US3871444A - Water quality analysis system with multicircuit single shell heat exchanger - Google Patents

Water quality analysis system with multicircuit single shell heat exchanger Download PDF

Info

Publication number
US3871444A
US3871444A US168096A US16809671A US3871444A US 3871444 A US3871444 A US 3871444A US 168096 A US168096 A US 168096A US 16809671 A US16809671 A US 16809671A US 3871444 A US3871444 A US 3871444A
Authority
US
United States
Prior art keywords
heat exchanger
coolant
spool
shell
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US168096A
Inventor
Edwin A Houser
Bernell W Schwindt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosemount Inc
Original Assignee
Beckman Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beckman Instruments Inc filed Critical Beckman Instruments Inc
Priority to US168096A priority Critical patent/US3871444A/en
Priority to CA137,530A priority patent/CA948881A/en
Priority to GB1472172A priority patent/GB1332096A/en
Priority to IT22557/72A priority patent/IT955152B/en
Priority to CH572672A priority patent/CH556028A/en
Priority to FR7227383A priority patent/FR2149797A5/fr
Priority to DE2237294A priority patent/DE2237294A1/en
Priority to JP47076550A priority patent/JPS4825594A/ja
Priority to US446130A priority patent/US3880226A/en
Application granted granted Critical
Publication of US3871444A publication Critical patent/US3871444A/en
Assigned to BECKMAN INDUSTRIAL CORPORATION A CORP OF DE reassignment BECKMAN INDUSTRIAL CORPORATION A CORP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: EMERSON ELECTRIC CO., A CORP OF MO
Assigned to EMERSON ELECTRIC CO., A MO CORP. reassignment EMERSON ELECTRIC CO., A MO CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BECKMAN INSTRUMENTS, INC.
Assigned to ROSEMOUNT INC. reassignment ROSEMOUNT INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BECKMAN INDUSTRIAL CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/06Treating live steam, other than thermodynamically, e.g. for fighting deposits in engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/006Arrangements of feedwater cleaning with a boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/40Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the heat developed being transferred to a flowing fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/092Heat exchange with valve or movable deflector for heat exchange fluid flow
    • Y10S165/101Heat exchange with valve or movable deflector for heat exchange fluid flow for controlling supply of heat exchange fluid flowing between hydraulically independent heat exchange sections
    • Y10S165/104Hydraulically independent heat exchange sections connected in parallel

