then the temperature and pressure were increased at the same time, up to the austenitizing temperature of 1075 ° C and 3000 bar pressure were reached. After a holding time of 0.5 hours the system was switched off, after which the parts with approx. 10 to Cooled 20 K / min at constant pressure. This cooling rate is sufficient to ensure the formation of martensite, d. that is, to harden the parts. The subsequent tempering treatment also took place in the HIP plant. Alternatively, one could other oven can be used. The steel parts were at one Leave the temperature at 750 ° C for 2 hours. Even though the starting step can in principle be carried out without pressure a pressure of 3000 in the HIP system when starting maintain cash. The HIP system was then switched off and the steel parts cooled.

Claims (5)

  1. Method of producing a protective layer on a martensitic steel, said method having the following steps:
    a) dipping the martensitic steel in a melt formed from aluminium or an aluminium alloy under a protective gas atmosphere;
    b) removing the steel from the melt and cooling it to a temperature ranging from 100° C to ambient temperature under the protective gas atmosphere;
    c) isostatically hot-pressing (HIP) the steel at a pressure of at least 1500 bar at the austenitisation temperature; and
    d) quenching and tempering the steel.
  2. Method according to claim 1, using an 8 to 10 % chromium steel.
  3. Method according to claim 1 or 2, using a temperature of the melt in the range between the melting point and a maximum of 100° C above the melting point.
  4. Method according to claim 1, using an immersion period in the range between 5 seconds and 2 minutes.
  5. Use of the steel, which is provided with the protective layer according to one of claims 1 to 4, as the structural material for nuclear fusion experiments, wherein the steel is brought into contact with tritium and/or a liquid metal.
EP99952596A 1998-11-19 1999-10-18 Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer Expired - Lifetime EP1133579B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19853285 1998-11-19
DE19853285A DE19853285C1 (en) 1998-11-19 1998-11-19 Process for producing a protective layer on a martensitic steel and use of the steel provided with the protective layer
PCT/EP1999/007881 WO2000031312A1 (en) 1998-11-19 1999-10-18 Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer

Publications (2)

Publication Number Publication Date
EP1133579A1 EP1133579A1 (en) 2001-09-19
EP1133579B1 true EP1133579B1 (en) 2002-09-11

Family

ID=7888280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99952596A Expired - Lifetime EP1133579B1 (en) 1998-11-19 1999-10-18 Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer

Country Status (5)

Country Link
EP (1) EP1133579B1 (en)
JP (1) JP2002530536A (en)
AT (1) ATE223976T1 (en)
DE (2) DE19853285C1 (en)
WO (1) WO2000031312A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990449B2 (en) * 2001-07-27 2012-08-01 新日本製鐵株式会社 Aluminum-coated steel sheet for high-strength automotive parts and automotive parts using the same
JP4700263B2 (en) * 2003-04-25 2011-06-15 新日本製鐵株式会社 High-pressure hydrogen gas tank and piping
DE102004010689B3 (en) * 2004-02-27 2005-06-30 Schott Ag Absorber with radiation-selective absorber coating for use of thermic solar energy has oxide diffusion blocking layer provided by oxidized components of metal substrate
DE102005030231B4 (en) 2005-06-29 2007-05-31 Forschungszentrum Karlsruhe Gmbh Method for applying a high-temperature suitable FeCrAl protective layer, cladding tube with such a protective layer applied and use of such a cladding tube
DE102016107152B4 (en) 2016-04-18 2017-11-09 Salzgitter Flachstahl Gmbh Component of press-hardened aluminum-coated steel sheet and method for producing such a component and its use
US10450668B2 (en) 2017-04-11 2019-10-22 Savannah River Nuclear Solutions, Llc Development of a passivated stainless steel surface
CN116968397B (en) * 2023-09-25 2023-12-15 上海核工程研究设计院股份有限公司 Tritium permeation-preventing layered composite material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1057188A (en) * 1964-07-20 1967-02-01 Murex Welding Processes Ltd An improved method of applying a metal coating to wires, tubes or strips
DE3145941C2 (en) * 1981-11-20 1983-12-01 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Process for increasing the reliability of coated components of turbomachinery that are already subject to creep stress
JPS5950177A (en) * 1982-09-16 1984-03-23 Kobe Steel Ltd Surface treatment of metal giving superior adhesive property
JPS61250130A (en) * 1985-04-26 1986-11-07 Mitsubishi Motors Corp Manufacture of composite material strengthened with fiber
US5447754A (en) * 1994-04-19 1995-09-05 Armco Inc. Aluminized steel alloys containing chromium and method for producing same
JPH08134595A (en) * 1994-11-11 1996-05-28 Nippon Steel Corp High strength stainless steel sheet excellent in stress corrosion cracking resistance
JPH10175081A (en) * 1996-12-16 1998-06-30 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy clad material

