EP0162834B1 - Magnetscheider - Google Patents

Magnetscheider Download PDF

Info

Publication number
EP0162834B1
EP0162834B1 EP19850890117 EP85890117A EP0162834B1 EP 0162834 B1 EP0162834 B1 EP 0162834B1 EP 19850890117 EP19850890117 EP 19850890117 EP 85890117 A EP85890117 A EP 85890117A EP 0162834 B1 EP0162834 B1 EP 0162834B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
force
coils
magnetic field
magnetic separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850890117
Other languages
English (en)
French (fr)
Other versions
EP0162834A2 (de
EP0162834A3 (en
Inventor
Harald Dipl.-Ing. Fillunger
Stephan Dr. Gründorfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz Hydro GmbH Austria
Original Assignee
Andritz Hydro GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andritz Hydro GmbH Austria filed Critical Andritz Hydro GmbH Austria
Publication of EP0162834A2 publication Critical patent/EP0162834A2/de
Publication of EP0162834A3 publication Critical patent/EP0162834A3/de
Application granted granted Critical
Publication of EP0162834B1 publication Critical patent/EP0162834B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap

Definitions

  • the invention relates to a magnetic separator, preferably for separating materials with small differences in magnetic susceptibility, consisting of excitation coils to create a magnetic field in the separating volume in which the particles to be separated are exposed to a counterforce and a component of the magnetic force.
  • the magnetic separators used industrially today are generally well suited to separating materials with ferromagnetic or strongly paramagnetic properties from other materials with diamagnetic or weakly paramagnetic properties. A separation of materials with only slight differences in their paramagnetic properties is only possible in some magnetic separators that are suitable for laboratory purposes.
  • gravity is used as counterforce, which is why it is required that the cutting force density f should be constant over the cutting volume.
  • the magnetic field that meets these conditions is referred to in this document as an isodynamic magnetic field.
  • Such a magnetic field is approximated by a specially shaped magnetic pole contour of an electromagnet with an iron yoke. If you want a different size as a counterforce, e.g. B. use the centrifugal force, the separation force density f must have the same spatial distribution as the counterforce.
  • the level of magnetic induction is essentially limited to the saturation induction of the iron yoke.
  • the greatest possible density of the cutting force is defined.
  • the maximum magnetic induction must be increased if the geometry remains the same, or the geometric dimension must be reduced if the maximum induction remains the same.
  • a method for separating magnetic from non-magnetic particles is known.
  • a magnet that can be used for magnetic separation is described, which, due to its arrangement, generates a mainly radial and a weak axial magnetic field in the separation volume.
  • the particles to be separated move perpendicular to the magnetic field and to the magnetic field gradient under the influence of gravity.
  • the magnetic fields and magnetic field gradients arising in this magnetic separator are therefore not matched to the counterforces created by gravity.
  • the object of the invention is to provide a magnetic separator which avoids the disadvantages of the above-mentioned magnetic fields and generates a magnetic field in which, for a certain volume sensitivity, the generated separating force is adapted to a corresponding counterforce, without being limited by the saturation induction of an iron yoke.
  • the magnetic separator according to the invention is characterized in that an equilibrium of forces is generated between the magnetic force and the opposing counterforce on the particles located in the separating volume, the magnetic field being largely induced by the shape and position of the excitation coils.
  • the magnetic field is induced by rotationally symmetrical coils, which are arranged symmetrically to the cutting volume and flow through in opposite directions with respect to the plane of symmetry and comprise the cutting volume and the Radius of the center of the vaginal volume is smaller than the largest radius of the excitation coils, but larger than the smallest radius of the excitation coils.
  • the magnetic field is induced by elongated coils, the long sides of the coil being arranged symmetrically to a plane of symmetry and comprising the sheath volume arranged symmetrically to the plane of symmetry.
  • excitation coils are made of normally conductive material. This version is sufficient for certain vaginal problems. It is an economically viable solution.
  • the excitation coils are made from superconductors. Weakly magnetic materials can only be separated using magnetic fields that can be generated from superconductors.
  • one or more iron cores or iron yokes are provided to increase the magnetic induction or to reduce the number of ampere turns.
  • one or more iron yokes or a normally conducting or a superconducting surface are provided for shielding the magnetic field.
  • a rotationally symmetrical excitation coil arrangement is shown in the figure, 1 denoting the axis of rotation and 2 denoting the plane of symmetry.
  • the excitation coils 3 and 5, which are arranged above the plane of symmetry 2, are, for. B. flowed through in a positive sense, the excitation coils 4 and 6, which are arranged below the plane of symmetry 2, are accordingly flowed through in a negative sense.
  • the counterforce is the centrifugal force which acts in the annular channel-shaped partition volume 7 on the particles moving at the transport speed.
  • the magnetic separating force density exerts a different force on the different material particles due to the different volume sensitivities of the materials to be separated. This magnetic force competes with the counterforce, which is approximately the same for all particles. For particulates of greater than Ks Volumssuszeptibiltician outweighs the magnetic force, while for particulates smaller than Ks Volumssuszeptibiltician outweighs the counterforce.
  • the counterforce is a superimposition of the drag forces in the carrier fluid with the force of gravity.
  • the volume of the sheath generally lies between the excitation coils. Assuming constant current density across the cross sections of the excitation coils, the desired constancy of the cutting force density over the cutting volume or the desired adaptation to the spatially variable counterforce can be achieved with a coil pair with a non-rectangular cross section or with several coil pairs with a rectangular cross section. When using pairs of coils with different current densities in the individual coil cross-sections of any shape, the desired constancy of the cutting force density over the cutting volume or the desired adaptation to the spatially variable counterforce can be achieved.