Definitions

  • ABSTRACT A modular water quality analysis system for steam electric power generating plants is disclosed which includes a novel single shell multicircuit heat exchanger having means to individually vary the rate of flow of cooling water through each of the multiple circuits therein so that the single heat exchanger can simultaneously cool a plurality of samples entering it at widely differing high inlet temperatures to the same lower range of outlet temperatures.
  • the heat exchanger has a physical construction such that it can be mounted on top of the system rack which contains a plurality of modules of apparatus for accepting water or steam samples from various test points in the power generating system, reducing the pressure and temperature thereof, directing and metering the flow of samples, and performing analyses for such water characteristic as pH, specific or cation conductivity, dissolved oxygen, sodium content and the like.
  • the single shell heat exchanger can be mounted on top of the system rack and thereby replace a plurality of individually manifolded and valved heat exchangers formerly mounted at the back of the rack makes possible a considerable saving in cost, space and weight, a greater flexibility in system layout design, together with greatly improved access to the system components for adjustment and maintenance purposes, and faster instrument response due to shorter sample tubing runs.
  • This flexibility of design in the modular system also permits the same basic apparatus to be adapted to a large variety of different sizes and types of power generating plants having different analysis requirements thereby providing a custom installation for each plant which nonetheless retains all of the advantages of standardized design and equipment.
  • the present invention relates in general to a single shell multicircuit heat exchanger particularly adapted for use in a modularized water quality analysis system for steam power generating plants.
  • the efficient generation of huge quantities of electrical energy has increased generating plant size and raised thermal oper ating conditions to the point whereplants of over one thousand megawatts capacity per unit, through a single turbine-driven generator, are becoming common.
  • Impurities can enter the power plant cycle in three general ways: first, in make up water added to the system; second, by leakage from the atmosphere or cooling water; or third, by formation in corrosion reactions within the process.
  • the object of water quality management is to measure and control impurities and additives from any of these sources. The most common measurement is solution conductivity, which measures all ionic species, thus giving broad-spectrum indication of overall purity.
  • pH analysis which is most important in corrosion control. Specific chemical species usually determined include dissolved oxygen, dissolved hydrogen, silica, hydrozine, and sodium ion. In some systems phosphate ion, copper or iron may be important. Turbidity may also be measured.
  • All of the additives or impurities can be measured using a variety of instrumental techniques on samples derived from various points in the generating plant cycle and taken initially at widely varying inlet temperatures. Accurate analysis, however, requires that most test samples be reduced to a common known standard temperature. Such analysis is normally carried out in continuously operating automatic analysis systems adapted to perform many tests on many samples according to the particular needs of the power generating plant being monitored.
  • the multicircuit heat exchanger of this invention makes possible such a system in which the necessary standardized test sampple temperature can more easily be achieved in spite of widely varied sample inlet temperatures and flow rates.
  • the present invention contemplates a modularized water quality analysis and management system for steam electric power genrating plants of the type discussed above wherein a sigle shell multicircuit heat exchanger is mounted on top of the system rack containing the various apparatus modules necessary to the system. These modules normally comprise a first high temperature and pressure reduction module, a second low temperature and pressure reduction module, a third stream switching and flow metering module, and finally an analyser module containing apparatus for performing the various tests deemed necessary in any given installation.
  • the heat exchanger is so constructed that it can be placed on top of the system ra'ck thereby replacing the large number of individual heat exchangers formerly mounted at the back of the rack, permits a great economy and flexibility in design of the system.
  • the construction of the heat exchanger is such as to permit such a location consistently with the overall systems requirements. These requirements are that the sample inlet, outlet and cooling coil tubing be continuous throughout the cooling watermedia in the sense that there are no welds or other seams or joints. It will be understood that such welds can give rise to the possiblity of leakage causing cross contamination should a weld fail.
  • the necessary individually variable cooling capacity using continuous tubing is accomplished by the unique baffling arrangement inside the single heat exchanger shell which is disclosed in detail below. Additionally, the heat exchanger is such that individual coils of sample tubing may be removed from the exchanger if necessary for replacement or repair without destroying the cooling water flange or other portions of the overall heat exchanger. Finally, each of the individual sample cooling circuits is isolated from all other circuits and individual means for regulating the rate of flow of cooling water through each circuit are provided in order to accommodate the varying inlet temperatures and flow rates of the individual samples. If desired, the individual flow rate adjusting mechanism can be operated from outside of the heat exchange shell so that rates can be varied during operation of the system without disassembling of the heat exchanger unit.
  • FIG. 1 is a front perspective view of the water quality analysis system showing the sample conditioning and analyser front panel, the system rack, and the multicircuit heat exchanger mounted on top of the rack.
  • FIG. 2 is a top plan view, partly broken away, of the multicircuit heat exchanger shown in FIG. 1.
  • FIG. 3 is an end view of the heat exchanger taken on the line 3-3 of FIG. 2 and showing the flow rate adjustment points.
  • FIG. 4 is an end view, partly broken away, taken on the line 4-4 of FIG. 2 and showing the arrangement of sample inlet and sample outlet tubes to the heat exchanger.
  • FIG. 5 is a sectional view taken on the line 5-5 of FIG. 2.
  • FIG. 6 is a sectional view taken on the line 6--6 of FIG. 5.
  • FIG. 7 is an enlarged sectional view of one of the cooling coil circuits shown in FIG. 6 with parts broken and exploded to illustrate the manner in which a single coil may be removed from the heat exchanger.
  • FIG. 8 is a sectional view taken on the line 88 of FIG. 7.
  • FIG. 9 is an elevational view taken on the line 9-9 of FIG. 6 and showing a first restriction arrangement for regulating the rate of flow of cooling water into an individual circuit or spool of the heat exchanger.
  • FIGS. 10 and 11 are respectively sectional and end elevational views of a second alternative flow rate adjusting mechanism.
  • FIG. 12 is a sectional view of a third alternative flow rate adjustment mechanism.
  • FIG. 13 is a broken away perspective view of a prior art second stage heat exchanger used for low temperature sample heat exchangers in the present system.
  • FIG. 14 is a detailed plan view on an enlarged scale showing one shutter mechanism used in the device of FIG. 13.
  • FIG. 1 there is shown a front perspective view of a water quality analysis and management system for steam generating plants of the above dis cussed type wherein a plurality of water and steam samples at widely varying inlet temperatures are reduced to a common lower outlet temperature range so that a plurality of separate analyses may be performed on the samples.
  • the system shown in FIG. 1 is mounted on a system rack 10 which, structurally, is a rectangular box-like frame of steel members extending upwardly from a base 11 to define a protected area within which the various modules of apparatus may be mounted.
  • the frame 10 is initially open at the top and all four sides.
  • the front of the frame is substantially closed by solid front panels for the individual modules of apparatus mounted behind them.
  • apparatus for a high temperature and pressure module is mounted behind front panel 12; apparatus for a low temperature and pressure module is mounted behind front panel 13; apparatus for stream switching and readout is mounted behind or on front panel 14; and apparatus and instruments for I automatically performing the various sample analyses is mounted behind front panel 15.
  • another front panel 16 is provided behind which is mounted the temperature control module which is in fact a refrigeration system to supply closed cycle constant temperature cooling water to the second stage heat exchanger for finish conditioning the samples in the low temperature and presssure module behind panel 13.
  • the heat exchanger has a single exterior cylindrical shell 18 which is secured to an endplate 19 as will be described in detail below.
  • a first or water inlet plenum chamber 20 Detachably secured to the other end of the cylindrical shell 18 is a first or water inlet plenum chamber 20 which also serves to close that end of heat exchanger shell 18.
  • Extending from apparatus mounted in the rack 10 and thence upwardly and transversely to the endplate 19 of the heat exchanger are a plurality of pairs of water and steam sample conducting tubes which are indicated generally by the reference character 21.
  • the pairs of sample conducting tubes extend into the heat exchanger through the endplate 19 and thence through a second plenum chamber 26 inside the heat exchanger which communicates with the water outlet conduit 22 in a manner described in detail below.
  • the water inlet conduit 23 is connected to the first changer and supplies cooling water under pressure which is flowed through a plurality of separate circuits inside the heat exchanger shell 17 from the first to the second plenum chamber and thence to water outlet 22.
  • Each of the plurality of pairs of water and steam sample conducting tubes has one tube for sample inlet and the other tube for sample outlet. It follows, of course, that within the heat exchanger the two tubes are merely different portions of a continuous coil of sample tubing arranged inside the heat exchanger in a manner to be described in detail below.
  • the end wall of plenum chamber 20 has protruding there through a plurality of shafts 43 which may have ahandle 49 attached thereto so that rotation of the handle and shaft will operate flow restriction means to be described below to individually vary the rate of flow of cooling water placed in heat exchanger with each of the sample flow paths formed by said pairs of sample tubing in the heat exchanger so that the single housing multicircuit heat exchanger can simultaneously cool samples entering it at widely different inlet temperatures to substantially the same lower range of outlet temperatures.
  • the mounting of the heat exchanger on top of the rack as shown in FIG. 1 permits the front of the rack to be substantially closed by the necessary front panels while still permitting access to the various valves, sinks, motors, pumps, and like which are mounted in back of the front panels.
  • the heat exchanger positioned on top of the rack replacing individually manifolded and valved heat exchangers formerly mounted vertically on the back of the rack, it is now possible to obtain access to the equipment through the open back of the rack while still performing the same cooling function more efficiently and at reduced cost.
  • the physical mounting of the heat exchanger to the rack is achieved by means of a pair of mounting brackets 25, which are bolted to mounting flanges formed integrally with the heat exchanger shell 17 and which are then secured in any convenient fashion to the system rack 10 so as to detachably mount the heat exchanger on the rack.
  • each pair of sample conducting tubes indicated generally at 21 in FIG. 1 is seen to comprise an inlet tube 21a, an outlet tube 21b, and a coil of heat exchange sample tubing continuous with the inlet and outlet tubings best seen at 21c in FIG. 6.
  • the cooling water enters the heat exchanger under pressure through the cooling water inlet tube 23 in plenum chamber 20 and passes through each of a plurality of baffle spools 25a, 25b, etc.
  • Cooling water then exits throu'gh outlet tube 22 communicating with plenum chamber 26 after passing in countercurrent heat exchange relationship with the coil 21c.
  • each of the sample cooling coils such as the coil 21c is mounted within a spool baffle such as the baffle 25a the inner diameter of which defines the maximum cross section of an individual flow path placing cooling water in countercurrent heat exchange relationship with the sample flowing through tube 210.
  • the tube 21c is coiled aroundan inner baffle 26a which is a hollow cylinder closed at both ends except for apertures in sealing relationship to the outlet tube 21b which extends axially through the inner hollow cylinder 26a for the complete return run through the center of the coil.
  • the spool baffle 25a and all other spool baffles similar to it (there being one such spool baffle and coil arrangement for each circuit of the multicircuit heat exchanger), is mounted by a press fit between a first closure plate 27 at the inlet end of the heat exchanger and a second closure plate 28 at the outlet end of the heat exchanger.
  • the closure plate 28 is supported within the heat exchanger shell 17 in a manner described below and cooperates with the endplate l9 and the shell 18 to form the outlet plenum chamber 26.
  • the closure plate 27 is attached to the inlet end of the shell 18 between the shell and the inlet plenum chamber 20 and cooperates with the flow restriction apparatus in a manner to be described below.
  • cooling water enters the heat exchanger through inlet 23 and into inlet plenum chamber 20 and then divides so as to flow through each of the spools 25a, 25b, etc. which define individual flow circuits within the heat exchanger As best seen in FIGS. 3 and 5, there are 12 such circuits in the device. water exiting from each of the baffle spools enters plenum chamber 26 and exits through cooling water outlet 22 having passed in counterflow relationship to the sample flowing through the sample coils such as coil 210. It will be understood that the heat exchanger may contain any reasonable number of individual circuit difining spools. In practice it is common to use 5, l0, 12, or 15 spools in an individual exchanger.
  • the dimensions of the plenum chambers are large by comparison to the flow cross section of each individual spool so that the supply impedance to water flow is low by comparison to the impedance of any individual spool.
  • This relationship permits the rate of flow of cooling water through each individual baffle spool to be varied independently without affecting the rate of flow through any other baffle spool. That is to say, there is no cross coupling in view of the fact that the supply impedance is low by comparison to the individual circuit impedances.
  • the endplate 19 is provided with mounting holes and a plurality of nut and bolt assemblies 33 which secure the heat exchanger shell 18 to the endplate 19 by means of the nut and bolt passing through a flange on the end of the shell 18.
  • the first step in doing so is to unfasten the means mounting the heat exchange shell 18 to the rack 10 and to next remove the bolts 33 holding the shell 18 to the endplae 19. The shell 18 may then be slid back.
  • closure plate 27 and the plenum chamber 20 are attached to a flange on the end of heat exchanger shell 18 by the nut and bolt assembly 32 in much the same fashion that the shell 18 is attached to the endplate 19 by the nut and bolt assemblies 33.
  • the closure plate 27 extends transversely of the cylindrical shell 18 at one end thereof and is connected to the central standoff member 30 which mechanically supports the other closure plate 28 which is secured thereto by standoff nut 31.
  • Closure plate 28 similarly extends transversely of the interior of the shell 18 at the other end thereof.
  • Each of the closure plates 27 and 28 has a plurality of apertures therein, the apertures being round holes of the size adapted to receive the spool baffles 25a and being positioned in spaced opposed relationships to each other to facilitate the construction shown particularly in FIGS. and 6.
  • the heat exchanger When the heat exchanger is first filled with cooling water there will be flow into the interior of the shell between the closure plates 27 and 28 and outside of the spool baffles 25a through an aperture in any convenient location in closure plate 27.
  • This water in the exchanger is essentially stagnant and provides minimum heat transfer.
  • the shell is provided with an airvent at the top to permit venting while it is thus being filled and with a drain at the bottom to facilitate draining when necessary.
  • the inlet cooling water plenum chamber 20 is bolted to the shell 18 by the same nut and bolt assemblies 32 which secure closure plate 27 thereto.
  • the outlet cooling water plenum chamber 26 is formed by the shell 18, the endplate 19, and the closure plate 28 in which the outlet end of the spools a are mounted.
  • the inlet tubing 21a is mounted in a drilled out tube fitting 34 through which it passes through endplate 19 and is then wound around the inner cylindrical baffle 26a inside the spool baffle 25a.
  • the cooling coil 210 extends the full length of the spool baffle 25a having a small clearance from its inner diameter.
  • the coil 210 may be finned if desired.
  • the coil 21c terminates in the return sample tube 21b which extends continuously with it and returns through the inner baffle 26a.
  • the inner baffle 26a extends through plenum chamber 26 and is mounted on the endplate 19.
  • the return tubing 21b at this point is also supported by a drilled out fitting 35 and nut 36.
  • the inner cylindrical baffle 26a serves to reduce the cross sectional cooling water flow area inside the spool baffle 25a and thereby increase the velocity of cooling water flow at any given inlet pressure.
  • the preferred mechanism for individually varying the rate of flow of cooling water placed in heat exchange relationship with each of the sample tube coils within a particular heat exchange circuit formed by a particular spool baffle 25a can best be seen from a consideration of the relevant details shown in FIGS 6 through 9. It will be seen that the closure plate 27 receives the spool baffles such as spool 25a in a press or friction fit in apertures in the closure plate. Closure plate 27 is in turn welded or otherwise rigidly secured to aperture plate 37. The two plates are attached to standoff 30 by means of standoff nut 29.
  • the assembly is also secured to a flange on the heat exchange shell 18 by means of the nut and bolt assembly 32.
  • Appropriate seals are of course provided at the junctions of the members, reference being particularly made to gaskets 38 and 39 on opposite sides of the aperture plate 37.
  • the aperture plate 37 can be seen in plan view in FIG. 9. It will be seen that a pair of apertures 40 and 41 are provided in plate 37 so that theentire area of both the apertures 40 and 41 is opposite the larger aperture formed by the flange 42 on closure plate 27 within which the spool baffle 25a is received. Both of these apertures 40 and 41 if unobstructed would thus discharge into the spool baffle 25a. The actual percentage of these apertures which remains unobstructed can be varied by rotation of a control plate 420 which is mounted on a shaft 43. Control plate 42a is provided with apertures 44 and 45 which may be of the same diameter and relative position as the apertures 40 and 41.
  • control plate 42a When the control plate 42a is rotated so as to align these respective sets of apertures, maximum flow rate is permitted. As the control plate 42 is rotated about shaft 43, a greater and greater percentage of misalignment occurs until eventually the solid portions of plate 42a may entirely close off the flow through apertures 40 and 41.
  • Shaft 43 extends outwardly through the end wall 46 of plenum chamber 20 through any suitable bearing arrangement 47. Exterior mounting means 48 may be adapted to receive a detachable handle 49 so that the plate 42a can be rotated from outside of the heat exchanger whle the apparatus is in operation to thereby vary the rate of flow of cooling water through the baffle spool 250.
  • each of the plurality of heat exchange circuits is providedwith similar arrangement for control of the rate of flow of cooling water through that particular circuit.
  • the positioning of the rotatable plate 42a for variably controlling the rate of flow of cooling water in the inlet plenum chamber 20 places the pressure drop across it in a direction such that it tends to urge the plate closed against the closure plate and control plate 37.
  • FIGS. 10 and 11 A second embodiment of water flow rate control means is shown in FIGS. 10 and 11.
  • a single aperture 50 is varied in effective cross section by rotation of a disc 51 mounted on a shaft 52 which is journaled for rotation by any suitable mounting means 53 so that the shaft is eccentrically positioned away from the center of the aperture 50. Rotation of the disc 51 about the shaft 52 will thus be seen to vary the exposed area of the aperture 50.
  • the shaft 52 in this embodiment may be provided with a perm anent hangle 54 also projecting outside of the heat exchanger shell.
  • FIG. 12 there is illustrated a third embodiment of means for varying the rate of flow of cooling water through the individual circuits.
  • the baffle spool 25a which seats in closure plate 27 has the aperture at its end opening controlled in effective cross sectional flow area by a conical valve member which is mounted on the end of a shaft 61.
  • the shaft 61 is journaled in a bearing member 62 and has threaded engagement with a housing 63 at aperture 64.
  • the shaft 61 is provided with a handle 65 for rotation thereof.
  • the shaft 61 is threadedly turned so as to move the conical valve member 60 into the aperture at the end of spool 25a it will be obvious that less and less water can enter the spool.
  • the maximum diameter of the conical valve member 60 is large enough to fully close the opening to the spool.
  • the housing 63 can be open ended and can be provided with a threaded cap so that the shaft 61 terminates within the housing for adjustment by a screw slot in the end of the shaft.
  • the flow of cooling water through the individual spool is continuously variable.
  • this individual variation of cooling water flow rate in one circuit may be used to meet the cooling requirements set by the inlet temperature and flow rate of the sample coming to that circuit without affecting the cooling rate established by similar but numerically different requirements in an adjacent heat circuit.
  • the system design requirement is that samples placed in heat exchange with cooling water entering the exchanger at 90 F should emerge from the heat exchanger with outlet temperatures in the range of 90 to 105 F.
  • This low temperature second stage heat exchanger accepts samples which have been reduced in temperature by the heat exchanger described above. These samples, as noted, are in a temperature range of 90 to 105 F. In this second stage heat exchanger the samples are reduced to 77 i 1 F by heat exchanging them against water circulated in a closed cycle through a refrigeration system mounted in the temperature control module 16 which holds the cooling water at 75 F.
  • This second stage heat exchanger is used in the present system as a conventional element thereof and has also been used in previous commercial systems.
  • the heat exchanger shown in FIG. 13 is referred to as a baffled bath.
  • the device consists of a simple rectangular tank 60 having a barrier plate 61 which serves as a base plae across it a few inches from the bottom. Attached to the plate is a group of thick-wall PVC pipes 62 extending to within a few inches of the bath top. The pipes are open at the top and bottom so they and the plate form a baffle system for distributing cooling water entering the bottom of the bath through temperature controlled water inlet 63. Cooling water from the refrigeration system is supplied through piping connected to this inlet and floods upwardly through the baffled bath to form a fountain effect.
  • the system is thus not a closed pressurized system, but rather is open to atmosphere at its top.
  • a coil of stainless steel'sample tubing 64 is placed within each baffle pipe and is connected so that the flow of coolant is generally countercurrent to the flow of sample.
  • the sample inlet may be seen at 65 in the detailed plan view shown in FIG. 14 the sample outlet is brought up through the center of the coil 64 and is shown at 66. It will of course be understood that the sample inlet supplied to 65 is derived from the first stage heat exchanger and that sample outlet from 66 is connected to be fed to the appropriate analyser.
  • This shutter is at the coolant outlet end of the unpressurized system and comprises the slidably adjustable shutter 67 and 68 which can be positioned by means of the screws 69 and 70 which clamp down on slots in the shutter members.
  • the baffled bath is mounted inside the system rack behind the low temperature module panel 13. This location affords short tubings runs from the first stage heat exchanger 17 to the baffled bath and in turn from the baffled bath to the analysers in the module in back of panel 15. These short tubing runs and the highly accurate and efficient temperature control assure the fast and accurate instrument response necessary to achieve maximum system effectiveness in spite of the widely varying inlet tempera tures and flow rates of the water and steam samples received by the high temperature single closed shell multicircuit heat exchanger.
  • an elongated heat exchanger shell said shell having a firstclosure plate at a first end thereof and a second closure plate positioned inwardly from the second end thereof;
  • a first plenum chamber detachably mounted on said first end of said heat exchanger shell, said first plenum chamber having cooling water inlet means connected thereto;
  • each spool extending between said closure plates inside said heat exchanger shell and detachably secured to said first and second closure plates, each spool surrounding one aperture in each of said plates so that each closure spool defines the outer limits of a separate coolant flow path between said plenum chambers;
  • each of said coils being separately and individually removable from said heat exchanger by removing said first plenum chamber and said heat exchanger shell from said end plate, sliding said spool off of the coil to be removed, and disconnecting said coil from said end plate;
  • separate means operatively associated with each of said spools to regulate'the rate of flow of cooling water through that individual spool independently of, the rate of flow of cooling water through any other spool.
  • a liquid sample single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprisa. a heat exchanger shell;
  • a plurality of hollow cylindrical baffle spools positioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers;
  • each of said coils having a sampleinlet tube and a sample outlet tube continuous therewith and both extending out of one end only of said spooland thence through one of said plenum chambers and out of one end of said heat exchanger, whereby the liquid sample tubing is surrounded by the coolant in heat conducting relation thereto;
  • the means to regulate the flow of coolant comprises a first pair of apertures defined at the coolant entrance to each of said baffle spools, a control plate rotatably mounted on a shaft extending through said first plenum chamber and out of the end of said heat exchanger, said control plate having a second pair of apertures which can be fully aligned with said first pair of apertures in one rotational position of said control plate to permit maximum coolant flow and which can be totally misaligned with said first pair of apertures in another rotational position of said plate to fully restrict coolant flow, and means outside said heat exchanger to rotate said shaft.
  • each heat exchange circuit has an independently adjustable rate of flow of coolant comprising;
  • a plurality of hollow cylindrical baffle spools posi tioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers;
  • each of said coils having a sample inlet tube and a sample outlet tube continuous therewith and both extending out of one end only of said spool and thence through one of said plenum chambers and outof one end of said heat exchanger;
  • separate means to regulate the flow of coolant in each of said spools comprising a single aperture defined at the coolant entrance to each of said baffle spools, a disc rotatably mounted on a shaft extending through said first plenum chamber and out of said heat exchanger, said shaft and disc being positioned and arranged so that said disc fully covers and restricts said aperture in at least one rotational position of said disc, and means outside said heat exchanger to rotate said shaft.
  • the means to regulate the flow of coolant comprises a single aperture defined at the coolant entrance to each of said baffle spools, and a conical valve member rotatably mounted for axial movement into and out of said baffle spool, said valve fully closing the coolant entrance to said spool when it is fully seated in said spool, and means extending outside of said heat exchanger ,to rotate said valve.
  • each of said coils of sample tubing is coiled around the outside of an inner closed cylindrical hollow baffle and returns through the center of said hollow.
  • baffle which is coaxial with said spool and which reduces the interior cross sectional area for flow of coolant through said spool to increase its velocity at a given pressure;
  • said flow regulating means comprises adjustable restriction means positioned at the coolant inlet to each of said spools.
  • a single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprising;
  • a heat exchanger shell a heat exchanger shell; b. a first plenum chamber at one end of said shell having coolant inlet means connected thereto;
  • each of said coils having a sample inlet tube and a sample outlet tube continuous therewith said spools to regulate the flow of coolant through that individual spool independently of the rate of flow of coolant through any other spool, said flow regulating means comprising adjustable restriction means positioned at the coolant inlet to each of said spools, each of said flow regulating means being independently adjustable from outside of said heat exchanger shell.
  • each of said coils and thence through one f id plenum h b is separately and independently removable from said and out of one end of said heat exchanger; and heat exchanger shell. f. separate means operatively associated with each of

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A modular water quality analysis system for steam electric power generating plants is disclosed which includes a novel single shell multicircuit heat exchanger having means to individually vary the rate of flow of cooling water through each of the multiple circuits therein so that the single heat exchanger can simultaneously cool a plurality of samples entering it at widely differing high inlet temperatures to the same lower range of outlet temperatures. The heat exchanger has a physical construction such that it can be mounted on top of the system rack which contains a plurality of modules of apparatus for accepting water or steam samples from various test points in the power generating system, reducing the pressure and temperature thereof, directing and metering the flow of samples, and performing analyses for such water characteristic as pH, specific or cation conductivity, dissolved oxygen, sodium content and the like. The fact that the single shell heat exchanger can be mounted on top of the system rack and thereby replace a plurality of individually manifolded and valved heat exchangers formerly mounted at the back of the rack makes possible a considerable saving in cost, space and weight, a greater flexibility in system layout design, together with greatly improved access to the system components for adjustment and maintenance purposes, and faster instrument response due to shorter sample tubing runs. This flexibility of design in the modular system also permits the same basic apparatus to be adapted to a large variety of different sizes and types of power generating plants having different analysis requirements thereby providing a custom installation for each plant which nonetheless retains all of the advantages of standardized design and equipment.

Description

United States Patent 1191 Mouser et al.
[ Mar. 18, 1975 1 WATER QUALITY ANALYSIS SYSTEM WITH MULTICIRCUIT SINGLE SHELL HEAT EXCHANGER [75] Inventors: Edwin A. Houser, Fullerton; Bernell W. Schwindt, Walnut, both of Calif.
[73] Assignee: Beckman Instruments, Inc.,
Fullerton, Calif.
[22] Filed: Aug. 2, 1971 [21] Appl. No.: 168,096
[52] US. Cl 165/101, 165/143, 165/160, 165/163, 73/15, 73/422 R [51} Int. Cl. F28f 27/02 [58] Field of Search 165/100, 101,160, 163, 165/11, 34, 140, 143; 73/15, 422 R; 122/462 [56] References Cited UNITED STATES PATENTS 1,786,882 12/1930 Whitsitt et a1. 122/462 1,819,785 8/1931 Muhleisen 165/163 X 2,425,669 8/1947 Brock l65/l63 X 2,693,346 11/1954 Petersen 165/163 X 3,047,274 7/1962 Wilson 165/101 X 3,142,171 7/1964 Royen 73/15 R Primary E,\'aminer-Albert W. Davis, Jr. Attorney, Agent, or Firm-R. J. Steinmeyer; P. R. Harder [57] ABSTRACT A modular water quality analysis system for steam electric power generating plants is disclosed which includes a novel single shell multicircuit heat exchanger having means to individually vary the rate of flow of cooling water through each of the multiple circuits therein so that the single heat exchanger can simultaneously cool a plurality of samples entering it at widely differing high inlet temperatures to the same lower range of outlet temperatures. The heat exchanger has a physical construction such that it can be mounted on top of the system rack which contains a plurality of modules of apparatus for accepting water or steam samples from various test points in the power generating system, reducing the pressure and temperature thereof, directing and metering the flow of samples, and performing analyses for such water characteristic as pH, specific or cation conductivity, dissolved oxygen, sodium content and the like. The fact that the single shell heat exchanger can be mounted on top of the system rack and thereby replace a plurality of individually manifolded and valved heat exchangers formerly mounted at the back of the rack makes possible a considerable saving in cost, space and weight, a greater flexibility in system layout design, together with greatly improved access to the system components for adjustment and maintenance purposes, and faster instrument response due to shorter sample tubing runs. This flexibility of design in the modular system also permits the same basic apparatus to be adapted to a large variety of different sizes and types of power generating plants having different analysis requirements thereby providing a custom installation for each plant which nonetheless retains all of the advantages of standardized design and equipment.
8 Claims, 14 Drawing Figures P ATENIED MR 1 81975 snmsurg INVENTORS E N 1U 19, House? 1 1 WATER QUALITY ANALYSIS SYSTEM WITH MULTICIRCUIT SINGLE SHELL HEAT EXCHANGER BACKGROUND F THE INVENTION 1. Field of the Invention The present invention relates in general to a single shell multicircuit heat exchanger particularly adapted for use in a modularized water quality analysis system for steam power generating plants. The efficient generation of huge quantities of electrical energy has increased generating plant size and raised thermal oper ating conditions to the point whereplants of over one thousand megawatts capacity per unit, through a single turbine-driven generator, are becoming common. The capital investment required for such a plant is of the order of a hundred and fifty to two hundred million dollars per unit. Many plants consist of four or more such units side by side. Because of this high cost and large scale, on-stream time must be kept as high as possible (i.e., down time must be minimized) to insure maximum return on investment and to minimize effects of station-outage on the entire electrical system. Of the many factors affecting steam-plant operation, proper water quality management is one of the most vital. Maintaining specification water and steam purities to very small tolerances at very low impurity levels will certainly result in greatly reduced plant maintenance, and may even prevent total plant shut down. Continuously high water quality can only be maintained by accurate analyses which, in turn, at these low impurity levels, can only be made on samples the temperature of which is accurately known and controlled.
That is, because water purity cannot be controlled unless actual water state is first known, accurate water and steam impurity analysis forms the bases of a water quality management program for such plants. Impurities can enter the power plant cycle in three general ways: first, in make up water added to the system; second, by leakage from the atmosphere or cooling water; or third, by formation in corrosion reactions within the process. The object of water quality management is to measure and control impurities and additives from any of these sources. The most common measurement is solution conductivity, which measures all ionic species, thus giving broad-spectrum indication of overall purity. Next comes pH analysis which is most important in corrosion control. Specific chemical species usually determined include dissolved oxygen, dissolved hydrogen, silica, hydrozine, and sodium ion. In some systems phosphate ion, copper or iron may be important. Turbidity may also be measured.
All of the additives or impurities can be measured using a variety of instrumental techniques on samples derived from various points in the generating plant cycle and taken initially at widely varying inlet temperatures. Accurate analysis, however, requires that most test samples be reduced to a common known standard temperature. Such analysis is normally carried out in continuously operating automatic analysis systems adapted to perform many tests on many samples according to the particular needs of the power generating plant being monitored. The multicircuit heat exchanger of this invention makes possible such a system in which the necessary standardized test sampple temperature can more easily be achieved in spite of widely varied sample inlet temperatures and flow rates.
2. Description of the Prior Art In the past such automatic analysis systems when they were mounted on a system rack containing the plurality of analysis instruments for each particular test, the associated control and readout devices, the stream switching means for sending samples from given points to various analysis instruments, and the various temperature and pressure regulating means for the samples being monitored, were unnecessarily cumbersome and awkward to use by virtue of the fact that the first stage temprature and pressure reduction of samples at inlet temperatures varying from 165 to l,l00 F was carried out by a plurality of separate individually manifolded heat exchangers each having its own individual cooling water rate control valve all mounted on the back of the system rack, the front of which was also closed by the usual front panels. This cumbersome arrangement made access to the interior of the rack for servicing and adjustment of the apparatus therein difficult and took up needless space. In those systems which did not use individual first stage coolers for each sample, the heat exchangers used did not meet the relevant standards of the American Society for Testing and Materials which, in particular, require that all sample tubing coming in contact wth cooling water be continuous nonwelded tubing. Also, prior art attempts at first stage multiple-coil heat exchangers were not constructed or located so as to permit the removal of a single tube coil from the heat exchanger when necessary, nor did they permit the individual control of cooling water flow rate through each circuit to accommodate the above noted face that sample inlet temperatures vary from 1,l00 F down to 165 F and that most samples have different flow rates. The individual first stage heat exchangers, on the other hand, took up a great deal of panel board space and were costly to install.
In water quality systems heretofore manufactured, and indeed in the present system, there is second stage cooling by a second heat exchanger which accepts samples from the outlet of the first stage heat exchanger which samples have been reduced to a temperature range of to F and further cools these samples to 77 i 1 F in order that analyses carried on by the downstream intrumentation will not have their accuracy affected by unknown or varying temperature conditions. Such a second stage heat exchanger is obviously designed to meet different requirements. Al-
though it is an open tank non-pressurized heat ex- SUMMARY OF THE INVENTION The present invention contemplates a modularized water quality analysis and management system for steam electric power genrating plants of the type discussed above wherein a sigle shell multicircuit heat exchanger is mounted on top of the system rack containing the various apparatus modules necessary to the system. These modules normally comprise a first high temperature and pressure reduction module, a second low temperature and pressure reduction module, a third stream switching and flow metering module, and finally an analyser module containing apparatus for performing the various tests deemed necessary in any given installation. The fact that the heat exchanger is so constructed that it can be placed on top of the system ra'ck thereby replacing the large number of individual heat exchangers formerly mounted at the back of the rack, permits a great economy and flexibility in design of the system. The construction of the heat exchanger is such as to permit such a location consistently with the overall systems requirements. These requirements are that the sample inlet, outlet and cooling coil tubing be continuous throughout the cooling watermedia in the sense that there are no welds or other seams or joints. It will be understood that such welds can give rise to the possiblity of leakage causing cross contamination should a weld fail. The necessary individually variable cooling capacity using continuous tubing is accomplished by the unique baffling arrangement inside the single heat exchanger shell which is disclosed in detail below. Additionally, the heat exchanger is such that individual coils of sample tubing may be removed from the exchanger if necessary for replacement or repair without destroying the cooling water flange or other portions of the overall heat exchanger. Finally, each of the individual sample cooling circuits is isolated from all other circuits and individual means for regulating the rate of flow of cooling water through each circuit are provided in order to accommodate the varying inlet temperatures and flow rates of the individual samples. If desired, the individual flow rate adjusting mechanism can be operated from outside of the heat exchange shell so that rates can be varied during operation of the system without disassembling of the heat exchanger unit.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front perspective view of the water quality analysis system showing the sample conditioning and analyser front panel, the system rack, and the multicircuit heat exchanger mounted on top of the rack.
FIG. 2 is a top plan view, partly broken away, of the multicircuit heat exchanger shown in FIG. 1.
FIG. 3 is an end view of the heat exchanger taken on the line 3-3 of FIG. 2 and showing the flow rate adjustment points.
FIG. 4 is an end view, partly broken away, taken on the line 4-4 of FIG. 2 and showing the arrangement of sample inlet and sample outlet tubes to the heat exchanger.
FIG. 5 is a sectional view taken on the line 5-5 of FIG. 2.
FIG. 6 is a sectional view taken on the line 6--6 of FIG. 5.
FIG. 7 is an enlarged sectional view of one of the cooling coil circuits shown in FIG. 6 with parts broken and exploded to illustrate the manner in which a single coil may be removed from the heat exchanger.
FIG. 8 is a sectional view taken on the line 88 of FIG. 7.
FIG. 9 is an elevational view taken on the line 9-9 of FIG. 6 and showing a first restriction arrangement for regulating the rate of flow of cooling water into an individual circuit or spool of the heat exchanger.
FIGS. 10 and 11 are respectively sectional and end elevational views of a second alternative flow rate adjusting mechanism.
FIG. 12 is a sectional view of a third alternative flow rate adjustment mechanism.
FIG. 13 is a broken away perspective view of a prior art second stage heat exchanger used for low temperature sample heat exchangers in the present system.
FIG. 14 is a detailed plan view on an enlarged scale showing one shutter mechanism used in the device of FIG. 13.
DESCRIPTION OF THE PREFERRED EMBODIMENT Turning now to FIG. 1 there is shown a front perspective view of a water quality analysis and management system for steam generating plants of the above dis cussed type wherein a plurality of water and steam samples at widely varying inlet temperatures are reduced to a common lower outlet temperature range so that a plurality of separate analyses may be performed on the samples. The system shown in FIG. 1 is mounted on a system rack 10 which, structurally, is a rectangular box-like frame of steel members extending upwardly from a base 11 to define a protected area within which the various modules of apparatus may be mounted. The frame 10 is initially open at the top and all four sides. The front of the frame is substantially closed by solid front panels for the individual modules of apparatus mounted behind them. Thus, apparatus for a high temperature and pressure module is mounted behind front panel 12; apparatus for a low temperature and pressure module is mounted behind front panel 13; apparatus for stream switching and readout is mounted behind or on front panel 14; and apparatus and instruments for I automatically performing the various sample analyses is mounted behind front panel 15. In some installations another front panel 16 is provided behind which is mounted the temperature control module which is in fact a refrigeration system to supply closed cycle constant temperature cooling water to the second stage heat exchanger for finish conditioning the samples in the low temperature and presssure module behind panel 13. The details of the various controls, valves, meters and other apparatus comprising the entire system will not be described herein since they are Well known in the art and conform generally to the description given above.
Mounted on top of the system rack 10 is a closed single shell multicircuit heat exchanger 17. The heat exchanger has a single exterior cylindrical shell 18 which is secured to an endplate 19 as will be described in detail below. Detachably secured to the other end of the cylindrical shell 18 is a first or water inlet plenum chamber 20 which also serves to close that end of heat exchanger shell 18. Extending from apparatus mounted in the rack 10 and thence upwardly and transversely to the endplate 19 of the heat exchanger are a plurality of pairs of water and steam sample conducting tubes which are indicated generally by the reference character 21. The pairs of sample conducting tubes extend into the heat exchanger through the endplate 19 and thence through a second plenum chamber 26 inside the heat exchanger which communicates with the water outlet conduit 22 in a manner described in detail below. The water inlet conduit 23 is connected to the first changer and supplies cooling water under pressure which is flowed through a plurality of separate circuits inside the heat exchanger shell 17 from the first to the second plenum chamber and thence to water outlet 22.
Each of the plurality of pairs of water and steam sample conducting tubes has one tube for sample inlet and the other tube for sample outlet. It follows, of course, that within the heat exchanger the two tubes are merely different portions of a continuous coil of sample tubing arranged inside the heat exchanger in a manner to be described in detail below.
As can best be seen in FIGS. 2 and 3, the end wall of plenum chamber 20 has protruding there through a plurality of shafts 43 which may have ahandle 49 attached thereto so that rotation of the handle and shaft will operate flow restriction means to be described below to individually vary the rate of flow of cooling water placed in heat exchanger with each of the sample flow paths formed by said pairs of sample tubing in the heat exchanger so that the single housing multicircuit heat exchanger can simultaneously cool samples entering it at widely different inlet temperatures to substantially the same lower range of outlet temperatures.
The mounting of the heat exchanger on top of the rack as shown in FIG. 1 permits the front of the rack to be substantially closed by the necessary front panels while still permitting access to the various valves, sinks, motors, pumps, and like which are mounted in back of the front panels. With the heat exchanger positioned on top of the rack replacing individually manifolded and valved heat exchangers formerly mounted vertically on the back of the rack, it is now possible to obtain access to the equipment through the open back of the rack while still performing the same cooling function more efficiently and at reduced cost. The physical mounting of the heat exchanger to the rack is achieved by means of a pair of mounting brackets 25, which are bolted to mounting flanges formed integrally with the heat exchanger shell 17 and which are then secured in any convenient fashion to the system rack 10 so as to detachably mount the heat exchanger on the rack.
Turning now to FIGS. 2 through 6 it will be seen that the sample of water or steam to be analysed enters the heat exchanger through inlet tube 21a and passes through the cooling water medium by means of the coiled sample tube 21c which terminates in a return run or sample outlet tube 21b. Thus, each pair of sample conducting tubes indicated generally at 21 in FIG. 1 is seen to comprise an inlet tube 21a, an outlet tube 21b, and a coil of heat exchange sample tubing continuous with the inlet and outlet tubings best seen at 21c in FIG. 6. The cooling water enters the heat exchanger under pressure through the cooling water inlet tube 23 in plenum chamber 20 and passes through each of a plurality of baffle spools 25a, 25b, etc. extending between plenum chamber 20 at the inlet end of the heat exchanger 17 and a second plenum chamber 26 at the outlet end of the heat exchanger. Cooling water then exits throu'gh outlet tube 22 communicating with plenum chamber 26 after passing in countercurrent heat exchange relationship with the coil 21c.
It will be noted that each of the sample cooling coils such as the coil 21c is mounted within a spool baffle such as the baffle 25a the inner diameter of which defines the maximum cross section of an individual flow path placing cooling water in countercurrent heat exchange relationship with the sample flowing through tube 210. The tube 21c is coiled aroundan inner baffle 26a which is a hollow cylinder closed at both ends except for apertures in sealing relationship to the outlet tube 21b which extends axially through the inner hollow cylinder 26a for the complete return run through the center of the coil.
The spool baffle 25a, and all other spool baffles similar to it (there being one such spool baffle and coil arrangement for each circuit of the multicircuit heat exchanger), is mounted by a press fit between a first closure plate 27 at the inlet end of the heat exchanger and a second closure plate 28 at the outlet end of the heat exchanger. The closure plate 28 is supported within the heat exchanger shell 17 in a manner described below and cooperates with the endplate l9 and the shell 18 to form the outlet plenum chamber 26. The closure plate 27 is attached to the inlet end of the shell 18 between the shell and the inlet plenum chamber 20 and cooperates with the flow restriction apparatus in a manner to be described below.
From FIGS. 2 through 6 it will be noted that cooling water enters the heat exchanger through inlet 23 and into inlet plenum chamber 20 and then divides so as to flow through each of the spools 25a, 25b, etc. which define individual flow circuits within the heat exchanger As best seen in FIGS. 3 and 5, there are 12 such circuits in the device. water exiting from each of the baffle spools enters plenum chamber 26 and exits through cooling water outlet 22 having passed in counterflow relationship to the sample flowing through the sample coils such as coil 210. It will be understood that the heat exchanger may contain any reasonable number of individual circuit difining spools. In practice it is common to use 5, l0, 12, or 15 spools in an individual exchanger.
It should be noted that the dimensions of the plenum chambers are large by comparison to the flow cross section of each individual spool so that the supply impedance to water flow is low by comparison to the impedance of any individual spool. This relationship permits the rate of flow of cooling water through each individual baffle spool to be varied independently without affecting the rate of flow through any other baffle spool. That is to say, there is no cross coupling in view of the fact that the supply impedance is low by comparison to the individual circuit impedances.
Returning now to the mechanical construction of the heat exchanger, particularly as seen in FIGS. 2 through 6, it will be noted that the endplate 19 is provided with mounting holes and a plurality of nut and bolt assemblies 33 which secure the heat exchanger shell 18 to the endplate 19 by means of the nut and bolt passing through a flange on the end of the shell 18. When it becomes necessary to replace an individual sample coil assembly either because of accumulated deposits, change in operating requirements, or the like, the first step in doing so is to unfasten the means mounting the heat exchange shell 18 to the rack 10 and to next remove the bolts 33 holding the shell 18 to the endplae 19. The shell 18 may then be slid back. Of course it will be understood that in order to perform this operation it is necessary to shut down the analyser system and drain the entire heat exchanger. To remove an individual sample coil 210 the user can unloosen the nuts 36. It will be seen that the closure plate 27 and the plenum chamber 20 are attached to a flange on the end of heat exchanger shell 18 by the nut and bolt assembly 32 in much the same fashion that the shell 18 is attached to the endplate 19 by the nut and bolt assemblies 33. The closure plate 27 extends transversely of the cylindrical shell 18 at one end thereof and is connected to the central standoff member 30 which mechanically supports the other closure plate 28 which is secured thereto by standoff nut 31. Closure plate 28 similarly extends transversely of the interior of the shell 18 at the other end thereof.
Each of the closure plates 27 and 28 has a plurality of apertures therein, the apertures being round holes of the size adapted to receive the spool baffles 25a and being positioned in spaced opposed relationships to each other to facilitate the construction shown particularly in FIGS. and 6. When the heat exchanger is first filled with cooling water there will be flow into the interior of the shell between the closure plates 27 and 28 and outside of the spool baffles 25a through an aperture in any convenient location in closure plate 27. This water in the exchanger is essentially stagnant and provides minimum heat transfer. The shell is provided with an airvent at the top to permit venting while it is thus being filled and with a drain at the bottom to facilitate draining when necessary. As noted above, the inlet cooling water plenum chamber 20 is bolted to the shell 18 by the same nut and bolt assemblies 32 which secure closure plate 27 thereto. The outlet cooling water plenum chamber 26 is formed by the shell 18, the endplate 19, and the closure plate 28 in which the outlet end of the spools a are mounted.
Considering now the details of each individual cooling coil assembly, it will be noted that the inlet tubing 21a is mounted in a drilled out tube fitting 34 through which it passes through endplate 19 and is then wound around the inner cylindrical baffle 26a inside the spool baffle 25a. The cooling coil 210 extends the full length of the spool baffle 25a having a small clearance from its inner diameter. The coil 210 may be finned if desired. The coil 21c terminates in the return sample tube 21b which extends continuously with it and returns through the inner baffle 26a. It will be noted that the inner baffle 26a extends through plenum chamber 26 and is mounted on the endplate 19. The return tubing 21b at this point is also supported by a drilled out fitting 35 and nut 36. When it is desired to replace an individual coil the sample conducting tubing must be severed outside of the heat exchanger so that the new coil can be connected to the existing tubing outside of the heat exchanger so as not to bring any welded portion of tubing in contact with cooling water. This requirement is in conformity with ASTM designation DI 192/64 which is the Standard Specification for Equipment for Sampling Industrial Water and Steam promulgated by the American Society for Testing and Materials and approved by the American Standards Association.
In normal operation the inner cylindrical baffle 26a serves to reduce the cross sectional cooling water flow area inside the spool baffle 25a and thereby increase the velocity of cooling water flow at any given inlet pressure. The preferred mechanism for individually varying the rate of flow of cooling water placed in heat exchange relationship with each of the sample tube coils within a particular heat exchange circuit formed by a particular spool baffle 25a can best be seen from a consideration of the relevant details shown in FIGS 6 through 9. It will be seen that the closure plate 27 receives the spool baffles such as spool 25a in a press or friction fit in apertures in the closure plate. Closure plate 27 is in turn welded or otherwise rigidly secured to aperture plate 37. The two plates are attached to standoff 30 by means of standoff nut 29. The assembly is also secured to a flange on the heat exchange shell 18 by means of the nut and bolt assembly 32. Appropriate seals are of course provided at the junctions of the members, reference being particularly made to gaskets 38 and 39 on opposite sides of the aperture plate 37.
The aperture plate 37 can be seen in plan view in FIG. 9. It will be seen that a pair of apertures 40 and 41 are provided in plate 37 so that theentire area of both the apertures 40 and 41 is opposite the larger aperture formed by the flange 42 on closure plate 27 within which the spool baffle 25a is received. Both of these apertures 40 and 41 if unobstructed would thus discharge into the spool baffle 25a. The actual percentage of these apertures which remains unobstructed can be varied by rotation of a control plate 420 which is mounted on a shaft 43. Control plate 42a is provided with apertures 44 and 45 which may be of the same diameter and relative position as the apertures 40 and 41. When the control plate 42a is rotated so as to align these respective sets of apertures, maximum flow rate is permitted. As the control plate 42 is rotated about shaft 43, a greater and greater percentage of misalignment occurs until eventually the solid portions of plate 42a may entirely close off the flow through apertures 40 and 41. Shaft 43 extends outwardly through the end wall 46 of plenum chamber 20 through any suitable bearing arrangement 47. Exterior mounting means 48 may be adapted to receive a detachable handle 49 so that the plate 42a can be rotated from outside of the heat exchanger whle the apparatus is in operation to thereby vary the rate of flow of cooling water through the baffle spool 250. It will, of course, beunderstoocl that each of the plurality of heat exchange circuits is providedwith similar arrangement for control of the rate of flow of cooling water through that particular circuit. Itwill be noted that the positioning of the rotatable plate 42a for variably controlling the rate of flow of cooling water in the inlet plenum chamber 20 places the pressure drop across it in a direction such that it tends to urge the plate closed against the closure plate and control plate 37.
A second embodiment of water flow rate control means is shown in FIGS. 10 and 11. In that arrangement a single aperture 50 is varied in effective cross section by rotation of a disc 51 mounted on a shaft 52 which is journaled for rotation by any suitable mounting means 53 so that the shaft is eccentrically positioned away from the center of the aperture 50. Rotation of the disc 51 about the shaft 52 will thus be seen to vary the exposed area of the aperture 50. The shaft 52 in this embodiment may be provided with a perm anent hangle 54 also projecting outside of the heat exchanger shell.
In FIG. 12 there is illustrated a third embodiment of means for varying the rate of flow of cooling water through the individual circuits. In this embodiment the baffle spool 25a which seats in closure plate 27 has the aperture at its end opening controlled in effective cross sectional flow area by a conical valve member which is mounted on the end of a shaft 61. The shaft 61 is journaled in a bearing member 62 and has threaded engagement with a housing 63 at aperture 64. The shaft 61 is provided with a handle 65 for rotation thereof. As
the shaft 61 is threadedly turned so as to move the conical valve member 60 into the aperture at the end of spool 25a it will be obvious that less and less water can enter the spool. The maximum diameter of the conical valve member 60 is large enough to fully close the opening to the spool. As the shaft 61 is rotated so as to withdraw the valve 60 more and more of the area of the aperture at the end of the spool is exposed to thereby receive a greater and greater rate of water flow. If desired, the housing 63 can be open ended and can be provided with a threaded cap so that the shaft 61 terminates within the housing for adjustment by a screw slot in the end of the shaft.
In any of these arrangements the flow of cooling water through the individual spool is continuously variable. In view of the fact that each of the heat exchange circuits defined by the baffle spools are isolated from one another by these spools, this individual variation of cooling water flow rate in one circuit may be used to meet the cooling requirements set by the inlet temperature and flow rate of the sample coming to that circuit without affecting the cooling rate established by similar but numerically different requirements in an adjacent heat circuit. The system design requirement is that samples placed in heat exchange with cooling water entering the exchanger at 90 F should emerge from the heat exchanger with outlet temperatures in the range of 90 to 105 F. In order to meet this requirement with respect to samples whose inlet temperatures may vary from 165 to l,l F and whose flow rates also may be varied it will be realized that the individual flow rate adjustment in an essential and critical feature. If necessary it is also possible to connect two cooling coils in series by obvious exterior tubing connections. The ability to make the water rate flow adjustment is enhanced by the fact that the heat exchanger is a pressurized system provided with plenum chambers at both ends and by the additional utilization of the inner cylindrical baffle within each spool baffle to reduce the cross sectional flow area therein.
These design requirements and these structural features are not present in the second stage or low temperature heat exchanger which is shown in FIG. 13. This low temperature second stage heat exchanger accepts samples which have been reduced in temperature by the heat exchanger described above. These samples, as noted, are in a temperature range of 90 to 105 F. In this second stage heat exchanger the samples are reduced to 77 i 1 F by heat exchanging them against water circulated in a closed cycle through a refrigeration system mounted in the temperature control module 16 which holds the cooling water at 75 F. This second stage heat exchanger is used in the present system as a conventional element thereof and has also been used in previous commercial systems.
In commercial practice the heat exchanger shown in FIG. 13 is referred to as a baffled bath. The device consists of a simple rectangular tank 60 having a barrier plate 61 which serves as a base plae across it a few inches from the bottom. Attached to the plate is a group of thick-wall PVC pipes 62 extending to within a few inches of the bath top. The pipes are open at the top and bottom so they and the plate form a baffle system for distributing cooling water entering the bottom of the bath through temperature controlled water inlet 63. Cooling water from the refrigeration system is supplied through piping connected to this inlet and floods upwardly through the baffled bath to form a fountain effect. The system is thus not a closed pressurized system, but rather is open to atmosphere at its top. A coil of stainless steel'sample tubing 64 is placed within each baffle pipe and is connected so that the flow of coolant is generally countercurrent to the flow of sample. The sample inlet may be seen at 65 in the detailed plan view shown in FIG. 14 the sample outlet is brought up through the center of the coil 64 and is shown at 66. It will of course be understood that the sample inlet supplied to 65 is derived from the first stage heat exchanger and that sample outlet from 66 is connected to be fed to the appropriate analyser.
In addition there is a shutter arrangement as shown in detail in FIG. 14 at the top or coolant outlet end of each pipe so that the flow of coolant can be adjusted for each coil. This shutter is at the coolant outlet end of the unpressurized system and comprises the slidably adjustable shutter 67 and 68 which can be positioned by means of the screws 69 and 70 which clamp down on slots in the shutter members. Once sufficient coolant has been supplied to the pipes to fill them it overflows through the open tops and collects in the tank 60 outside of the pipes. It is then returned to the refrigerated coolant temperature control system through a connection in the side of the tank shown generally at 71. Level gauge valves 72 may also be provided. In the apparatus shown in FIG. 1 the baffled bath is mounted inside the system rack behind the low temperature module panel 13. This location affords short tubings runs from the first stage heat exchanger 17 to the baffled bath and in turn from the baffled bath to the analysers in the module in back of panel 15. These short tubing runs and the highly accurate and efficient temperature control assure the fast and accurate instrument response necessary to achieve maximum system effectiveness in spite of the widely varying inlet tempera tures and flow rates of the water and steam samples received by the high temperature single closed shell multicircuit heat exchanger.
What is claimed is:
l. Asingle closed shell multicircuit heat exchanger wherein each of said separate heat exchange circuits affords an individually adjustable rate of flow of coolant for a sample to be cooled therein, said heat exchanger comprising;
a. an elongated heat exchanger shell, said shell having a firstclosure plate at a first end thereof and a second closure plate positioned inwardly from the second end thereof;
b. a first plenum chamber detachably mounted on said first end of said heat exchanger shell, said first plenum chamber having cooling water inlet means connected thereto;
c. an end plate detachably connected to said shell at said second end thereof to form with said second closure plate a second plenum chamber in said second end of said shell, said second plenum chamber having cooling water outlet means connected thereto;
d. a plurality of apertures in each of said plates;
' e. a plurality of hollow cylindrical baffle spools extending between said closure plates inside said heat exchanger shell and detachably secured to said first and second closure plates, each spool surrounding one aperture in each of said plates so that each closure spool defines the outer limits of a separate coolant flow path between said plenum chambers;
f. means on said end plate to detachably mount a plurality of coilsof sample tubing, each coil extending into one of said spools, each of said coils having a sample inlet tube and a sample outlet tube continuous therewith and both extending out of its associated spool, through said second plenum chamber and said end plate and out of said heat exchanger;
g. each of said coils being separately and individually removable from said heat exchanger by removing said first plenum chamber and said heat exchanger shell from said end plate, sliding said spool off of the coil to be removed, and disconnecting said coil from said end plate; and
h. separate means operatively associated with each of said spools to regulate'the rate of flow of cooling water through that individual spool independently of, the rate of flow of cooling water through any other spool.
2. A liquid sample single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprisa. a heat exchanger shell;
b. a first plenum chamber at one end of said shell having liquid coolant inlet tube means connected thereto;
c. a second plenum chamber at the other end of said shell having liquid coolant outlet tube means connected thereto;
d. a plurality of hollow cylindrical baffle spools positioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers;
e. a coil of tubing for a liquid sample to be cooled positioned in each of said spools, each of said coils having a sampleinlet tube and a sample outlet tube continuous therewith and both extending out of one end only of said spooland thence through one of said plenum chambers and out of one end of said heat exchanger, whereby the liquid sample tubing is surrounded by the coolant in heat conducting relation thereto; and
f. separate means operatively associated with each of said spools to regulate the flow of coolant through that individual spool independently of the rate of flow of coolant through any other spool.
3. Apparatus as in claim 2 wherein the means to regulate the flow of coolant comprises a first pair of apertures defined at the coolant entrance to each of said baffle spools, a control plate rotatably mounted on a shaft extending through said first plenum chamber and out of the end of said heat exchanger, said control plate having a second pair of apertures which can be fully aligned with said first pair of apertures in one rotational position of said control plate to permit maximum coolant flow and which can be totally misaligned with said first pair of apertures in another rotational position of said plate to fully restrict coolant flow, and means outside said heat exchanger to rotate said shaft.
4. A single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprising;
a. a heat exchanger shell;
b. a first plenum chamber at one end of said shell having coolant inlet means connected thereto;
0, a second plenum chamber at the other end of said shell having coolant outlet means connected thereto;
d. a plurality of hollow cylindrical baffle spools. posi tioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers;
e. a coil of tubing for a fluid sample to be cooled positioned in each of said spools, each of said coils having a sample inlet tube and a sample outlet tube continuous therewith and both extending out of one end only of said spool and thence through one of said plenum chambers and outof one end of said heat exchanger; and
f. separate means to regulate the flow of coolant in each of said spools comprising a single aperture defined at the coolant entrance to each of said baffle spools, a disc rotatably mounted on a shaft extending through said first plenum chamber and out of said heat exchanger, said shaft and disc being positioned and arranged so that said disc fully covers and restricts said aperture in at least one rotational position of said disc, and means outside said heat exchanger to rotate said shaft.
5. Apparatus as in claim 2 wherein the means to regulate the flow of coolant comprises a single aperture defined at the coolant entrance to each of said baffle spools, and a conical valve member rotatably mounted for axial movement into and out of said baffle spool, said valve fully closing the coolant entrance to said spool when it is fully seated in said spool, and means extending outside of said heat exchanger ,to rotate said valve.
6. Apparatus as in claim 2 wherein;
a. each of said coils of sample tubing is coiled around the outside of an inner closed cylindrical hollow baffle and returns through the center of said hollow. baffle, which is coaxial with said spool and which reduces the interior cross sectional area for flow of coolant through said spool to increase its velocity at a given pressure; and
b. said flow regulating means comprises adjustable restriction means positioned at the coolant inlet to each of said spools.
7. A single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprising;
a. a heat exchanger shell; b. a first plenum chamber at one end of said shell having coolant inlet means connected thereto;
0. a second plenum chamber at the other end of said shell having coolant outlet means connected thereto;
(1. a plurality of hollow cylindrical baffle spools positioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers;
e. a coil of tubing for a fluid sample to be cooled positioned in each of said spools, together with an inner closed cylindrical hollow baffle, around the outside of which the sample tubing is coiled, which baffle is coaxial with said spool and which reduces the interior cross-sectional area for flow of coolant through said spool to increase its velocity at a given pressure, each of said coils having a sample inlet tube and a sample outlet tube continuous therewith said spools to regulate the flow of coolant through that individual spool independently of the rate of flow of coolant through any other spool, said flow regulating means comprising adjustable restriction means positioned at the coolant inlet to each of said spools, each of said flow regulating means being independently adjustable from outside of said heat exchanger shell.
both extending out f one end only f Said spool 8. Apparatus as in claim 6 wherein each of said coils and thence through one f id plenum h b is separately and independently removable from said and out of one end of said heat exchanger; and heat exchanger shell. f. separate means operatively associated with each of

Claims (8)

1. A single closed shell multicircuit heat exchanger wherein each of said separate heat exchange circuits affords an individually adjustable rate of flow of coolant for a sample to be cooled therein, said heat exchanger comprising; a. an elongated heat exchanger shell, said shell having a first closure plate at a first end thereof and a second closure plate positioned inwardly from the second end thereof; b. a first plenum chamber detachably mounted on said first end of said heat exchanger shell, said first plenum chamber having cooling water inlet means connected thereto; c. an end plate detachably connected to said shell at said second end thereof to form with said second closure plate a second plenum chamber in said second end of said shell, said second plenum chamber having cooling water outlet means connected thereto; d. a plurality of apertures in each of said closure plates; e. a plurality of hollow cylindrical baffle spools extending between said closure plates inside said heat exchanger shell and detachably secured to said first and second closure plates, each spool surrounding one aperture in each of said plates so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers; f. means on said end plate to detachably mount a plurality of coils of sample tubing, each coil extending into one of said spools, each of said coils having a sample inlet tube and a sample outlet tube continuous therewith and both extending out of its associated spool, through said second plenum chamber and said end plate and out of said heat exchanger; g. each of said coils being separately and individually removable from said heat exchanger by removing said first plenum chamber and said heat exchanger shell from said end plate, sliding said spool off of the coil to be removed, and disconnecting said coil from said end plate; and h. separate means operatively associated with each of said spools to regulate the rate of flow of cooling water through that individual spool independently of the rate of flow of cooling water through any other spool.
2. A liquid sample single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprising; a. a heat exchanger shell; b. a first plenum chamber at one end of said shell having liquid coolant inlet tube means connected thereto; c. a second plenum chamber at the other end of said shell having liquid coolant outlet tube means connected thereto; d. a plurality of hollow cylindrical baffle spools positioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers; e. a coil of tubing for a liquid sample to be cooled positioned in each of said spools, each of said coils having a sample inlet tube and a sample outlet tube continuous therewith and both extending out of one end only of said spool and thence through one of said plenum chambers and out of one end of said heat exchanger, whereby the liquid sample tubing is surrounded by the coolant in heat conducting relation thereto; and f. separate means operatively associated with each of said spools to regulate the flow of coolant through that individual spool independently of the rate of flow of coolant through any other spool.
3. Apparatus as in claim 2 wherein the means to regulate the flow of coolant coMprises a first pair of apertures defined at the coolant entrance to each of said baffle spools, a control plate rotatably mounted on a shaft extending through said first plenum chamber and out of the end of said heat exchanger, said control plate having a second pair of apertures which can be fully aligned with said first pair of apertures in one rotational position of said control plate to permit maximum coolant flow and which can be totally misaligned with said first pair of apertures in another rotational position of said plate to fully restrict coolant flow, and means outside said heat exchanger to rotate said shaft.
4. A single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprising; a. a heat exchanger shell; b. a first plenum chamber at one end of said shell having coolant inlet means connected thereto; c. a second plenum chamber at the other end of said shell having coolant outlet means connected thereto; d. a plurality of hollow cylindrical baffle spools positioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers; e. a coil of tubing for a fluid sample to be cooled positioned in each of said spools, each of said coils having a sample inlet tube and a sample outlet tube continuous therewith and both extending out of one end only of said spool and thence through one of said plenum chambers and out of one end of said heat exchanger; and f. separate means to regulate the flow of coolant in each of said spools comprising a single aperture defined at the coolant entrance to each of said baffle spools, a disc rotatably mounted on a shaft extending through said first plenum chamber and out of said heat exchanger, said shaft and disc being positioned and arranged so that said disc fully covers and restricts said aperture in at least one rotational position of said disc, and means outside said heat exchanger to rotate said shaft.
5. Apparatus as in claim 2 wherein the means to regulate the flow of coolant comprises a single aperture defined at the coolant entrance to each of said baffle spools, and a conical valve member rotatably mounted for axial movement into and out of said baffle spool, said valve fully closing the coolant entrance to said spool when it is fully seated in said spool, and means extending outside of said heat exchanger to rotate said valve.
6. Apparatus as in claim 2 wherein; a. each of said coils of sample tubing is coiled around the outside of an inner closed cylindrical hollow baffle and returns through the center of said hollow baffle, which is coaxial with said spool and which reduces the interior cross sectional area for flow of coolant through said spool to increase its velocity at a given pressure; and b. said flow regulating means comprises adjustable restriction means positioned at the coolant inlet to each of said spools.
7. A single shell multicircuit heat exchanger wherein each heat exchange circuit has an independently adjustable rate of flow of coolant comprising; a. a heat exchanger shell; b. a first plenum chamber at one end of said shell having coolant inlet means connected thereto; c. a second plenum chamber at the other end of said shell having coolant outlet means connected thereto; d. a plurality of hollow cylindrical baffle spools positioned inside said heat exchanger shell and extending between said first and second plenum chambers, each of said spools communicating with both of said plenum chambers so that each spool defines the outer limits of a separate coolant flow path between said plenum chambers; e. a coil of tubing for a fluid sample to be cooled positioned in each of said spools, together with an inner closed cylindrical hollow baffle, around the outside of which the sAmple tubing is coiled, which baffle is coaxial with said spool and which reduces the interior cross-sectional area for flow of coolant through said spool to increase its velocity at a given pressure, each of said coils having a sample inlet tube and a sample outlet tube continuous therewith both extending out of one end only of said spool and thence through one of said plenum chambers and out of one end of said heat exchanger; and f. separate means operatively associated with each of said spools to regulate the flow of coolant through that individual spool independently of the rate of flow of coolant through any other spool, said flow regulating means comprising adjustable restriction means positioned at the coolant inlet to each of said spools, each of said flow regulating means being independently adjustable from outside of said heat exchanger shell.
8. Apparatus as in claim 6 wherein each of said coils is separately and independently removable from said heat exchanger shell.
US168096A 1971-08-02 1971-08-02 Water quality analysis system with multicircuit single shell heat exchanger Expired - Lifetime US3871444A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US168096A US3871444A (en) 1971-08-02 1971-08-02 Water quality analysis system with multicircuit single shell heat exchanger
CA137,530A CA948881A (en) 1971-08-02 1972-03-20 Water quality analysis system with multicircuit single shell heat exchanger
GB1472172A GB1332096A (en) 1971-08-02 1972-03-29 Water quality analysis system with multicircuit single shell heat exchanger
IT22557/72A IT955152B (en) 1971-08-02 1972-03-29 WATER QUALITY ANALYSIS PLANT WITH MULTIPLE CIRCUIT AND SINGLE ENCLOSURE HEAT EXCHANGER
CH572672A CH556028A (en) 1971-08-02 1972-04-18 WATER QUALITATIVE ANALYSIS DEVICE IN A THERMOELECTRIC PLANT CONTAINING A SINGLE-HOUSING MULTICIRCUIT HEAT EXCHANGER.
DE2237294A DE2237294A1 (en) 1971-08-02 1972-07-28 DEVICE FOR ANALYZING FEED WATER
FR7227383A FR2149797A5 (en) 1971-08-02 1972-07-28
JP47076550A JPS4825594A (en) 1971-08-02 1972-08-01
US446130A US3880226A (en) 1971-08-02 1974-02-27 Water quality analysis system with multicircuit single shell heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US168096A US3871444A (en) 1971-08-02 1971-08-02 Water quality analysis system with multicircuit single shell heat exchanger

Publications (1)

Publication Number Publication Date
US3871444A true US3871444A (en) 1975-03-18

Family

ID=22610107

Family Applications (1)

Application Number Title Priority Date Filing Date
US168096A Expired - Lifetime US3871444A (en) 1971-08-02 1971-08-02 Water quality analysis system with multicircuit single shell heat exchanger

Country Status (8)

Country Link
US (1) US3871444A (en)
JP (1) JPS4825594A (en)
CA (1) CA948881A (en)
CH (1) CH556028A (en)
DE (1) DE2237294A1 (en)
FR (1) FR2149797A5 (en)
GB (1) GB1332096A (en)
IT (1) IT955152B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934646A (en) * 1973-07-30 1976-01-27 Nalco Chemical Company Constant temperature cold-end corrosion probe
US4346759A (en) * 1978-04-10 1982-08-31 Aerco International, Inc. Heat reclaiming system
US4347894A (en) * 1979-09-04 1982-09-07 Gerlach Juergen Heat exchanger
US4538676A (en) * 1982-02-24 1985-09-03 L & C. Steinmuller Gmbh Gas liquid parallel flow direct current heat exchanger
US4700772A (en) * 1984-07-05 1987-10-20 Sulzer Brothers Limited Heat exchanger system
US4784219A (en) * 1984-08-15 1988-11-15 Sulzer Brothers Limited Heat exchanger
US4829778A (en) * 1987-09-23 1989-05-16 Via Gmbh Measuring gas cooling device
US4874559A (en) * 1988-01-21 1989-10-17 Compagnie Europenne Du Zirconium Cezus Process and devices for operation of an apparatus which functions by using a flow of a liquid film
US4887664A (en) * 1987-12-07 1989-12-19 Westinghouse Electric Corp. Heat exchanger system having adjustable heat transfer capacity
EP0308531B1 (en) * 1987-09-23 1990-12-27 VIA Gesellschaft für Verfahrenstechnik mbH Cooling device for a gas to be measured
EP0618413A1 (en) * 1993-03-30 1994-10-05 Daniel Lee Welch Method and apparatus for prechilling tap water in ice machines
US5363874A (en) * 1992-10-08 1994-11-15 Sentry Equipment Corp. Automated sample conditioning module
US5577552A (en) * 1988-10-03 1996-11-26 Canon Kabushiki Kaisha Temperature controlling device for mask and wafer holders
USD380070S (en) * 1994-11-16 1997-06-17 Diamondback Manufacturing, Inc. Portable carpet cleaning apparatus
US5816314A (en) * 1995-09-19 1998-10-06 Wiggs; B. Ryland Geothermal heat exchange unit
US5921206A (en) * 1998-08-04 1999-07-13 National Bank Company Heater for process fluids
US20050196519A1 (en) * 2004-03-08 2005-09-08 Depuy Products, Inc. Apparatus for producing a biomimetic coating on a medical implant
US20050261820A1 (en) * 2004-05-21 2005-11-24 Feeney Mark E Method of monitoring gas turbine engine operation
US20080296010A1 (en) * 2004-04-30 2008-12-04 Karl-Heinz Kirchberg Method and Device For Determining the Capacity of a Heat Exchanger
US20120048527A1 (en) * 2009-05-06 2012-03-01 Shuyan He Steam generator
US8141524B2 (en) 2008-12-15 2012-03-27 Caterpillar Inc. Cooling system having variable orifice plates
CN104315881A (en) * 2014-11-10 2015-01-28 成都樵枫科技发展有限公司 Temperature-control type heating device
CN106006910A (en) * 2016-07-19 2016-10-12 西安热工研究院有限公司 Method for monitoring and controlling copper lead corrosion in stator cooling water of generator
US20160325264A1 (en) * 2014-01-28 2016-11-10 Hzo, Inc. Multi-channel pyrolysis tubes, material deposition equipment including the same and associated methods
CN114109533A (en) * 2021-10-27 2022-03-01 合肥通用机械研究院有限公司 Efficient gas turbine rotor air cooler and leakage-proof control method
US20220186881A1 (en) * 2020-07-13 2022-06-16 Ivys Inc. Hydrogen fueling systems and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1397911B1 (en) * 2010-01-28 2013-02-04 Alfa Laval Corp Ab REFRIGERANT FLUID DISTRIBUTION SYSTEM IN A THERMAL EXCHANGE DEVICE
RU2480700C2 (en) * 2011-02-22 2013-04-27 Общество с ограниченной ответственностью "РоссЭлектроСистемы" Device for automatic analysis of heat carrier parameters, and method for its implementation
CN109115012B (en) * 2018-09-28 2024-05-07 南京汽轮电机集团泰兴宁兴机械有限公司 Adjustable heat exchanger and pressure test control method thereof
CN113983858B (en) * 2021-10-28 2022-07-29 淮阴工学院 Method for assembling swing type curtain baffle plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1786882A (en) * 1926-11-08 1930-12-30 William B Whitsitt Superheater tube
US1819785A (en) * 1930-08-28 1931-08-18 Schutte & Koerting Co Feed water heater
US2425669A (en) * 1943-08-26 1947-08-12 Townson & Mercer Ltd Condenser
US2693346A (en) * 1951-06-22 1954-11-02 Petersen Lars Kristian Holger Liquid heater
US3047274A (en) * 1959-02-18 1962-07-31 Warren M Wilson Variable area heat exchanger
US3142171A (en) * 1961-03-13 1964-07-28 Apex Tire & Rubber Company Apparatus for performing accelerated aging tests on elastomers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2670933A (en) * 1950-02-24 1954-03-02 Thomas J Bay Engine cooling apparatus
US2908485A (en) * 1956-11-27 1959-10-13 Exxon Research Engineering Co Process using fluidized solids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1786882A (en) * 1926-11-08 1930-12-30 William B Whitsitt Superheater tube
US1819785A (en) * 1930-08-28 1931-08-18 Schutte & Koerting Co Feed water heater
US2425669A (en) * 1943-08-26 1947-08-12 Townson & Mercer Ltd Condenser
US2693346A (en) * 1951-06-22 1954-11-02 Petersen Lars Kristian Holger Liquid heater
US3047274A (en) * 1959-02-18 1962-07-31 Warren M Wilson Variable area heat exchanger
US3142171A (en) * 1961-03-13 1964-07-28 Apex Tire & Rubber Company Apparatus for performing accelerated aging tests on elastomers

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934646A (en) * 1973-07-30 1976-01-27 Nalco Chemical Company Constant temperature cold-end corrosion probe
US4346759A (en) * 1978-04-10 1982-08-31 Aerco International, Inc. Heat reclaiming system
US4347894A (en) * 1979-09-04 1982-09-07 Gerlach Juergen Heat exchanger
US4538676A (en) * 1982-02-24 1985-09-03 L & C. Steinmuller Gmbh Gas liquid parallel flow direct current heat exchanger
US4700772A (en) * 1984-07-05 1987-10-20 Sulzer Brothers Limited Heat exchanger system
US4784219A (en) * 1984-08-15 1988-11-15 Sulzer Brothers Limited Heat exchanger
US4829778A (en) * 1987-09-23 1989-05-16 Via Gmbh Measuring gas cooling device
EP0308531B1 (en) * 1987-09-23 1990-12-27 VIA Gesellschaft für Verfahrenstechnik mbH Cooling device for a gas to be measured
US4887664A (en) * 1987-12-07 1989-12-19 Westinghouse Electric Corp. Heat exchanger system having adjustable heat transfer capacity
US4874559A (en) * 1988-01-21 1989-10-17 Compagnie Europenne Du Zirconium Cezus Process and devices for operation of an apparatus which functions by using a flow of a liquid film
US5577552A (en) * 1988-10-03 1996-11-26 Canon Kabushiki Kaisha Temperature controlling device for mask and wafer holders
US5363874A (en) * 1992-10-08 1994-11-15 Sentry Equipment Corp. Automated sample conditioning module
EP0618413A1 (en) * 1993-03-30 1994-10-05 Daniel Lee Welch Method and apparatus for prechilling tap water in ice machines
US5379603A (en) * 1993-03-30 1995-01-10 Welch; Daniel L. Method and apparatus for prechilling tap water in ice machines
USD380070S (en) * 1994-11-16 1997-06-17 Diamondback Manufacturing, Inc. Portable carpet cleaning apparatus
US5816314A (en) * 1995-09-19 1998-10-06 Wiggs; B. Ryland Geothermal heat exchange unit
US5921206A (en) * 1998-08-04 1999-07-13 National Bank Company Heater for process fluids
US20050196519A1 (en) * 2004-03-08 2005-09-08 Depuy Products, Inc. Apparatus for producing a biomimetic coating on a medical implant
US20090220675A1 (en) * 2004-03-08 2009-09-03 Depuy Products, Inc. Apparatus for producing a biomimetic coating on a medical implant
US20080296010A1 (en) * 2004-04-30 2008-12-04 Karl-Heinz Kirchberg Method and Device For Determining the Capacity of a Heat Exchanger
US7726874B2 (en) * 2004-04-30 2010-06-01 Siemens Aktiengesellschaft Method and device for determining the capacity of a heat exchanger
US20050261820A1 (en) * 2004-05-21 2005-11-24 Feeney Mark E Method of monitoring gas turbine engine operation
US7487029B2 (en) * 2004-05-21 2009-02-03 Pratt & Whitney Canada Method of monitoring gas turbine engine operation
US8594903B2 (en) 2004-05-21 2013-11-26 Pratt & Whitney Canada Corp. Method of monitoring gas turbine engine operation
US20090229272A1 (en) * 2004-05-21 2009-09-17 Mark Edward Feeney Method of monitoring gas turbine engine operation
US8141524B2 (en) 2008-12-15 2012-03-27 Caterpillar Inc. Cooling system having variable orifice plates
US20120048527A1 (en) * 2009-05-06 2012-03-01 Shuyan He Steam generator
US9062918B2 (en) * 2009-05-06 2015-06-23 Tsinghua University Steam generator
US20160325264A1 (en) * 2014-01-28 2016-11-10 Hzo, Inc. Multi-channel pyrolysis tubes, material deposition equipment including the same and associated methods
CN104315881A (en) * 2014-11-10 2015-01-28 成都樵枫科技发展有限公司 Temperature-control type heating device
CN104315881B (en) * 2014-11-10 2016-04-13 成都樵枫科技发展有限公司 Controlling temp type heater
CN106006910A (en) * 2016-07-19 2016-10-12 西安热工研究院有限公司 Method for monitoring and controlling copper lead corrosion in stator cooling water of generator
CN106006910B (en) * 2016-07-19 2019-01-04 西安热工研究院有限公司 A method of for copper conductor corrosion to be monitored and controlled in generator stator cooling water
US20220186881A1 (en) * 2020-07-13 2022-06-16 Ivys Inc. Hydrogen fueling systems and methods
US11892126B2 (en) 2020-07-13 2024-02-06 Ivys Inc. Hydrogen fueling systems and methods
US11913607B2 (en) 2020-07-13 2024-02-27 Ivys Inc. Hydrogen fueling systems and methods
US11971143B2 (en) 2020-07-13 2024-04-30 Ivys Inc. Hydrogen fueling systems and methods
CN114109533A (en) * 2021-10-27 2022-03-01 合肥通用机械研究院有限公司 Efficient gas turbine rotor air cooler and leakage-proof control method
CN114109533B (en) * 2021-10-27 2024-02-02 合肥通用机械研究院有限公司 Efficient gas turbine rotor air cooler and leakage-proof control method

Also Published As

Publication number Publication date
JPS4825594A (en) 1973-04-03
CA948881A (en) 1974-06-11
FR2149797A5 (en) 1973-03-30
DE2237294A1 (en) 1973-03-15
CH556028A (en) 1974-11-15
GB1332096A (en) 1973-10-03
IT955152B (en) 1973-09-29

Similar Documents

Publication Publication Date Title
US3871444A (en) Water quality analysis system with multicircuit single shell heat exchanger
US5425267A (en) Corrosion simulator and method for simulating corrosion activity of a process stream
US3880226A (en) Water quality analysis system with multicircuit single shell heat exchanger
US5503006A (en) High temperature corrosion simulator
CA1302100C (en) Apparatus for supplying cooling fluid
CN106918622B (en) Vapor condensation heat-exchange experimental system in a kind of width horizontal tube of the degree of supercooling containing multicomponent gas
US5215704A (en) Method and apparatus for in situ testing of heat exchangers
CN214310054U (en) Filter element dynamic circulation test bench
US4251220A (en) Apparatus for and method of determining high pressure, high temperature feedwater contaminants
US4727826A (en) Model steam generator having an improved feedwater system
KR100205157B1 (en) Nuclear power plant
CN111624011A (en) Spray coupling falling film cooling experiment system
JPS57125835A (en) Measuring apparatus of melting point and boiling point of gas
CN113552178B (en) Automatic continuous measurement method for steam-water sampling hydrogen conductivity
JP2585450Y2 (en) Heat transfer test equipment
US5353650A (en) Method and apparatus for corrosion monitoring during steam generator cleaning
DE4035092C2 (en) Method for determining and determining the location of an opening in a wall of a heat exchanger separating media by measuring the concentration of two media separated by a common wall
US3934646A (en) Constant temperature cold-end corrosion probe
US4519444A (en) Multi-unit sample cooler
CN221223089U (en) Water cooling device for fine treatment and sampling of condensate in gas turbine combined cycle power plant
CN213364318U (en) Full-automatic on-site sampling and analyzing device
CN117129405A (en) Dynamic corrosion test system for secondary refrigerant
CN217133022U (en) Water sample on-line measuring system
CN218036331U (en) Corrosion and scaling simulation test device for heat supply network system
US4093020A (en) Vapor-type heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: BECKMAN INDUSTRIAL CORPORATION A CORP OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EMERSON ELECTRIC CO., A CORP OF MO;REEL/FRAME:004328/0659

Effective date: 19840425

Owner name: EMERSON ELECTRIC CO., A MO CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BECKMAN INSTRUMENTS, INC.;REEL/FRAME:004319/0695

Effective date: 19840301

AS Assignment

Owner name: ROSEMOUNT INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BECKMAN INDUSTRIAL CORPORATION;REEL/FRAME:005243/0057

Effective date: 19890523