Also Published As

Publication number Publication date
DE59902693D1 (en) 2002-10-17
EP1133579A1 (en) 2001-09-19
ATE223976T1 (en) 2002-09-15
DE19853285C1 (en) 2000-06-15
JP2002530536A (en) 2002-09-17
WO2000031312A1 (en) 2000-06-02

Similar Documents

Publication Publication Date Title
DE3243283C2 (en)
EP2235229B9 (en) Method for coating a warm or cold-rolled flat steel product comprising 6 - 30 weight-% mn with a metallic protective layer
DE102020116858A1 (en) Nickel-based alloy for powders and a process for producing a powder
DE1924071B1 (en) Metallic coating for nickel and cobalt-based alloys and use of the metallic coating for gas turbine machine parts
CH650532A5 (en) METHOD FOR FORMING A HARD COATING IN THE COMPONENT FROM ELEMENTS OF THE FOURTH, FIFTH OR SIX SUB-GROUPS OF THE PERIODIC SYSTEM OR ITS ALLOYS.
EP0299238B1 (en) Process for coating titanium or titanium alloy prostheses
DE1902604B2 (en) WORKPIECE MADE OF NIOB OR A NIOB ALLOY WITH PROTECTIVE COVER AND PROCESS FOR ITS MANUFACTURING
EP1133579B1 (en) Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE3606804A1 (en) METALLIC SEMI-FINISHED PRODUCT AND METHOD FOR THE PRODUCTION AND USE THEREOF
AT393367B (en) LAYER COMPOSITE MATERIAL, ESPECIALLY FOR SLIDING AND FRICTION ELEMENTS, AND METHOD FOR THE PRODUCTION THEREOF
DE1621265C3 (en) Process for surface hardening of titanium or titanium alloys
DE2225378B2 (en) PROCESS FOR BORING REFRACTORY METALS AND THEIR ALLOYS
EP2065107B1 (en) Method for producing a component with a hardened surface
DE3145236C2 (en) Process for the production of deformation-resistant oxidic protective layers
DE3219071A1 (en) Process for plating titanium with a hard layer
EP0627496A2 (en) Method and device for coating metal substrates, especially steel- and aluminium-sheets in shape of tapes
EP0167102B1 (en) Process for the production of a protective oxide layer on a moulded article made from high-temperature material
US3074829A (en) Titanium article
DE3738923A1 (en) METHOD FOR PRODUCING HARD-LETABLE SUPER ALLOYS
DE2653394A1 (en) VIBRATION DAMPING MATERIAL AND METHOD FOR MANUFACTURING IT
DE3827141C1 (en) Process for alitising objects of austenitic steel or nickel-based alloys
WO2017059467A1 (en) Component of a metal processing machine
DE19546614C2 (en) Oxidation-resistant, chromium oxide-forming alloy
US3926688A (en) Method of manufacturing a flat steel product having an oxidation-resistant coating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020214

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020911

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020911

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020911

REF Corresponds to:

Ref document number: 223976

Country of ref document: AT

Date of ref document: 20020915

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59902693

Country of ref document: DE

Date of ref document: 20021017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021018

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021218

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030106

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1133579E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051004

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20051024

Year of fee payment: 7

Ref country code: BE

Payment date: 20051024

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061018

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H.

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081021

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501