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)

Description

  • Die Erfindung betrifft einen Magnetscheider, vorzugsweise zur Trennung von Materialien mit geringen Unterschieden in der magnetischen Suszeptibilität, bestehend aus Erregerspulen zur Schaffung eines Magnetfeldes im Scheidevolumen, in dem die zu trennenden Teilchen einer Gegenkraft und einer Komponente der Magnetkraft ausgesetzt werden.
  • Die heute industriell verwendeten Magnetscheider sind im allgemeinen gut geeignet, Materialien mit ferromagnetischen oder stark paramagnetischen Eigenschaften von anderen Materialien mit diamagnetischen oder schwach paramagnetischen Eigenschaften zu trennen. Eine Trennung von Materialien mit nur geringen Unterschieden in ihren paramagnetischen Eigenschaften gelingt nur in einigen für Laboratoriumszwecke geeigneten Magnetscheidern.
  • Aus der US-PS Nr. 2.056.426 über ein derartiges Gerät ist bekannt, daß zur weitgehenden Trennung von Materialien mit geringen Unterschieden in ihren paramagnetischen Eigenschaften ein Magnetfeld notwendig ist, bei den die Kräfte auf Teilchen mit einer bestimmten Volumssuszeptibilität Ks unabhängig sind vom Ort im betrachtetem Scheidevolumen. Dazu muß ein Gleichgewicht herrschen zwischen der magnetischen Kraft und einer entgegengesetzt gerichteten Gegenkraft auf die Teilchen. Die magnetische Kraft auf ein Teilchen mit der Volumssuszeptibilität K und dem Teilchenvolumen V ist:
    Figure imgb0001
  • Die Feldgröße f = /B/ - grad H ist eine Beschreibung des Magnetfeldes, sie hat die Dimension einer Kraftdichte (N/m3) und wird als Scheidekraftdichte bezeichnet. Bei dem in der genannten US-PS beschriebenen Magnetscheider wird die Schwerkraft als Gegenkraft benützt, weshalb gefordert wird, daß die Scheidekraftdichte f über das Scheidevolumen konstant sein soll. Das Magnetfeld, das diese Bedingungen erfüllt, wird in dieser Druckschrift als isodynamisches Magnetfeld bezeichnet. Ein solches Magnetfeld wird durch speziell geformte Magnetpolkontur eines Elektromagneten mit Eisenjoch angenähert. Will man als Gegenkraft eine andere Größe wie z. B. die Fliehkraft heranziehen, so muß die Scheidekraftdichte f die gleiche räumliche Verteilung wie die Gegenkraft haben.
  • Bei Magnetscheidern mit Magnetflußführung durch ein Eisenjoch ist zur Formung des notwendigen Magnetfeldes eine entsprechende Kontur des Eisenjoches notwendig. Bei solchen Magnetscheidern ist die Höhe der magnetischen Induktion im wesentlichen auf die Sättigungsinduktion des Eisenjoches beschränkt. Im Verein mit einer gewünschten Geometrie des Volumens, in dem die Materialien getrennt werden sollen, ist somit die größtmögliche Scheidekraftdichte definiert.
  • Sind größere Scheidekraftdichten notwendig, so muß bei gleichbleibender Geometrie die maximale magnetische Induktion erhöht werden oder bei gleichbleibender maximaler Induktion die geometrische Abmessung verringert werden.
  • Eine Vergrößerung der geometrischen Abmessungen zum Zwecke eines größeren Durchsatzes und/oder der Scheidung größerer Kornklassen bedingt eine Erhöhung der maximalen Induktion, wenn die Scheidekraftdichte unverändert bleiben soll. Das hat zur Folge, daß zur Formung des Magnetfeldes nicht mehr ausschließlich das Eisenjoch verwendet werden kann. Die Form des Magnetfeldes wird mit zunehmender Stärke der magnetischen Induktion mehr und mehr von der Lage und der Form der Erregerspulen bestimmt. Die Erhöhung der Induktion erfordert hohe Amperewindungszahlen.
  • Aus der FR-A-2 467 020 ist ein Verfahren zur Trennung magnetischen von unmagnetischen Teilchen bekannt. Bei diesem Verfahren wird ein zur Magnetscheidung verwendbarer Magnet beschrieben, der durch seine Anordnung ein hauptsächlich radiales und ein schwaches axiales Magnetfeld im Scheidevolumen erzeugt. Die zu trennenden Teilchen bewegen sich dabei senkrecht zum Magnetfeld und zum Magnetfeldgradienten unter dem Einfluß der Schwerkraft. Die in diesem Magnetscheider entstehenden Magnetfelder und Magnetfeldgradienten sind daher nicht auf die von der Schwerkraft gebildeten Gegenkräfte abgestimmt.
  • Aufgabe der Erfindung ist es, einen Magnetscheider zu schaffen, der die Nachteile der obengenannten Magnetfelder vermeidet und ein Magnetfeld erzeugt, bei dem für eine bestimmte Volumssuszeptibilität die hervorgerufene Scheidekraft einer entsprechenden Gegenkraft angepaßt ist, ohne dabei durch die Sättigungsinduktion eines Eisenjoches beschränkt zu sein.
  • Der erfindungsgemäße Magnetscheider ist dadurch gekennzeichnet, daß ein Kräftegleichgewicht zwischen der magnetischen Kraft und der entgegengesetzt gerichteten Gegenkraft auf die im Scheidevolumen befindlichen Teilchen erzeugt wird, wobei das Magnetfeld im überwiegenden Ausmaß durch die Form und Lage der Erregerspulen induziert ist.
  • Mit der Erfindung ist es erstmals möglich, die der Erfindung gestellte Aufgabe optimal einer Lösung zuzuführen. Eine kontinuierliche Scheidemöglichkeit für unterschiedlich paramagnetische Materialien ist dadurch gegeben. Darüberhinaus wird eine hohe Trennschärfe bei industriell benötigtem großem Durchsatz erzielt.
  • Gemäß einer besonderen Ausgestaltung der Erfindung ist das Magnetfeld durch rotationssymmetrische Spulen induziert, die symmetrisch zum Scheidevolumen angeordnet und in Bezug auf die Symmetrieebene gegensinnig stromdurchflossen sind und das Scheidevolumen umfassen und der Radius des Zentrums des Scheidevolumens kleiner ist, als der größte Radius der Erregerspulen, jedoch größer als der kleinste Radius der Erregerspulen. Dadurch ist eine einfache Lösung des Problems gegeben, die Geometrie der Magnetspulen festzulegen.
  • Nach einer Weiterbildung der Erfindung ist das Magnetfeld durch langgestreckte Spulen induziert, wobei die Spulenlängsseiten symmetrisch zu einer Symmetrieebene angeordnet sind und das symmetrisch zur Symmetrieebene angeordnete Scheidevolumen umfassen. Diese Merkmale beziehen sich auf eine Scheidekanalanordnung in nicht rotationssymmetrischer Geometrie. Für diese Bedingungen liefert die Spulenanordnung optimale Konstanz der Scheidekraftdichte.
  • Entsprechend einer weiteren Ausgestaltung der Erfindung sind Erregerspulen aus normalleitendem Material hergestellt. Für gewisse Scheideprobleme ist diese Ausführung ausreichend. Sie ist eine wirtschaftlich vertretbare Lösung.
  • Nach einem weiteren Merkmal der Erfindung sind die Erregerspulen aus Supraleitern hergestellt. Schwach magnetische Materialien lassen sich nur mit aus Supraleitern erzeugbaren Magnetfeldern trennen.
  • Gemäß einer Ausgestaltung der Erfindung sind zur Erhöhung der magnetischen Induktion oder zur Verringerung der Amperewindungszahl ein oder mehrere Eisenkerne oder Eisenjoche vorgesehen. Ebenso sind zur Abschirmung des magnetischen Feldes ein oder mehrere Eisenjoche oder eine normalleitende oder ein supraleitende Fläche vorgesehen. Der Vorteil dieser beiden Merkmale liegt darin, daß eine Verminderung des Streufeldes und eine Erhöhung des Nutzfeldes dadurch gegeben ist.
  • In der Zeichnung ist an Hand eines Ausführungsbeispieles die Erfindung näher erläutert.
  • In der Fig. ist eine rotationssymmetrische Erregerspulenanordnung dargestellt, wobei mit 1 die Rotationsachse und mit 2 die Symmetrieebene bezeichnet ist.
  • Die Erregerspulen 3 und 5, die oberhalb der Symmetrieebene 2 angeordnet sind, sind z. B. im positivem Sinn stromdurchflossen, die Erregerspulen 4 und 6, die unterhalb der Symmetrieebene 2 angeordnet sind, sind dementsprechend im negativen Sinn stromdurchflossen. Durch diese gegensinnige Durchflutungsanordnung wird der gesamte magnetische Fluß der oberen bzw. der unteren beiden Spulen zwischen den Spulenpaaren 3, 5 und 4, 6 hindurchgedrückt und erzeugt dadurch im ringkanalförmigen Scheidevolumen 7 eine annähernd konstante Scheidekraftdichte. Die Gegenkraft ist in diesem Beispiel die Fliehkraft, die im ringkanalförmigen Scheidevolumen 7 auf die mit der Transportgeschwindigkeit bewegten Teilchen wirkt. Die Überlagerung der Fliehkraft mit den Schleppkräften in der Trägerflüssigkeit, gemeinsam mit der kleinen radialen Ausdehnung des Scheidevolumens, ergeben eine annähernd räumlich konstante Gegenkraft, sodaß sich für Teilchen einer bestimmten Volumssuszeptibilität Ks durch Einstellung der Durchflußgeschwindigkeit vo (damit der Fliehkraft) und der Größe der magnetischen Induktion (damit der magnetischen Scheidekraft) ein Kräftegleichgewicht unabhängig vom Ort innerhalb des Scheidevolumens erreichen läßt.
  • Die magnetische Scheidekraftdichte übt infolge der unterschiedlichen Volumssuszeptibilitäten der zu scheidenden Materialien auf die unterschiedlichen Materialteilchen eine unterschiedliche Kraft aus. Diese magnetische Kraft steht in Konkurrenz zu der für alle Teilchen annähernd gleichen Gegenkraft. Für Materialteilchen mit größerer Volumssuszeptibilität als Ks überwiegt die magnetische Kraft, während für Materialteilchen mit kleinerer Volumssuszeptibilität als Ks die Gegenkraft überwiegt.
  • Wird die Erregerspulenanordnung von der Fig. nicht als rotationssymmetrisches Gebilde betrachtet, sondern als langgestrecktes Gebilde, so ist die Gegenkraft eine Überlagerung der Schleppkräfte im Trägerfluid mit der Schwerkraft.
  • Aus der Fig. ist weiters ersichtlich, daß im allgemeinen das Scheidevolumen zwischen die Erregerspulen zu liegen kommt. Setzt man konstante Stromdichte über die Querschnitte der Erregerspulen voraus, so läßt sich mit einem Spulenpaar mit nicht rechteckigem Querschnitt bzw. mit mehreren Spulenpaaren mit rechteckigem Querschnitt die gewünschte Konstanz der Scheidekraftdichte über das Scheidevolumen bzw. die gewünschte Anpassung an die räumlich veränderliche Gegenkraft erreichen. Bei verwendung von Spulenpaaren mit unterschiedlichen Stromdichten in den einzelnen beliebig geformten Spulenteilquerschnitten läßt sich die gewünschte Konstanz der Scheidekraftdichte über das Scheidevolumen bzw. die gewünschte Anpassung an die räumlich veränderliche Gegenkraft erreichen.

Claims (7)

1. Magnetscheider, vorzugsweise zur Trennung von Materialien mit geringen Unterschieden in der magnetischen Suszeptibilität, bestehend aus Erregerspulen (3, 5 bzw. 4, 6) zur Schaffung eines Magnetfeldes im Scheidevolumen (7), in dem die zu trennenden Teilchen einer Gegenkraft und einer Komponente der Magnetkraft ausgesetzt werden, dadurch gekennzeichnet, daß ein Kräftegleichgewicht zwischen der magnetischen Kraft und der entgegengesetzt gerichteten Gegenkraft auf die im Scheidevolumen (7) befindlichen Teilchen erzeugt wird, wobei das Magnetfeld im überwiegenden Ausmaß durch die Form und Lage der Erregerspulen (3, 5 bzw. 4, 6) induziert ist.
2. Magnetscheider nach Anspruch 1, dadurch gekennzeichnet, daß das Magnetfeld durch rotationssymmetrische Spulen (3, 5 bzw. 4, 6) induziert ist, die symmetrisch zum Scheidevolumen (7) angeordnet und in Bezug auf die Symmetrieebene (2) gegensinnig stromdurchflossen sind und das Scheidevolumen (7) umfassen und der Radius des Zentrums des Scheidevolumens (7) kleiner ist als der größte Radius der Erregerspulen (5, 6), jedoch größer als der kleinste Radius der Erregerspulen (3, 4).
3. Magnetscheider nach Anspruch 1, dadurch gekennzeichnet, daß das Magnetfeld durch langgestreckte Spulen induziert ist, wobei die Spulenlängsseiten symmetrisch zu einer Symmetrieebene angeordnet sind und das symmetrisch zur Symmetrieebene angeordnete Scheidevolumen umfassen.
4. Magnetscheider nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Erregerspulen (3, 4, 5, 6) aus normalleitendem Material hergestellt sind.
5. Magnetscheider nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Erregerspulen (3, 4, 5, 6) aus Supraleitern hergestellt sind.
6. Magnetscheider nach mindestens einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß zur Erhöhung der magnetischen Induktion oder zur Verringerung der Amperewindungszahl ein oder mehrere Eisenkerne oder Eisenjoche vorgesehen sind.
7. Magnetscheider nach mindestens einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß zur Abschirmung des Magnetfeldes ein oder mehrere Eisenjoche oder eine normalleitende oder eine supraleitende Fläche vorgesehen sind.
EP19850890117 1984-05-22 1985-05-21 Magnetscheider Expired EP0162834B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1684/84 1984-05-22
AT0168484A AT379525B (de) 1984-05-22 1984-05-22 Magnetscheider

Publications (3)

Publication Number Publication Date
EP0162834A2 EP0162834A2 (de) 1985-11-27
EP0162834A3 EP0162834A3 (en) 1986-02-19
EP0162834B1 true EP0162834B1 (de) 1988-07-27

Family

ID=3518753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850890117 Expired EP0162834B1 (de) 1984-05-22 1985-05-21 Magnetscheider

Country Status (3)

Country Link
EP (1) EP0162834B1 (de)
AT (1) AT379525B (de)
DE (1) DE3563916D1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004458A1 (de) * 1988-10-25 1990-05-03 Elin Energieanwendung Gesellschaft M.B.H. Offen-gradient-magnetscheider
AT400779B (de) * 1989-07-19 1996-03-25 Gerhold Juergen Dipl Ing Dr Te Magnetsystem
AT393463B (de) * 1990-07-13 1991-10-25 Elin Energieanwendung Isodynamischer trennkanalmagnetscheider

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2157217A1 (de) * 1971-11-18 1973-05-24 Preussag Ag Magnetscheider
DE2650528A1 (de) * 1976-11-04 1978-05-18 Kloeckner Humboldt Deutz Ag Magnetscheider
GB2064377B (en) * 1979-10-12 1984-03-21 Imperial College Magnetic separators
US4340468A (en) * 1980-11-06 1982-07-20 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for separating materials magnetically

Also Published As

Publication number Publication date
ATA168484A (de) 1985-06-15
DE3563916D1 (en) 1988-09-01
AT379525B (de) 1986-01-27
EP0162834A2 (de) 1985-11-27
EP0162834A3 (en) 1986-02-19

Similar Documents

Publication Publication Date Title
US4235710A (en) Methods and apparatus for separating particles using a magnetic barrier
EP1079236A2 (de) Aktiv abgeschirmte supraleitende Magnetanordnung mit Z2-Shim
CH657541A5 (de) Verfahren und einrichtung zum trennen magnetischer von unmagnetischen teilchen.
DE2659254A1 (de) Verfahren und vorrichtung zum trennen von teilchen unterschiedlicher dichte mit magnetischen fluiden
EP0111825B1 (de) Vorrichtung der Hochgradienten-Magnettrenntechnik zum Abscheiden magnetisierbarer Teilchen
EP0261183A1 (de) Verfahren und vorrichtung zur sortierung paramagnetischer partikeln im fein- und feinstkornbereich in einem magnetischen starkfeld
DE2628095A1 (de) Magnetische abscheidevorrichtung
DE2307273A1 (de) Supraleitender magnetausscheider
DE2650540C3 (de) Starkfeld-Trommelmagnetscheider
DE3039171A1 (de) Abscheidevorrichtung der hochgradienten-magnettrenntechnik
EP0162834B1 (de) Magnetscheider
DE2929468C2 (de)
DE1228213B (de) Starkfeld-Magnetscheider
DE60308122T2 (de) Gradientenspulenstruktur für Kernspintomographie
DE2607197B2 (de) Unabgeschirmtes dauermagnetisches Doppeljochsystem
AT391280B (de) Magnetscheider ii
DE3827252A1 (de) Verfahren und vorrichtung zum kontinuierlichen trennen von biologische mikrosysteme und zellen enthaltenden mischungen
DE2651137A1 (de) Verfahren und vorrichtung zur trennung magnetischer partikel von einem erzmaterial
US4608155A (en) Magnetic separator
WO1990004458A1 (de) Offen-gradient-magnetscheider
US3382977A (en) Magnetic separator with a combination field
DE2461760C3 (de) Freifall-Magnetscheider
DE2738649C2 (de) Anlage zum Abscheiden feinster magnetisierbarer Teilchen
EP0035122B1 (de) Prüfverfahren zur Ermittlung der magnetischen Eigenschaften ferromagnetischer Pulver
DE3247557A1 (de) Vorrichtung zur hochgradienten-magnetseparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19860613

17Q First examination report despatched

Effective date: 19870429

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 3563916

Country of ref document: DE

Date of ref document: 19880901

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900426

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900503

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900509

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900706

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910531

Ref country code: CH

Effective date: 19910531

Ref country code: BE

Effective date: 19910531

BERE Be: lapsed

Owner name: ELIN-UNION A.G. FUR ELEKTRISCHE INDUSTRIE

Effective date: 19910531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST