EP0166805B1 - Système de transfert de chaleur - Google Patents

Système de transfert de chaleur Download PDF

Info

Publication number
EP0166805B1
EP0166805B1 EP84109863A EP84109863A EP0166805B1 EP 0166805 B1 EP0166805 B1 EP 0166805B1 EP 84109863 A EP84109863 A EP 84109863A EP 84109863 A EP84109863 A EP 84109863A EP 0166805 B1 EP0166805 B1 EP 0166805B1
Authority
EP
European Patent Office
Prior art keywords
pressure vessel
duct
exchange system
heat exchange
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84109863A
Other languages
German (de)
English (en)
Other versions
EP0166805A3 (en
EP0166805A2 (fr
Inventor
Peter Baumberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0166805A2 publication Critical patent/EP0166805A2/fr
Publication of EP0166805A3 publication Critical patent/EP0166805A3/de
Application granted granted Critical
Publication of EP0166805B1 publication Critical patent/EP0166805B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/007Control systems for waste heat boilers

Definitions

  • the invention relates to a heat exchanger system according to the preamble of claim 1.
  • Such a heat exchanger system is known from EP-A-0 111615, which, in addition to being compact, has good controllability.
  • the applicability of the known heat transfer system is limited, however, because on the one hand a predetermined proportion of the total amount of heat has to be supplied to the evaporator heating surface for control reasons and on the other hand the temperature of the hot gas in the region of the fork in two parallel branch channels is limited for design reasons; for example in the frequently occurring application of the known heat exchanger system for cooling synthesis gas to approx. 600 ° C.
  • the arrangement of the second branch channel downstream of the displacement body and coaxial to the first branch channel supports the striving for a compact design of the system.
  • the arrangement of another heat exchanger surface in the further duct section downstream of the mixing space enables the transfer of very large amounts of heat, even without a heat exchanger surface having to be provided in the second branch duct, so that this branch duct may only serve as a bypass for hot gas. This significantly increases the control range compared to the known system.
  • an existing heat exchanger surface in the second branch duct can be dimensioned small or possibly omitted entirely, it is possible to make the area of the fork in the branch ducts much less sensitive to high temperatures than before, whereas the other heat exchanger surface in the further duct section is only exposed to gas is that has been sufficiently cooled at least along the entire evaporator heating surface in the first branch duct.
  • the wall of the pressure vessel is easily protected from excessive temperatures.
  • the feature according to claim 2 leads to an optimal use of the space occupied by the heat exchanger system and thus to a smaller, relatively light pressure vessel, which is expressed in a low price, good portability and easy assembly.
  • the embodiment according to claim 3 is advantageous in terms of price, since the snake tubes can be produced very easily and the hanging of the tube boards does not require any special suspension means.
  • the embodiment according to claim 4 results in a particularly high heat transfer and in the event of a leak, the pipes affected can be easily blinded without this leading to hot streaks in the gas.
  • the arrangement according to claim 5 leads to a simple, relatively small throttle element which is located in a relatively cool area and is easy to operate.
  • the gas outlet connection inevitably lies in the lower region of the pressure vessel, so that the connections of all heat exchanger surfaces to the medium lines must be arranged in the uppermost region of the pressure vessel.
  • at least the medium connections of the other heat exchanger surface are arranged in the lower region of the pressure vessel, so that any liquid or solid residues of the medium can be removed from the other heat exchanger surface when the heat exchanger system is at a standstill.
  • the final temperature of the gas can be influenced in a simple manner.
  • the embodiment according to claim 8 has the advantage of reducing the coil tube temperature. It also allows a cross flow of part of the gas in the branching area without a high pressure drop occurring on the gas side.
  • the snake tubes By spacing by means of the cams according to claim 9, the snake tubes can be packed together to form a compact ring bundle that can easily be hung from the outermost tubes, as claimed in claim 10.
  • the lid according to claim 11 ensures good accessibility to the interior of the pressure vessel, in particular to the heating surfaces, whereas the thermal insulation leads to a relatively thin-walled lid.
  • a tubular lower part 2 is of a cylindrical pressure vessel 1 Claws 3 parked on a foundation 4.
  • the lower part 2 is connected at its lower end to a gas inlet line, not shown.
  • a gas outlet connection 5 is arranged laterally a little below its upper end.
  • the lower part 2 has a flange 6 on which a cover 7 sits, which forms the upper part of the pressure vessel 1 and has an internal thermal insulation 8.
  • a lining 10 extends over a central, extended height range of the lower part 2 at a small distance from its inner wall, forming an annular space 9, which ends at the top on an inner edge of an annular plate 12 and is tightly connected to the latter.
  • the periphery of the ring plate 12 is tightly connected to the lower part 2.
  • a middle channel wall 22 Arranged within the outer channel wall 20 is a middle channel wall 22, which is connected at its lower end to the wall of the lower part 2 via a tight but easily releasable connection 16.
  • An inner channel wall 28 is provided within the middle channel wall 22, which together with the middle channel wall 22 forms the first branch channel 32 with an annular cross section.
  • the channel wall 28 also forms a circular cylindrical, inner second branch channel 33 and carries a sheet metal cone 23 with a valve seat 24 at the top.
  • the valve seat 24 interacts with a throttle element 25 in the form of a poppet valve which is actuated by a servo motor 26.
  • a displacement body 14 is provided within it, which, together with the wall 22, delimits a channel section 30.
  • a displacement body 14 there is the fork in the two branch channels 32 and 33, the channel section 30 and the first branch channel 32 being aligned with one another.
  • a single coil heating surface 36 which is connected as an evaporator, extends over the entire height of the annular space formed by the channel section 30 and the first branch channel 32.
  • the coil heating surface 36 consists of thirty-six involute tube sheets 38 which are each formed from a tube with vertically directed legs. Such a tube sheet 38 is particularly highlighted in FIG. 2 and drawn in an unwound manner in FIG. 3.
  • a leg 51 (FIG. 3) running on an outermost tube cylinder 50 (FIG. 2) is connected via an inclined section 52 to a leg on an innermost tube cylinder 53 (FIG.
  • leg 54 (Fig. 3) connected.
  • the leg 54 is connected at the top via a manifold to a leg 55 which is connected at the bottom via a manifold to a further leg 56.
  • a leg 57 finally leads vertically upwards, where it leads together with the leg 51 to the cover 7, which the tube legs 51 and 57 pierce through known sealing sleeves.
  • the legs 51 and 57 are then connected to a distributor 58 and a collector 59 together with the corresponding legs of the remaining thirty-five tube plates 38.
  • the tube legs are spaced apart from one another by cams, not shown in the drawing, attached to the legs or by ribs running all around at different heights.
  • the tube sheets 38 are layered on the inner channel wall 28, bent into involute surfaces and radially compressed with tensioning belts (not shown) extending over the circumference of the coil heating surface 36.
  • the heating surface bundle formed in this way is encased in the area of the first branch duct 32 with a wire mesh.
  • the outermost pipe limbs 51 can rest on the middle channel wall 22, which is thereby cooled during operation.
  • a wire mesh made of a highly heat-resistant material or an insulation can also be provided here, possibly in several layers, which reduces the heat transfer to the central channel wall 22.
  • the annular space delimited by the outer channel wall 20 and the middle channel wall 22 forms a further channel section 34, in which another heat transfer surface 62, here a superheater heating surface, is arranged, which consists of ninety-two helically wound tubes 64 which form five tube cylinders.
  • the pipes 64 are connected to manifolds 75, 75 'via connecting pipes 72 which penetrate the wall of the lower part 2.
  • each pipe 64 is connected via a pipe bend 65 to one of the ninety-two down pipes 66 which run vertically in the annular channel formed between the lining 10 and the outer channel wall 20.
  • the tubes 66 leave the ring channel mentioned and emerge laterally through the wall of the lower part 2 through the wall of the lower part 2 through the wall of the lower part 2.
  • the downpipes are connected to two collectors 70, 70 '.
  • the heat exchanger surface 62 is freely stretchable upwards.
  • the tubes 64 of the heat exchanger surface 62 are held in perforated support plates 61 which are arranged within the further channel section 34 in three planes which are offset by 120 ° from one another and run through the vertical axis of the pressure vessel 1.
  • the lower ends of the support plates 61 are fastened laterally to the wall of the lower part 2, and the support plates 61 have bores 63 (FIG. 2) over the height region of the heat exchanger surface.
  • the tubes 64 are wound into these bores 63.
  • the support plates 61 are freely stretchable upwards.
  • a valve is arranged on the lower part 2, which consists of a handwheel 80, a horizontal valve rod 81 and a valve cone 82 acting in a circular opening of the liner 10.
  • the handwheel 80 is located outside of the pressure vessel 1.
  • the valve rod 81 penetrates the wall of the lower part 2, a thread (not shown) on the valve rod 81 being guided in a nut 83 fastened to the lower part 2 and the point of penetration of the valve rod 81 through the lower part 2 is sealed in a known manner.
  • the gas outlet nozzle 5 is lined with a feed plate 92 which forms an inlet nozzle and which leads into a static mixer 93.
  • connection 16 and the lowermost section of the lower part 2 are protected from excessive temperatures by a brick lining 76, which may contain cooling pipes, not shown.
  • the collector 59 is connected via a saturated steam line 45 to a separator 46, the steam outlet line 47 leading to the distributors 75 and 75 ', while separated water is discharged via an outlet connection 48 attached to the bottom of the separator 46.
  • a further steam supply line 49 is connected to the distributors 75, 75 '. B. comes from cooling devices or a boiler system.
  • the heat exchanger system according to FIGS. 1 to 3 works as follows:
  • the pressure vessel 1 is supplied with a process gas of, for example, 1000 ° C. and 20 to 40 bar at its lower end. This gas flows through the channel section 30, whereupon it is distributed to the first branch channel 32 and the second branch channel 33 after cooling to approximately 900 ° C.
  • the partial flow in the first branch duct 32 emits further heat and is cooled to, for example, 600 ° C.
  • the two partial flows combine, resulting in a mixing temperature of, for example, 700 ° C.
  • the combined gas flow then passes through the further channel section 34, where it is further cooled to, for example, 400 ° C., and the annular space 9, where it tempers the wall of the pressure vessel, into the annular space below the annular plate 12 and from there - through the gas outlet connection 5 - for further use.
  • the lining plate 92 In order that hot gas streaks that may result from the opening of the valve plate 82 neither cause hot spots on the wall of the lower part 2 nor on the gas outlet connection 5, the lining plate 92, optionally supported by additional guide plates, keeps such streaks away from the pressure-bearing wall.
  • the static mixer 93 then makes the gas temperature more uniform.
  • Preheated water is supplied to the heat exchanger system as a secondary medium via the distributor 58 and is fed into the coil heating surface 36 via the legs 51 serving as support tubes.
  • this coil heating surface 36 serves as an evaporator; therefore, a steam water mixture flows into the collector 59 via the legs 57.
  • the steam water mixture is then separated in the separator 46; the water is excreted through the nozzle 48 and the saturated steam is fed via line 47 into the distributors 75, 75 '.
  • the heating surfaces in the channel section 30 and in the first branch channel 32 are designed so large with regard to any heating surface contamination that initially it is possible to drive with the throttle element 25 and valve cone 82 open wide. A lot of heat is emitted in the channel section 30 and a very large part of the gas leaving the section 30 is conducted via the second branch channel 33, so that the amount of heat given off in the first branch channel 32 remains relatively small. Since the gas inlet temperature in the second branch duct 33 is already relatively low, there is no danger that it will overheat. Corresponding The result is a relatively low gas temperature downstream of the further channel section 34. By admixing a relatively large amount of hot gas via the wide-open valve cone 82, the temperature of the gas emerging from the pressure vessel 1 is raised again to the desired level.
  • the hot gas supply to the annular space 9 is throttled by closing the valve cone 82.
  • the cover 7 is lifted off to clean the heating surfaces, with the coil heating surface 36 and the inner channel wall 28 being pulled out.
  • the middle channel wall 22 can then also be pulled out relatively easily after the connection 16 has been released.
  • the tube sheets 38 can now be bent slightly outwards, in particular in the middle and lower part of the coil heating surface, so that they can be cleaned.
  • the other heat transfer surface 62 can be inspected from the inside and can also be cleaned from there.
  • the inner channel wall 28 can be shortened or extended downwards in a simple manner. It is also conceivable to make the branching point adjustable, for example by one or two ring slides or by a bypass provided in the inner channel wall 28.
  • the invention is not limited to the illustrated embodiment.
  • the heat exchanger surfaces are shown in the simplest form. But they can also be divided. The flow directions can also be reversed in whole or in part.
  • more than one secondary medium can be involved in the heat transfer. If throttling elements in the pressure vessel are to be avoided, they can also be placed in connecting lines which serve to guide the gas outside the pressure vessel.
  • the quantity distribution of the secondary medium or the secondary media can also be changed under certain circumstances.
  • the invention is by no means bound to the exemplary embodiment shown; for example, pocket pipes or heat pipes can also be used.
  • the branching to the branch channels can be staggered at different temperatures or temperature ranges.
  • the merging of the branch streams can also be staggered.
  • the opening controlled by the valve cone 82 can also be connected on the inlet side to locations of one or the other branch channel.
  • Redundancies can be provided to increase the operational safety of the system. It can e.g. B. two or more valve cones 82 with associated components may be present in the heat exchanger system according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (11)

1. Système échangeur de chaleur pour l'évacuation de la chaleur d'un gaz chaud, de préférence d'un gaz de synthèse, vers plusieurs surfaces (36, 62) d'échange de chaleur regroupées à l'intérieur d'un seul dôme (1) de pression, de forme essentiellement cylindrique, une section (30) de colonne, contenant l'une des surfaces (36, 62) d'échange de chaleur, étant prévue à l'intérieur du dôme (1) de pression, et se divisant en deux colonnes parallèles (32, 33) de dérivation qui débouchent dans une chambre commune de mélange et dont une première colonne (32) de dérivation est placée dans le même axe que la section (30) de la colonne, une surface d'échange de chaleur sous forme d'une surface (36) d'évaporation étant ensuite disposée dans la section (30) de la colonne et dans la première colonne (32) de dérivation, l'une au moins des deux colonnes (32, 33) de dérivation étant dotée d'un élément régulateur (25), une autre section (34) de la colonne étant ensuite prévue à l'intérieur du dôme (1) de pression, dans le chemin des gaz, en aval de la chambre de mélange, caractérisé par le fait que la deuxième colonne (33) de dérivation est réalisée sous forme d'une colonne cylindrique, placée, sur le chemin des gaz, en aval d'un corps déflecteur (14) disposé au centre de la section (30) de la colonne, et coaxialement par rapport à la première colonne (32) de dérivation, par le fait que l'autre section (34) de la colonne contient une autre surface d'échange de chaleur dans laquelle la chaleur du gaz est transmise à un fluide, et par le fait qu'une chambre circulaire (9), comprise entre l'autre section (34) de la colonne et la paroi du dôme (1) de pression, est prévue en aval de l'autre section (34) de la colonne, et débouche dans une tubulure (5) d'échappement des gaz.
2. Système échangeur de chaleur selon la revendication 1, caractérisé par le fait que la section (30) de la colonne, la première colonne (32) de dérivation ainsi que l'autre section (34) de la colonne sont réalisées sous forme de colonnes cylindriques coaxiales au dôme (1) de pression.
3. Système échangeur de chaleur selon la revendication 1 ou 2, l'axe du dôme (1) de pression étant orienté verticalement, caractérisé par le fait que la surface (36) d'évaporation est réalisée sous forme d'une surface de réchauffage a serpentin tubulaire, et que les serpentins tubulaires de celle-ci possèdent des parties droites (51, 54, 55) parallèles à l'axe du dôme de pression et s'étendent sous forme de plaques tubulaires (38) incurvées en forme de développante.
4. Système échangeur de chaleur selon la revendication 3, caractérisé par le fait que l'autre surface (62) d'échange de chaleur située dans l'autre section (34) de la colonne est réalisée sous forme d'une surface de réchauffage à tubes hélicoïdaux.
5. Système échangeur de chaleur selon la revendication 1, caractérisé par le fait que l'élément régulateur (25) est réalisé sous forme d'un clapet central en champignon et disposé, dans le chemin des gaz, en aval de la deuxième colonne cylindrique (33) de dérivation.
6. Système échangeur de chaleur selon l'une des revendications 3 à 5, caractérisé par le fait que le dôme (1) de pression comporte une tubulure d'admission coaxiale disposée en bas du dôme de pression (1), et qu'il comporte au moins une tubulure latérale (5) d'échappement des gaz, disposée dans la partie supérieure du dôme.
7. Système échangeur de chaleur selon la revendication 6, caractérisé par le fait que la tubulure (5) d'échappement des gaz peut communiquer, par l'intermédiaire d'au moins un élément régulateur ajustable supplémentaire (82), dans le chemin des gaz, avec au moins une des sections (30, 34) de la colonne et/ou avec les colonnes (32, 33) de dérivation.
8. Système échangeur de chaleur selon la revendication 3, caractérisé par le fait que le diamètre des tuyaux du serpentin placé dans la section (30) de la colonne est sensiblement plus petit au niveau du départ des colonnes (32, 33) de dérivation qu'au niveau du reste de leur longueur.
9. Système échangeur de chaleur selon la revendication 3 ou 8, caractérisé par le fait que les tuyaux du serpentin sont espacés les uns des autres au moyen de cames fixées sur eux.
10. Système échangeur de chaleur selon la revendication 9, caractérisé par le fait que les plaques tubulaires (38) sont suspendues par des tuyaux (51, 57) qui alimentent les plaques tubulaires (38) en fluide et en assurent l'évacuation.
11. Système échangeur de chaleur selon l'une des revendications 3 à 10, caractérisé par le fait que le dôme (1) de pression porte à son extrémité supérieure un couvercle (7) le recouvrant entièrement, dont le côté intérieur est garni d'une isolation thermique (8).
EP84109863A 1984-07-05 1984-08-18 Système de transfert de chaleur Expired EP0166805B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3253/84A CH665274A5 (de) 1984-07-05 1984-07-05 Waermeuebertrager.
CH3253/84 1984-07-05

Publications (3)

Publication Number Publication Date
EP0166805A2 EP0166805A2 (fr) 1986-01-08
EP0166805A3 EP0166805A3 (en) 1986-04-09
EP0166805B1 true EP0166805B1 (fr) 1988-12-14

Family

ID=4251966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84109863A Expired EP0166805B1 (fr) 1984-07-05 1984-08-18 Système de transfert de chaleur

Country Status (6)

Country Link
US (1) US4700772A (fr)
EP (1) EP0166805B1 (fr)
JP (1) JPS6124988A (fr)
CA (1) CA1248083A (fr)
CH (1) CH665274A5 (fr)
DE (1) DE3475646D1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1460365A4 (fr) * 2001-12-25 2005-01-05 Honda Motor Co Ltd Echangeur thermique
US8006651B2 (en) * 2007-05-15 2011-08-30 Combustion & Energy Systems Ltd. Reverse-flow condensing economizer and heat recovery method
US8191617B2 (en) * 2007-08-07 2012-06-05 General Electric Company Syngas cooler and cooling tube for use in a syngas cooler
US8240366B2 (en) * 2007-08-07 2012-08-14 General Electric Company Radiant coolers and methods for assembling same
FR2921718B1 (fr) * 2007-10-01 2014-11-28 Snecma Echangeur thermique de prechauffage pour pile a combustible
US9291401B2 (en) 2014-02-24 2016-03-22 Combustion & Energy Systems Ltd. Split flow condensing economizer and heat recovery method
KR102228203B1 (ko) * 2014-07-31 2021-03-17 한온시스템 주식회사 오일쿨러
EA033825B1 (ru) * 2017-11-03 2019-11-29 Non Profit Joint Stock Company Almaty Univ Of Power Engineering And Telecommunications Комбинированный теплообменник

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH174774A (de) * 1934-06-08 1935-01-31 Sulzer Ag Wärmeaustauscher.
FR1188371A (fr) * 1957-12-16 1959-09-22 Alsthom Cgee Chaudière de récupération
ES339041A1 (es) * 1966-05-03 1968-04-16 Schmidt Sche Heiisdampf G M B Cambiador de calor especialmente para refrigerar gases di- sociados yno gases sinteticos.
NL157513B (nl) * 1966-10-18 1978-08-15 Montedison Spa Hoge-drukreactor voor katalytische gasreacties, voorzien van een aantal door warmte-uitwisselingszones gescheiden katalysatorbedden.
AT278862B (de) * 1967-08-24 1970-02-10 Waagner Biro Ag Gasbeheizter Wärmetauscher
US3871444A (en) * 1971-08-02 1975-03-18 Beckman Instruments Inc Water quality analysis system with multicircuit single shell heat exchanger
CH586372A5 (fr) * 1974-12-06 1977-03-31 Sulzer Ag
US3991821A (en) * 1974-12-20 1976-11-16 Modine Manufacturing Company Heat exchange system
US4173997A (en) * 1977-02-23 1979-11-13 Westinghouse Electric Corp. Modular steam generator
US4498524A (en) * 1977-08-08 1985-02-12 Jacobsen Orval E Heat exchanger with by-pass
DE2846455C2 (de) * 1978-10-23 1980-07-31 Borsig Gmbh, 1000 Berlin Rohrbündel-Wärmetauscher mit gleichbleibender Austrittstemperatur eines der beiden Medien
DE2846581A1 (de) * 1978-10-26 1980-05-08 Ght Hochtemperaturreak Tech Waermetauscher fuer gase von hoher temperatur
US4502626A (en) * 1980-05-16 1985-03-05 Gas Research Institute Combustion product condensing water heater
DE3137576C2 (de) * 1981-09-22 1985-02-28 L. & C. Steinmüller GmbH, 5270 Gummersbach Vorrichtung zum Abkühlen von aus einem Vergasungsprozeß stammenden Prozeßgas
CH662638A5 (de) * 1982-11-24 1987-10-15 Sulzer Ag Waermeuebertragersystem, vorzugsweise fuer ein prozessgas.

Also Published As

Publication number Publication date
CA1248083A (fr) 1989-01-03
JPS6124988A (ja) 1986-02-03
CH665274A5 (de) 1988-04-29
DE3475646D1 (en) 1989-01-19
EP0166805A3 (en) 1986-04-09
EP0166805A2 (fr) 1986-01-08
US4700772A (en) 1987-10-20

Similar Documents

Publication Publication Date Title
DE60205645T2 (de) Wärmetauscher für isothermische chemische reaktor
DE3146778C2 (fr)
DE60129686T2 (de) Reaktor für exothermische oder endothermische heterogene reaktionen
EP0683362B1 (fr) Accumulateur de chaleur
DE3930205A1 (de) Rohrbuendel-waermetauscher
DE2815856A1 (de) Reaktor
EP0160161B1 (fr) Echangeur de chaleur pour refroidir des gaz
EP0166805B1 (fr) Système de transfert de chaleur
DE2517693C2 (de) Als Längsgegenstromapparat ausgebildeter Wärmeaustauscher
EP0111615B1 (fr) Système de transfert de chaleur, de préférence pour un gaz de processus
EP0265908B1 (fr) Appareil pour l'ébullition du moût
DE2323678A1 (de) Reaktor fuer die ammoniaksynthese
EP0172363B1 (fr) Appareil échangeur de chaleur, en particulier pour refroidir les gaz d'un réacteur à haute température
EP0189025B1 (fr) Récipient pour l'ébullition de la trempe ou du mât
DE2441706A1 (de) Heizkessel mit gusseisernen gerippten rohren
DE3121297C2 (de) Vorrichtung zum Regeln der Temperatur eines korrosiven Gases, insbesondere Synthesegas
EP0171558A2 (fr) Appareil échangeur de chaleur
DE2700563A1 (de) Waermeuebertrager fuer einen hochtemperaturreaktor
DE2848014A1 (de) Reaktor zur durchfuehrung exothermer katalytischer reaktionen
DE2803802A1 (de) Abschlaemmeinrichtung fuer einen dampferzeuger
DE19604747A1 (de) Wärmetauscher
DE3913495C2 (fr)
AT167613B (de) Vorrichtung zum Erhitzen von Arbeitsmitteln
DE1667221C (de) Hochdruckreaktor fur katalytische Gasreaktionen
CH364493A (de) Vorrichtung zur Herstellung von Wasserstoff und Kohlenmonoxyd enthaltenden Gasgemischen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19860922

17Q First examination report despatched

Effective date: 19870924

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REF Corresponds to:

Ref document number: 3475646

Country of ref document: DE

Date of ref document: 19890119

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AG

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SULZER AG TE WINTERTHUR, ZWITSERLAND.

NLS Nl: assignments of ep-patents

Owner name: ABB MANAGEMENT AG TE BADEN, ZWITSERLAND.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

BECH Be: change of holder

Free format text: 940420 *ABB MANAGEMENT LTD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960715

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960716

Year of fee payment: 13

Ref country code: BE

Payment date: 19960716

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960722

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960723

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: ABB MANAGEMENT LTD

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST