JP4990449B2 - Aluminum-coated steel sheet for high-strength automotive parts and automotive parts using the same - Google Patents
Aluminum-coated steel sheet for high-strength automotive parts and automotive parts using the same Download PDFInfo
- Publication number
- JP4990449B2 JP4990449B2 JP2001228431A JP2001228431A JP4990449B2 JP 4990449 B2 JP4990449 B2 JP 4990449B2 JP 2001228431 A JP2001228431 A JP 2001228431A JP 2001228431 A JP2001228431 A JP 2001228431A JP 4990449 B2 JP4990449 B2 JP 4990449B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- plating
- aluminum
- strength
- automotive parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車の足回り等の高強度を要求される部品、及びこれを製造するための鋼素材に関するものである。
【0002】
【従来の技術】
近年、地球環境問題を発端とした低燃費化の動きから自動車用鋼板の高強度化に対する要望が強い。しかし、一般に高強度化は加工性、成形性の低下を伴い、高強度、高成形性を両立する鋼板が望まれている。
これに対する一つの回答は、残留オーステナイトのマルテンサイト変態を利用したTRIP(TRansformation Induced Placiticity)鋼であり、近年用途が拡大しつつある。しかし、この鋼により、成形性の優れた1000MPa級の高強度鋼板は製造することが可能であるが、更に、高強度、例えば1500MPa以上というような超高強度鋼で成形性を確保することは困難である。
【0003】
そこで、高強度、高成形性を両立する別の形として最近注目を浴びているのがホットプレスである。これは鋼板を800℃以上の高温に加熱した状態で成形することにより高強度鋼板の成形性の課題を無くし、成型後の冷却により焼きを入れて所望の材質を得るというものである。しかし、大気中での加熱を伴うため、表面に酸化物が生成してこれを後工程で除去する必要がある。これを改善したものが特開2000−38640号公報であり、0.15〜0.5%の炭素を含有する鋼板にアルミめっきして加熱時の酸化抑制を図っている。
【0004】
【発明が解決しようとする課題】
このホットプレス技術は高強度の成形部品を効率良く製造するのに有効であるが、以下の欠点を有している。すなわち、アルミめっき鋼板を800℃以上に加熱すると短時間で表面までFeが拡散してめっき層が金属間化合物に変化する。この金属間化合物は非常に硬く、脆性であるため、加工時に粉状に剥離しやすい。熱間でのプレスでは加工に耐えられるが、全ての部分を熱間で加工するのは困難で、加工が遅れ、温度の下がった箇所でめっきが剥離しやすいという問題があった。温度が下がると母材は焼入れの結果マルテンサイトを主体とする硬質な組織となるため、応力が大きくなりやすいという要因もあると思われる。
【0005】
【課題を解決するための手段】
本発明者らは、上記のような課題を克服するためにアルミめっき鋼板の合金化後の加工性への影響因子を詳細に検討した結果、次の知見を得た。すなわち、金属間化合物、母材共に硬質であるため、内部の応力が大きくなるが、金属間化合物層と母材の間に軟質な層があることにより、応力が緩和されてめっきの耐剥離性が大幅に向上する。
【0006】
【発明の実施の形態】
次に、本発明の限定理由について説明する。
本発明は、アルミめっき層が合金化してできた金属間化合物層とマルテンサイトを主体とする母材の界面に、軟質なフェライト層を2μm以上、鋼板板厚の1/10以下の厚みで存在させるものである。通常このフェライト中にAlが1〜10%程度存在している。このフェライト相はAlに加えて更にSiをも含有することも可能である。この厚みは2μm以上に限定する。この理由は軟質なフェライト相の厚みがこれ以下では十分なめっきの耐剥離性が得られないためである。一方、この相は軟質であり、厚すぎると鋼板全体の強度を損なう。この意味から上限を鋼板の板厚の1/10以下とする。
【0007】
通常、アルミめっき鋼板は溶融めっき法で製造されることが多く、このとき鋼板とめっき層の界面での金属間化合物層(合金層と称する)が成長しやすい。この層が成長しすぎると鋼板の加工性を損なうため、浴中にSiを10%程度添加して製造されている。本発明においては、加熱して全て合金層にした後に熱間で加工するため、特に浴中にSiを添加する必要はないが、添加しても特に問題はない。
【0008】
本発明において、フェライト相の硬度はビッカース硬度で200以下であることが望ましい。前述したように、この相が硬質な合金層の加工時における剥離を防止する役割を持つ。この意味からこの相は軟質な方が望ましい。しかし、Al,Si等の固溶硬化元素を含有することから通常のフェライト相よりは硬質である。
【0009】
次に、本発明のその他の構成成分について記述する。まず、鋼成分であるが、本発明は通常のTRIP鋼等では達成し得ない高強度領域を狙いとし、焼入れによる高強度化を図っていることから、C量が0.05%以上、望ましくは0.1%以上が好ましい。他の鋼中元素については、Si,Mn,Ti,B,Cr,Mo,Al,P,S,N等の元素が通常使われ得る。Siは疲労特性に効果があり、Mn,Bは焼入れ性の向上に寄与する。Ti,Si,Cr,Mo,Alは、またアルミめっき後の耐熱性を向上させる元素である。
【0010】
アルミめっき層の構成としては、Alを主成分とし、前述したようにSiの添加も可能である。この他の添加元素としてCr,Mg,Ti,Sb,Sn,Zn等が考えられるが、めっき層がAlを主体とする限り、適用可能である。しかし、Znは沸点が低く、大量に添加すると加熱時に表面に粉体状のZnを生成して、プレス時のカジリを惹起するため、60%以上の添加は望ましくない。
【0011】
なお、生成する金属間化合物としては、FeAl3 ,Fe2 Al5 ,Fe3 Al,Fe2 Al8 Si等が生成し得る。これらの相は層状に複層構造をとる傾向にあるが、これらの相構造については特に限定するものではない。その組成としてはAl,Feを主成分とし、アルミめっき浴にSiを添加したときにはSiも5〜10%程度含有される。これらの元素の組成が合計で90%以上を占める。また、微量の合金化していないAlが残存することもありうるが、少量であれば特に性能には影響しない。
【0012】
本発明において、アルミめっきの付着量、めっき前処理、後処理については特に限定するものではない。めっき付着量は通常の片面30〜100g/m2 の範囲ではなんら問題ない。めっき後処理として一次防錆、潤滑性を目的としてクロメート処理、樹脂被覆処理等ありうるが、有機樹脂は加熱すると消失してしまうため好ましくない。クロメート処理も近年の6価クロム規制を考慮すると、電解クロメート等の3価の処理皮膜が好ましい。また加熱により表面まで金属間化合物に変化させた後にプレス加工するものとする。これは表面にAlが多量に残存していると溶接性や塗装後耐食性を損なうためである。
【0013】
アルミめっき鋼板の製造法についても何ら限定するものではない。通常の製鋼、熱延条件が適用可能である。アルミめっきは通常溶融めっき法で施されるが、これに限定せず、非水溶媒からの電気めっき、蒸着処理等も使用可能である。めっき前処理としてNiプレめっき等のプレめっきもありうるが、これも適用可能である。
【0014】
フェライト相の厚みの測定は光学顕微鏡観察によるものとする。フェライト相の厚みは断面研磨後、2%程度のナイタールエッチングをすることで明確に観察可能である。但し、金属間化合物相との境界が観察し難い場合もあるため、その場合にはEPMA分析を併用する。このときFe強度、Al強度の違いから容易にフェライト相が固定できる。フェライト相厚みの測定はランダムに5点程度測定してその平均値を採用するものとする。なお、母材はマルテンサイトを主体とする組織で、その観察のためには、例えばピクラールエッチング等で光学顕微鏡を用いることができる。
【0015】
図1に本発明の組織の一例を示す。界面に2層が認められるが、EPMA定量分析の結果、この下層がフェライト層で、厚みは約5μmである。なお、図1中の符号1は、Al:26.85%、Si:9.83%、Fe:59.92%、符号2は、Al:49.54%、Si:3.11%、Fe:44.89%、符号3は、Al:30.75%、Si:8.88%、Fe:56.91%および符号4は、Al:9.59%、Si:2.92%、Fe:84.02%の層を示す。
【0016】
最後にめっき鋼板に対する、加熱、冷却条件であるが、加熱、冷却の方法は特に限定しない。焼入れ組織を得るには当然冷却速度の影響が大きく、30℃/sec程度以上の冷却速度が望ましい。これは鋼成分に依存し、焼入れ性の良好な鋼では10℃/sec程度の冷却速度でも所望のマルテンサイトを主体とする組織が得られるし、鋼種によっては100℃/sec以上の冷却速度が必要となる。フェライト相の厚みを所望条件にするには、加熱条件の最適化が必要である。
【0017】
【実施例】
次に実施例で本発明をより詳細に説明する。
(実施例1)
通常の熱延、冷延工程を経た、表1に示すような鋼成分の冷延鋼板(板厚1.2mm)を材料として、溶融アルミめっきを行った。溶融アルミめっきは無酸化炉−還元炉タイプのラインを使用し、めっき後ガスワイピング法でめっき付着量を片面60g/m2 に調節し、その後冷却し、ゼロスパングル処理を施した。この際のめっき浴組成としてはAl−10%Si−2%Feであった。浴中のFeは浴中のめっき機器やストリップから供給される不可避のものである。めっき外観は不めっき等なく良好であった。このようにして製造した溶融アルミめっき鋼板を950℃に加熱、空冷過程の、めっきの加工性(耐剥離性)を評価した。
【0018】
このとき加熱時間、加熱パターンを変化させてフェライト相の厚みを変化させた。また、加工はインパクト試験であり、冷却過程で加工温度を変えてめっきの剥離状況を目視判定し、めっき剥離の起こらない最低温度でめっきの加工性を評価した。なお、この鋼は冷却速度10℃/secでも焼入れ性良好であり、空冷でもマルテンサイト主体の組織となっていた。このときの中間フェライト相厚みと加工可能最低温度の関係を図2に示す。
【0019】
図2の通り、フェライト相厚みが2μm以上、好ましくは4μm以上でめっきの耐剥離性が向上することがわかる。0.5μm程度のフェライト相厚みのときには800℃で加工してもめっきの粉状の剥離が観察された。なお、めっきの加工性はめっき付着量に依存し、フェライト相厚みが2μmでも、付着量が片面30g/m2 の場合には加工可能最低温度は500℃まで下降した。また、このときの母相組織を光学顕微鏡後画像解析して測定したところ、全条件で80%以上のマルテンサイト組織となっていた。
【0020】
【表1】
【0021】
(実施例2)
通常の熱延、冷延工程を経た、表2に示すような鋼成分の酸洗鋼板(板厚1.8mm)、冷延鋼板(板厚1.2mm)を材料として、溶融アルミめっきを行った。表2のNo.1,3,5は冷延鋼板であり、残りは熱延鋼板である。溶融アルミめっきは無酸化炉−還元炉タイプのラインを使用し、めっき後ガスワイピング法でめっき付着量を片面60g/m2 に調節し、その後冷却し、ゼロスパングル処理を施した。この際のめっき浴組成としてはAl−10%Si−2%Feであった。めっき外観は不めっき等なく良好であった。このようにして製造した溶融アルミめっき鋼板を950℃で加熱後、水冷金型で冷却しながら約600℃時点でプレス成型した。曲げ加工部のめっき剥離状況を目視判定し、全ての鋼でめっき剥離は観察されなかった。このときのフェライト相厚みは10〜20μmであり、母材のマルテンサイト比率はいずれも80%以上であった。なお、冷却速度は概ね150℃/sec程度であった。
【0022】
【表2】
【0023】
【発明の効果】
本発明は、高強度自動車部品とそれを構成する材料であるアルミめっき鋼板を提供する。本発明は、今後の自動車軽量化に大きく寄与するものと思われ、産業上の寄与は大きい。
【図面の簡単な説明】
【図1】本発明に係る組織の光学顕微鏡写真の一例(反射電子像)を示す図である。
【図2】外相厚みとめっきの加工性の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a component that requires high strength such as an undercarriage of an automobile, and a steel material for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been a strong demand for higher strength steel sheets for automobiles due to the trend toward lower fuel consumption due to global environmental problems. However, generally, the increase in strength is accompanied by a decrease in workability and formability, and a steel sheet that achieves both high strength and high formability is desired.
One answer to this is TRIP (Transformation Induced Concrete) steel using martensitic transformation of retained austenite, and its use is expanding in recent years. However, with this steel, it is possible to produce a high-strength steel sheet of 1000 MPa class with excellent formability. Furthermore, it is possible to ensure formability with ultra-high strength steel such as high strength, for example, 1500 MPa or more. Have difficulty.
[0003]
Therefore, hot press is recently attracting attention as another form that achieves both high strength and high formability. This eliminates the problem of formability of a high-strength steel sheet by forming the steel sheet at a high temperature of 800 ° C. or higher, and obtains a desired material by baking after cooling. However, since it involves heating in the atmosphere, an oxide is generated on the surface and needs to be removed in a later step. Japanese Patent Laid-Open No. 2000-38640 has improved this, and is intended to suppress oxidation during heating by aluminizing a steel sheet containing 0.15-0.5% carbon.
[0004]
[Problems to be solved by the invention]
This hot press technique is effective for efficiently producing a high-strength molded part, but has the following drawbacks. That is, when an aluminum plated steel sheet is heated to 800 ° C. or higher, Fe diffuses to the surface in a short time, and the plating layer changes to an intermetallic compound. Since this intermetallic compound is very hard and brittle, it is easily peeled off during processing. Although hot pressing can withstand the processing, it is difficult to process all the portions hot, and there is a problem that the processing is delayed and the plating is easily peeled off at a lowered temperature. When the temperature is lowered, the base material becomes a hard structure mainly composed of martensite as a result of quenching, which may cause a factor that stress tends to increase.
[0005]
[Means for Solving the Problems]
In order to overcome the problems as described above, the present inventors have studied in detail the influence factors on the workability after alloying of the aluminum-plated steel sheet, and as a result, have obtained the following knowledge. In other words, since the intermetallic compound and the base material are both hard, the internal stress increases. However, the presence of a soft layer between the intermetallic compound layer and the base material relaxes the stress and prevents the plating from peeling off. Is greatly improved.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason for limitation of the present invention will be described.
In the present invention, a soft ferrite layer is present at a thickness of 2 μm or more and 1/10 or less of the thickness of a steel plate at the interface between an intermetallic compound layer formed by alloying an aluminum plating layer and a base material mainly composed of martensite. It is something to be made. Usually, about 1 to 10% of Al is present in the ferrite. This ferrite phase can further contain Si in addition to Al. This thickness is limited to 2 μm or more. This is because if the thickness of the soft ferrite phase is less than this, sufficient peeling resistance of the plating cannot be obtained. On the other hand, this phase is soft, and if it is too thick, the strength of the entire steel sheet is impaired. In this sense, the upper limit is set to 1/10 or less of the plate thickness of the steel plate.
[0007]
Usually, an aluminum-plated steel sheet is often produced by a hot dipping method, and at this time, an intermetallic compound layer (referred to as an alloy layer) at the interface between the steel sheet and the plating layer is likely to grow. When this layer grows too much, the workability of the steel sheet is impaired, so that it is manufactured by adding about 10% of Si to the bath. In the present invention, since all the alloy layers are heated and then processed hot, it is not particularly necessary to add Si to the bath, but there is no particular problem even if it is added.
[0008]
In the present invention, it is desirable that the ferrite phase has a Vickers hardness of 200 or less. As described above, this phase has a role of preventing peeling during processing of a hard alloy layer. In this sense, it is desirable that this phase is soft. However, since it contains a solid solution hardening element such as Al or Si, it is harder than a normal ferrite phase.
[0009]
Next, other components of the present invention will be described. First, although it is a steel component, the present invention aims at a high-strength region that cannot be achieved by ordinary TRIP steel and the like, and is intended to increase the strength by quenching. Is preferably 0.1% or more. For other steel elements, elements such as Si, Mn, Ti, B, Cr, Mo, Al, P, S, and N can usually be used. Si is effective in fatigue characteristics, and Mn and B contribute to improvement of hardenability. Ti, Si, Cr, Mo, and Al are elements that improve heat resistance after aluminum plating.
[0010]
As a structure of the aluminum plating layer, Al is a main component, and Si can be added as described above. As other additive elements, Cr, Mg, Ti, Sb, Sn, Zn, and the like are conceivable, but they can be applied as long as the plating layer is mainly composed of Al. However, Zn has a low boiling point, and when added in a large amount, powdery Zn is generated on the surface during heating and causes galling during pressing, so addition of 60% or more is not desirable.
[0011]
As the resulting intermetallic compound, FeAl 3, Fe 2 Al 5 , Fe 3 Al, Fe 2 Al 8 Si or the like can produce. These phases tend to have a multilayer structure in layers, but the phase structure is not particularly limited. The composition is mainly composed of Al and Fe. When Si is added to the aluminum plating bath, Si is also contained in an amount of about 5 to 10%. The composition of these elements accounts for 90% or more in total. A small amount of non-alloyed Al may remain, but the performance is not particularly affected if the amount is small.
[0012]
In the present invention, the amount of aluminum plating, the pretreatment for plating, and the posttreatment are not particularly limited. There is no problem if the plating adhesion amount is in the range of 30 to 100 g / m 2 on a normal side. As the post-plating treatment, there may be a chromate treatment, a resin coating treatment, etc. for the purpose of primary rust prevention and lubricity, but the organic resin disappears when heated, which is not preferable. In consideration of the recent hexavalent chromium regulation, the chromate treatment is preferably a trivalent treatment film such as electrolytic chromate. In addition, it is assumed that press working is performed after changing the surface to an intermetallic compound by heating. This is because if a large amount of Al remains on the surface, the weldability and corrosion resistance after coating are impaired.
[0013]
There is no limitation on the production method of the aluminum-plated steel sheet. Usual steelmaking and hot rolling conditions are applicable. Aluminum plating is usually performed by a hot dipping method, but is not limited thereto, and electroplating from a non-aqueous solvent, vapor deposition, or the like can also be used. Pre-plating such as Ni pre-plating may be used as the plating pretreatment, but this is also applicable.
[0014]
The thickness of the ferrite phase is measured with an optical microscope. The thickness of the ferrite phase can be clearly observed by performing about 2% of nital etching after cross-sectional polishing. However, since it may be difficult to observe the boundary with the intermetallic compound phase, EPMA analysis is used together in that case. At this time, the ferrite phase can be easily fixed from the difference in Fe strength and Al strength. For the measurement of the ferrite phase thickness, about 5 points are randomly measured and the average value is adopted. The base material is a structure mainly composed of martensite. For observation, an optical microscope can be used, for example, by picral etching.
[0015]
FIG. 1 shows an example of the organization of the present invention. Although two layers are observed at the interface, as a result of EPMA quantitative analysis, this lower layer is a ferrite layer, and the thickness is about 5 μm. In FIG. 1, reference numeral 1 is Al: 26.85%, Si: 9.83%, Fe: 59.92%, and reference numeral 2 is Al: 49.54%, Si: 3.11%, Fe : 44.89%, code 3 is Al: 30.75%, Si: 8.88%, Fe: 56.91% and code 4 is Al: 9.59%, Si: 2.92%, Fe : 84.02% layer.
[0016]
Finally, the heating and cooling conditions for the plated steel sheet are not particularly limited. Naturally, the influence of the cooling rate is large to obtain a quenched structure, and a cooling rate of about 30 ° C./sec or more is desirable. This depends on the steel composition, and a steel with good hardenability can obtain a structure mainly composed of the desired martensite even at a cooling rate of about 10 ° C./sec. Depending on the steel type, a cooling rate of 100 ° C./sec or more can be obtained. Necessary. In order to set the thickness of the ferrite phase to a desired condition, it is necessary to optimize the heating conditions.
[0017]
【Example】
Next, the present invention will be described in more detail with reference to examples.
Example 1
Hot aluminum and cold rolling processes were used, and hot-dip aluminum plating was performed using cold-rolled steel sheets (thickness 1.2 mm) having steel components as shown in Table 1 as materials. For hot-dip aluminum plating, a non-oxidation furnace-reduction furnace type line was used, and after plating, the amount of plating adhered was adjusted to 60 g / m 2 on one side by gas wiping, then cooled and subjected to zero spangle treatment. The plating bath composition at this time was Al-10% Si-2% Fe. Fe in the bath is inevitable supplied from plating equipment or strips in the bath. The plating appearance was good with no plating. The hot-dip aluminized steel sheet thus produced was heated to 950 ° C., and the workability (peeling resistance) of the plating in the air cooling process was evaluated.
[0018]
At this time, the thickness of the ferrite phase was changed by changing the heating time and the heating pattern. Further, the machining was an impact test, and the peeling temperature of the plating was visually judged by changing the machining temperature during the cooling process, and the plating workability was evaluated at the lowest temperature at which plating peeling did not occur. This steel had good hardenability even at a cooling rate of 10 ° C./sec, and had a martensite-based structure even with air cooling. FIG. 2 shows the relationship between the thickness of the intermediate ferrite phase and the minimum workable temperature at this time.
[0019]
As shown in FIG. 2, it can be seen that when the ferrite phase thickness is 2 μm or more, preferably 4 μm or more, the peeling resistance of the plating is improved. When the ferrite phase thickness is about 0.5 μm, powdery peeling of the plating was observed even when processed at 800 ° C. Note that the workability of plating depends on the amount of plating, and even when the ferrite phase thickness is 2 μm, the minimum processable temperature dropped to 500 ° C. when the amount of adhesion was 30 g / m 2 on one side. Moreover, when the matrix structure at this time was measured by image analysis after an optical microscope, it was a martensite structure of 80% or more under all conditions.
[0020]
[Table 1]
[0021]
(Example 2)
Hot aluminum and cold rolling processes are used, and hot-dip aluminum plating is performed using pickled steel sheets (1.8 mm thick) and cold rolled steel sheets (1.2 mm thick) as shown in Table 2. It was. No. in Table 2 1, 3 and 5 are cold-rolled steel sheets, and the rest are hot-rolled steel sheets. For hot-dip aluminum plating, a non-oxidation furnace-reduction furnace type line was used, and after plating, the amount of plating adhered was adjusted to 60 g / m 2 on one side by gas wiping, then cooled and subjected to zero spangle treatment. The plating bath composition at this time was Al-10% Si-2% Fe. The plating appearance was good with no plating. The hot-dip aluminized steel sheet thus produced was heated at 950 ° C. and then press-molded at about 600 ° C. while being cooled with a water-cooled mold. The plating peeling state of the bent part was visually judged, and no plating peeling was observed in all the steels. The ferrite phase thickness at this time was 10 to 20 μm, and the martensite ratio of the base material was 80% or more. The cooling rate was about 150 ° C./sec.
[0022]
[Table 2]
[0023]
【Effect of the invention】
The present invention provides a high-strength automobile part and an aluminized steel sheet as a material constituting the same. The present invention is considered to greatly contribute to future weight reduction of automobiles, and the industrial contribution is great.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example (backscattered electron image) of an optical micrograph of a tissue according to the present invention.
FIG. 2 is a diagram showing the relationship between the outer phase thickness and the workability of plating.
Claims (3)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001228431A JP4990449B2 (en) | 2001-07-27 | 2001-07-27 | Aluminum-coated steel sheet for high-strength automotive parts and automotive parts using the same |
KR1020037016351A KR100836282B1 (en) | 2001-06-15 | 2002-06-14 | High-strength alloyed aluminum-system palted steel sheet |
TW091113018A TWI317383B (en) | 2001-06-15 | 2002-06-14 | High-strength alloyed aluminum-system plated steel sheet and high-strength automotive part excellent in heat resistance and after-painting corrosion resistance |
PCT/JP2002/005978 WO2002103073A2 (en) | 2001-06-15 | 2002-06-14 | High-strength alloyed aluminum-system plated steel sheet and high-strength automotive part excellent in heat resistance and after-painting corrosion resistance |
KR1020087029007A KR20080108163A (en) | 2001-06-15 | 2002-06-14 | Hot press method of high-strength alloyed aluminum-system palted steel sheet |
KR1020077017549A KR20070087240A (en) | 2001-06-15 | 2002-06-14 | Hot press method of high-strength alloyed aluminum-system palted steel sheet |
AU2002309283A AU2002309283B2 (en) | 2001-06-15 | 2002-06-14 | High-strength Alloyed Aluminum-system Plated Steel Sheet and High-strength Automotive Part Excellent in Heat Resistance and After-painting Corrosion Resistance |
KR1020077027723A KR20070119096A (en) | 2001-06-15 | 2002-06-14 | High-strength alloyed aluminum-system palted steel sheet |
CNB028120361A CN100370054C (en) | 2001-06-15 | 2002-06-14 | High-strength alloyed aluminum-system plated steel sheet and high-strength automotive part excellent in heat resistance and after-painting corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001228431A JP4990449B2 (en) | 2001-07-27 | 2001-07-27 | Aluminum-coated steel sheet for high-strength automotive parts and automotive parts using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003041343A JP2003041343A (en) | 2003-02-13 |
JP4990449B2 true JP4990449B2 (en) | 2012-08-01 |
Family
ID=19060943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001228431A Expired - Fee Related JP4990449B2 (en) | 2001-06-15 | 2001-07-27 | Aluminum-coated steel sheet for high-strength automotive parts and automotive parts using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4990449B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4700543B2 (en) * | 2006-03-31 | 2011-06-15 | 新日本製鐵株式会社 | Aluminum-based hot-pressed steel with excellent adhesion and corrosion resistance after painting |
JP5251272B2 (en) * | 2008-06-05 | 2013-07-31 | 新日鐵住金株式会社 | Automotive parts with excellent corrosion resistance after painting and Al-plated steel sheet for hot pressing |
JP5672849B2 (en) * | 2010-08-20 | 2015-02-18 | Jfeスチール株式会社 | Steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot pressed members using the same |
EP2818571B1 (en) * | 2013-06-25 | 2017-02-08 | Schwartz GmbH | Diffusion of aluminium-silicon into a steel sheet web |
CN108588612B (en) * | 2018-04-28 | 2019-09-20 | 育材堂(苏州)材料科技有限公司 | Hot press-formed component, hot press-formed pre- coating steel plate and hot press-formed technique |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS556461A (en) * | 1978-06-29 | 1980-01-17 | Mitsubishi Heavy Ind Ltd | Molten aluminum plating method |
JPH07197281A (en) * | 1993-12-28 | 1995-08-01 | Yasuo Furuhata | Heat treatment of iron and steel member having heat resistance, corrosion resistance and high tensile force |
DE19853285C1 (en) * | 1998-11-19 | 2000-06-15 | Karlsruhe Forschzent | Process for producing a protective layer on a martensitic steel and use of the steel provided with the protective layer |
-
2001
- 2001-07-27 JP JP2001228431A patent/JP4990449B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003041343A (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6836600B2 (en) | Hot stamping material | |
CA2573226C (en) | Method of hot pressing high strength member using steel sheet and such hot pressed parts | |
JP4860542B2 (en) | High strength automobile parts and hot pressing method thereof | |
JP3663145B2 (en) | A method for producing molded parts with extremely high mechanical property values by stamping from strips of coated rolled steel sheets, especially coated hot rolled steel sheets | |
JP5251272B2 (en) | Automotive parts with excellent corrosion resistance after painting and Al-plated steel sheet for hot pressing | |
JP4410718B2 (en) | Al-based plated steel sheet having excellent paint adhesion and post-coating corrosion resistance, automobile member using the same, and method for producing Al-based plated steel sheet | |
JP4446428B2 (en) | High-strength automotive parts with excellent corrosion resistance after painting | |
JP4456581B2 (en) | High-strength automotive parts with excellent post-painting corrosion resistance of molded parts and hot pressing methods thereof | |
JP4333940B2 (en) | Hot-pressing method for high-strength automotive parts using aluminum-based plated steel | |
JP4551034B2 (en) | High-strength aluminum plated steel sheet for automobile parts with excellent weldability and post-painting corrosion resistance, and automobile parts using the same | |
US8722204B2 (en) | Aluminum coated Steel sheet having excellent oxidation resistance and heat resistance | |
JP5098864B2 (en) | High strength automotive parts with excellent post-painting corrosion resistance and plated steel sheets for hot pressing | |
JP5906733B2 (en) | Surface-treated steel sheet with excellent post-painting corrosion resistance and its manufacturing method | |
JP4023710B2 (en) | Aluminum-plated steel sheet for hot press with excellent corrosion resistance and heat resistance, and automotive parts using the same | |
JP2004124207A (en) | Zn-PLATED STEEL SHEET FOR HOT-PRESS, AND CAR COMPONENTS WITH HIGH STRENGTH USING IT | |
JP2004124208A (en) | Surface-treated steel sheet with high strength superior in corrosion resistance after being painted, and car components with high strength | |
JP2003183802A (en) | High-strength aluminum-plated steel sheet excellent in heat resistance and after-coating corrosion resistance, and high-strength automotive part | |
JP4990449B2 (en) | Aluminum-coated steel sheet for high-strength automotive parts and automotive parts using the same | |
JP4612240B2 (en) | High-strength aluminized steel sheet with excellent corrosion resistance after painting and automotive parts using it | |
JP4022063B2 (en) | High-strength aluminum-plated steel sheet and high-strength automotive parts with excellent workability and corrosion resistance | |
WO2022091529A1 (en) | Hot-pressed member, steel sheet for hot-pressing, and methods for producing same | |
JP2020041175A (en) | Steel plate for hot pressing | |
JP2018115379A (en) | Zn-Al PLATED STEEL PLATE EXCELLENT IN PHOSPHATE CHEMICAL PROCESSABILITY, AND PRODUCTION METHOD THEREOF | |
JP6981385B2 (en) | Steel plate for hot pressing | |
CN115135798A (en) | Hot-stamped component and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110614 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120424 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120502 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4990449 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |