EP0155869A1 - Installation pour l'extraction de minerais des fonds marins - Google Patents

Installation pour l'extraction de minerais des fonds marins Download PDF

Info

Publication number
EP0155869A1
EP0155869A1 EP85400311A EP85400311A EP0155869A1 EP 0155869 A1 EP0155869 A1 EP 0155869A1 EP 85400311 A EP85400311 A EP 85400311A EP 85400311 A EP85400311 A EP 85400311A EP 0155869 A1 EP0155869 A1 EP 0155869A1
Authority
EP
European Patent Office
Prior art keywords
ore
relay block
installation according
ship
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85400311A
Other languages
German (de)
English (en)
Inventor
Jean-Pierre Moreau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chantiers du Nord et de La Mediterranee
Original Assignee
Chantiers du Nord et de La Mediterranee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chantiers du Nord et de La Mediterranee filed Critical Chantiers du Nord et de La Mediterranee
Publication of EP0155869A1 publication Critical patent/EP0155869A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/005Equipment for conveying or separating excavated material conveying material from the underwater bottom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8858Submerged units
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for

Definitions

  • the present invention relates generally to an installation for the exploitation and extraction of large quantities of ores, for example polymetallic nodules present on the seabed.
  • Installations are also known which use devices capable of moving on the seabed and equipped with means for collecting and storing nodules. These machines can be towed by a cable from the surface or be self-propelled and programmed beforehand to operate on the seabed. Some of them having their own source of energy can also be produced so as to ensure not only the removal of the nodules but also their ascent to the surface.
  • the present invention relates precisely to an installation for extracting ores from the seabed at a great depth, which notably makes it possible to significantly improve the operating yield of a deposit and to provide the flexibility of use necessary depending on operating conditions.
  • the intermediate submarine station submerged at a certain depth below the water level so as to be constantly sheltered from swell includes autonomous means for keeping the relay unit and the vehicles in operation and to ensure the recovery and storage of the ore in the event of disconnection of the link with the surface vessel.
  • the installation for mining and collecting ore on the seabed at a great depth shown in Figure 1, consists of a ship 1 floating on the surface of the water, and several vehicles 50 for collecting ore, moving on the seabed 2 for example at 5500 meters below sea level.
  • the link between ship 1 and vehicles 50, for the supply of energy and the raising of the ore is performed as follows. First of all the ship 1 is connected by a flexible pipe 3 to an underwater station 20 submerged at a depth of the order of 300 to 350 meters, which itself supports by a rigid pipe 4 a relay block 30 submerged at a depth of about 4,500 to 5,000 meters.
  • Each vehicle 50 is connected to the relay block 30 by a set of cables and pipes 5 ensuring on the one hand the transmission of energy and the control of the commands and on the other hand the ascent of the ore to the relay block 30.
  • These cables and pipes 5 are held by floats 6 so as not to transmit parasitic forces to vehicles 50.
  • the vessel 1 constituting the base of life supplies the energy to the various motors and pumps necessary for the operation of the entire installation and ensures the storage of the ore collected between two rotations of the ore carriers.
  • the intermediate submarine station 20 shown in more detail in Figures 2 and 3, is located about 300-350 meters below the water level, in order to be sheltered from the effects of the swell . It mainly comprises an apron 21 on which are mounted a connection box 22 between the flexible pipe 3 and the rigid pipe 4, and several primary pumps 23 capable of pumping the mixture of ores and seawater from the relay block 30 by line 4 and driving this mixture to the surface ship 1 via line 3.
  • a longitudinal float 24 is mounted on each side of the deck 21 to maintain the station at altitude; these floats can possibly serve as buffer storage of the ore, for an operation of about ten hours, or for example 3000 m 3 per float, in particular in the event of disconnection of the link with the ship, as will be seen later.
  • each float is connected by a pipe 25 to the connection box, Z ment 22.
  • This underwater station 20 also includes a system of longitudinal and vertical thrusters 26 for maintaining it in heading and altitude, as well as a control system 27 receiving orders from the ship and control of the pumps 23 and thrusters 26.
  • L electricity necessary for the operation of the station is supplied by ship 1, but in the event of disconnection of the link with said ship, one or more standby generator sets 28 mounted on the bulkhead 21 supply the electricity necessary.
  • the relay block 30 located at 4500-5000 meters below the water level, is attached to the underwater station 20 via the ascent pipe 4 and cables not shown. It mainly includes everything that is not essential on 50 vehicles in order to limit the energy to be brought to the bare minimum.
  • This relay block ( Figures 4 and 5) includes a platform 31 supporting a silo 32 to allow among other things a buffer storage of approximately 500 tonnes of ore between the vehicles 50 and the station 20.
  • On this platform are also mounted hydraulic groups 33 with sea water and a monitoring and control system 34.
  • the hydraulic groups 33 supplying pressurized water to actuate the hydraulic motors of vehicles 50, are powered by electric motors 35 receiving the energy of the ship through the submarine station 20.
  • the control system 34 is capable on the one hand, of carrying out a certain number of pre-programmed tasks and, on the other hand, of carrying out the orders given from the ship according to the elements transmitted to the latter.
  • the silo 32 has multiple tangential entrances 36 at its upper part to form a vortex; these inlets each communicate via a pump 37 with a pipe 5 for the ascent of the ore into the silo from a vehicle 50. Each inlet 36 is therefore connected to a vehicle which allows the ascent of the ore to from several vehicles simultaneously.
  • a grid 38 in the shape of a cone directed downwards, so as to effect the sorting and final washing of the ore by gravity.
  • the upper pipe 4 for raising the ore to the ship by the station 20 enters the interior of the silo 32 and emerges above the grid 38.
  • said block relay comprises propellants 39 as well as vertical stabilizers 40 arranged on each side of the silo 32.
  • the collection of the underwater ore is carried out by the vehicles 50 (FIGS. 6, 7 and 8) which mainly consist of a carrying chassis, a propulsion system, a ore collection, and an ore washing and processing system.
  • the chassis 51 consisting of metal beams 52 internally lined with foam supports the various elements of the vehicle and in particular the propulsion system 53.
  • This propulsion system 53 is formed by example by a pair of tracks 54 and 55 located on each side of the chassis 51.
  • Each track (54-55) is driven by wheels 56 which are themselves driven by hydraulic motors 57 housed in the rim.
  • the pressurized water for the hydraulic motors 57 is supplied by the hydraulic groups 33 of the relay block 30.
  • Each wheel 56 is driven by a hydraulic motor 57 so as to ensure high mobility of the vehicle.
  • the tracks (54, 55) in mixed metallic and composite structure, are provided with notches internally for the connection with the wheels 56 and externally to ensure a grip on the ground.
  • the ore collection system which consists of two trains of bucket chains 58 arranged in line so as to cover a sufficient width.
  • Each train of bucket chains 58 is independent and can pivot around an axis 59 located at the top. This pivoting is controlled by a jack 60 and makes it possible to adapt each train to the configuration of the ground.
  • the endless chains 61, support of the buckets, pass on wheels 62 mounted on arms (63-64), connected to one another in an elastic manner, for example by springs 65, so that when a bucket hits an obstacle (large stone, rock), the lower arm 64 is raised and the bucket passes over the obstacle instead of bracing on it.
  • the buckets are also protected by bumpers 66.
  • the buckets pour their collection into a treatment and washing system comprising two conveyor belts (67-68) superimposed and made up of a mesh with calibrated mesh for the selection of nodules.
  • the excessively large nodules as well as the sediments are evacuated in a hopper 69.
  • a first washing is. provided by ramps 70 located above the carpet 67.
  • the nodules thus selected are then transported in a tank 71, using a screw 72 in which they are rid of the gangue which may remain and where they undergo a second wash.
  • the tank 71 is connected to the pipe 5 for raising the nodules to the relay block 30.
  • Each vehicle 50 is of course equipped with an underwater observation device, a detection device or an acoustic display system, in order to ensure safe and easy operating conditions, even in the case where the water is cloudy and where visibility is reduced.
  • the ore pickup facility operates as follows.
  • the assembly - submarine station 20 and relay block 30 connected to said station by line 4 is maintained, thanks to the thrusters 26 and possibly ballasts, in a position such that station 20 is located approximately 300-350 meters below the water level.
  • This assembly can also evolve according to the orders given from the ship 1.
  • the personnel on the ship controls the operation of the installation and can intervene at any time.
  • the energy necessary for the operation of the installation and in particular of the various elements of the vehicles 50 is supplied by the ship 1 and the pressurized water for the propulsion of the said vehicles is supplied by the hydraulic groups 33 of the relay block 30
  • the vehicles 50 therefore move on the bottom 2 and pick up the ore.
  • the two trains of bucket chains 58 pour their collection onto the upper belt 67 where a first washing is carried out by the ramps 70.
  • This belt 67 lets nodules of a given maximum caliber pass as well as the sediments and retains the excessively large nodules, which are evacuated by the hopper 69.
  • the second conveyor belt 68 located below the first, collects the accepted nodules and lets pass the sediments which are also rejected towards the evacuation hopper 69. Then the nodules transported by the screw 72 are rid of the gangue and undergo a second washing, before falling into the tank 71.
  • the mixture of ores and seawater collected in the tank of each vehicle is reassembled under the effect of the pumps 37 to the relay block 30.
  • the arrangement of the tangential inputs 36 in the silo 32 is such that the nodules undergo, under the effect of the whirlpool thus created, an additional and natural cleaning without energy supply. They also undergo a new sorting through the grid 38 and are temporarily stored inside the silo 32.
  • the primary pumps 23 of the station 20 suck in via the ascent pipe 4, the mixture of ores and seawater from the relay block 30 and pump this mixture through the loading pipe 3 to the surface ship.
  • an intermediate submarine station 20 between the relay block 30 and the ship 1 has many advantages. This station is maintained at a depth of about 300 to 350 meters below the water level, in order to be constantly sheltered from the effects of swell. In in the event of a storm or rough sea, it is sufficient to disconnect the vessel 1 from the loading line 3 which is marked on the surface by a buoy 10 (FIG. 1). The entire subsea installation can remain in place and be held in position by the various thrusters which are supplied with energy by the generator sets 28 placed on the station 20. The position of this assembly is constantly monitored by the monitoring and control system 27 also arranged on station 20.
  • the generator sets 28 supply the energy necessary to supply on the one hand the primary pumps 23 in order to raise the ore mixture which is in the pipe 4 and the silo 32 of the relay block 30 and on the other hand the pumps 37 of said relay block and the pickup vehicles so that the ore collection continues.
  • the reassembled mixture is oriented via the connection box 22 and the pipes 25 to the floats 24 of the station 20 (FIG. 2) to be stored there, which allows the installation to operate for another a few hours after disconnection with the ship.
  • the control system 27 cuts off the power to the pumps and the collection vehicles while waiting for the connection with the ship to be made again.
  • This arrangement therefore makes it possible to avoid dismantling the underwater installation in the event of bad weather and to maintain a sufficient yield for ore extraction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

L'installation comprend: - un navire de surface (1) fournissant l'énergie nécessaire au fonctionnement de l'ensemble sous-marin et assurant le stockage du minerai, - un bloc relais (30) raccordé au navire (1) par une conduite (3-4) de remontée du minerai et comportant des moyens de stockage, de tri et de lavage intermédiaire du minerai ainsi que des moyens pour la remontée dudit navire, - et des véhicules (50) évoluant sur le fond marin (2) et comportant chacun un système de propulsion et un système de ramassage, de lavage et de traitement du minerai. Cette installation comporte également une station sousmarine (20) intermédiaire intercalée entre le navire de surface (1) et le bloc relais (30), et immergée à une certaine profondeur en dessous du niveau de l'eau, de façon à être constamment à l'abri des effets de la houle. L'invention s'applique au ramassage des nodules polymétalliques à grande profondeur.

Description

  • La présente invention concerne d'une façon générale une installation pour l'exploitation et l'extraction de quantités importantes de minerais par exemple des nodules polymétalliques présents sur les fonds marins.
  • On sait qu'il existe, sur les fonds marins, des quantités extrêmement importantes de minerais et en particulier qu'il existe des nodules riches en minéraux dans de nombreuses parties du monde. Ils contiennent essentiellement du manganèse et aussi d'autres métaux comme le fer, le nickel, le molybdène, le cobalt et le cuivre, et constituent de ce fait une source de minerais inépuisable très recherchée. Mais ces nodules sont généralement trouvés à des profondeurs importantes, par exemple à 5500 mètres en-dessous de la surface de la mer ce qui entraine pour leur exploitation des problèmes technologiques extrêmement délicats.
  • En effet le ramassage des nodules sur le fond marin dans des océans profonds, puis la remontée de ces nodules sur une telle distance jusqu'à la surface est une opération difficile à réaliser de façon efficace, car à cette profondeur la.pression est importante et de plus il faut tenir compte de l'action du vent et de la houle en surface ainsi que des courants sous-marins.
  • Pour l'extraction de ces nodules, il existe des appareils ou des procédés qui utilisent à partir d'un navire ou d'une plate-forme en surface, des systèmes d'aspiration, des dragues à godets ou des moyens équivalents, mais ces différents dispositifs n'ont pas donné entièrement satisfaction en raison d'une part des difficultés pour commander ou guider avec précision les appareils à ces profondeurs, et d'autre part de la puissance à mettre en oeuvre pour remonter les nodules du fond jusqu'à la surface.
  • On connaît également des installations qui utilisent des engins susceptibles de se déplacer sur le fond marin et équipés de moyens de ramassage et de stockage des nodules. Ces engins peuvent être tractés par un câble depuis la surface ou être autopropulsés et programmés préalablement pour opérer sur le fond marin. Certains d'entre eux ayant leur propre source d'énergie peuvent de plus être réalisés de façon à assurer non seulement le prélèvement des nodules mais également leur remontée à la surface.
  • Mais ces différentes installations ont notamment pour inconvénient de ne pas permettre un rendement suffisant de prélèvement du minerai dans un temps donné et pour une surface balayée déterminée.
  • La présente invention concerne précisément une installation pour l'extraction de minerais des fonds marins à une grande profondeur qui permet notamment d'optimiser de façon notable le rendement d'exploitation d'un gisement et d'apporter la souplesse d'utilisation nécessaire en fonction des conditions d'exploitation.
  • L'installation comporte donc :
    • - un navire de surface fournissant l'énergie nécessaire au fonctionnement de l'ensemble sous-marin et assurant le stockage du minerai,
    • - un bloc relais raccordé au navire par une conduite de remontée du minerai et comportant des moyens de stockage, de tri et de lavage intermédiaire du minerai ainsi que des moyens pour la remontée dudit minerai,
    • - une station sous-marine intermédiaire intercalée entre le navire de surface et le bloc relais, et raccordée d'une part au bloc relais par une conduite de remontée du minerai et d'autre part au navire par une conduite de chargement,
    • - et des véhicules évoluant sur le fond marin et comportant chacun un système de propulsion et un système de ramassage, de lavage et de traitement du minerai.
  • Selon l'invention la station sous-marine intermédiaire immergée à une certaine profondeur en dessous du niveau de l'eau de façon à être constamment à l'abri de la houle, comporte des moyens autonomes pour maintenir en fonctionnement le bloc relais et les véhicules de ramassage et pour assurer la remontée et le stockage du minerai en cas de déconnexion de la liaison avec le navire de surface.
  • Les caractéristiques de l'invention ressortiront plus particulièrement de la description suivante, donnée à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
    • - la figure 1 représente schématiquement l'ensemble de l'installation d'extraction de minerais selon un mode de mise en oeuvre de l'invention ;
    • - les figures 2 et 3 représentent deux vues schématiques de la station-sous-marine intermédiaire de l'installation ;
    • - les figures 4 et 5 représentent schématiquement deux vues du bloc-relais sous-marin de l'installation ;
    • - les figures 6, 7 et 8 sont différentes vues du véhicule de ramassage du minerai.
  • L'installation d'exploitation et de ramassage du minerai sur les fonds marins à une grande profondeur, représentée à la figure 1, se compose d'un navire 1 flottant sur la surface de l'eau, et de plusieurs véhicules 50 de ramassage du minerai, évoluant sur le fond marin 2 par exemple à 5500 mètres en-dessous du niveau de la mer. La liaison entre le navire 1 et les véhicules 50, pour la fourniture de l'énergie et la remontée du minerai est réalisée de la façon suivante. Tout d'abord le navire 1 est raccordé par une conduite souple 3 à une station sous-marine 20 immergée à une profondeur de l'ordre de 300 à 350 mètres, qui elle-même supporte par une conduite rigide 4 un bloc relais 30 immergé à une profondeur d'environ 4500 à 5000 mètres. Chaque véhicule 50 est relié au bloc relais 30 par un ensemble de câbles et de tuyaux 5 assurant d'une part la transmission de l'énergie et l'asservissement des commandes et d'autre part la remontée du minerai jusqu'au bloc-relais 30. Ces câbles et tuyaux 5 sont maintenus par des flotteurs 6 de façon à ne pas transmettre d'efforts parasites aux véhicules 50.
  • Le navire 1 constituant la base de vie fournit l'énergie aux différents moteurs et pompes nécessaires au fonctionnement de l'ensemble de l'installation et assure le stockage du minerai recueilli entre deux rotations des minéraliers.
  • La station sous-marine intermédiaire 20, représentée plus en détails sur les figures 2 et 3, est située à environ 300-350 mètres en-dessous du niveau de l'eau, afin d'être à l'abri des effets de la houle. Elle comprend principalement un tablier 21 sur lequel sont montés un caisson de raccordement 22 entre la conduite souple 3 et la conduite rigide 4, et plusieurs pompes primaires 23 capables de pomper le mélange de minerais et d'eau de mer depuis le bloc relais 30 par la conduite 4 et de refouler ce mélange jusqu'au navire 1 de surface par la conduite 3. Un flotteur lon- ' gitudinal 24 est monté de chaque côté du tablier 21 pour maintenir en altitude la station ; ces flotteurs peuvent éventuellement servir de stockage tampon du minerai, pour un fonctionnement d'une dizaine d'heures environ, soit par exemple 3000 m3 par flotteur, notamment en cas de deconnexion de la liaison avec le navire, comme on le verra ultèrieurement. A cet effet chaque flotteur est relié par une canalisation 25 au caisson de raccorde,Z ment 22.
  • Cette station sous-marine 20 comporte également un système de propulseurs 26 longitudinaux et verticaux pour la maintenir en cap et en altitude, ainsi qu'un système 27 de contrôle recevant les ordres du navire et de commande des pompes 23 et des propulseurs 26. L'électricité nécessaire au fonctionnement de la station est fournie par le navire 1, mais en cas de déconnexion de la liaison avec ledit navire, un ou plusieurs groupes électrogènes de secours 28 montés sur le tablier 21 fournissent l'électricité nécessaire.
  • Le bloc relais 30 situé à 4500-5000 mètres en-dessous du niveau de l'eau, est accroché à la station sous-marine 20 par l'intermédiaire de la conduite de remontée 4 et de câbles non représentés. Il regroupe principalement tout ce qui n'est pas indispensable sur les véhicules 50 afin de limiter au strict nécessaire l'énergie à apporter à ces derniers.
  • Ce bloc relais (figures 4 et 5) comprend une plate-forme 31 supportant un silo 32 pour permettre entre autres un stockage tampon d'environ 500 tonnes de minerai entre les véhicules 50 et la station 20. Sur cette plate-forme sont également montés des groupes hydrauliques 33 à eau de mer et un système de contrôle et de commande 34. Les groupes hydrauliques 33, fournissant l'eau sous pression pour actionner les moteurs hydrauliques des véhicules 50, sont mus par des moteurs électriques 35 recevant l'énergie du navire par l'intermédiaire de la station sous-marine 20. Le système de contrôle 34 est capable d'une part, d'assurer un certain nombre de tâches pré-programmées et, d'autre part, d'exécuter les ordres donnés depuis le navire en fonction des éléments transmis à ce dernier.
  • Le silo 32 comporte à sa partie supérieure des entrées multiples 36 tangentielles pour former un tourbillon; ces entrées communiquent chacune par l'intermédiaire d'une pompe 37 avec un tuyau 5 pour la remontée du minerai dans le silo à partir d'un véhicule 50. Chaque entrée 36 est donc raccordée à un véhicule ce qui permet la remontée du minerai à partir de plusieurs véhicules, simultanément. Au-dessous des entrées 36 est placé, à l'intérieur du silo 32, une grille 38 en forme de cône dirigé vers le bas, de façon à effectuer par gravité le tri et le lavage final du minerai. La conduite supérieure 4 de remontée du minerai vers le navire par la station 20 pénètre à l'intérieur du silo 32 et débouche au-dessus de la grille 38. Pour maintenir le cap du bloc relais 30 par rapport à la station 20, ledit bloc relais comporte des propulseurs 39 ainsi que des stabilisateurs verticaux 40 disposés de chaque côté du silo 32.
  • Le ramassage du minerai sous-marin, par exemple des nodules polymétalliques, est effectué par les véhicules 50 (figures 6, 7 et 8) qui se composent principalement d'un châssis porteur, d'un système de propulsion, d'un système de ramassage du minerai, et d'un système de lavage et de traitement du minerai.
  • Le châssis 51 constitué de poutres métalliques 52 garnies intérieurement de mousse supporte les différents éléments du véhicule et notamment le système de propulsion 53. Ce système de propulsion 53 est formé par exemple par une paire de chenilles 54 et 55 situées de chaque côté du châssis 51. Chaque chenille (54-55) est entrainée par des roues 56 qui sont elles-mêmes entrainées par des moteurs hydrauliques 57 logés dans la jante. L'eau sous pression pour les moteurs hydrauliques 57 est fournie par les groupes hydrauliques 33 du bloc relais 30. Chaque roue 56 est mue par un moteur hydraulique 57 de façon à assurer une grande mobilité du véhicule. Les chenilles (54, 55) en structure mixte métallique et composite, sont munies de crans intérieurement pour la liaison avec les roues 56 et extérieurement pour assurer une emprise sur le sol.
  • A l'avant du véhicule est monté sur le châssis 51 le système de ramassage du minerai qui se compose de deux trains de chaînes à godets 58 disposés en ligne de façon à couvrir une largeur suffisante.
  • L'affouillement du sol est facilité par la présence de dents ménagées dans les godets et ceux-ci sont munis de trous afin de ne pas remonter inutilement de l'eau et de la vase en suspension. Chaque train de chaines à godets 58 est indépendant et peut pivoter autour d'un axe 59 situé à la partie supérieure. Ce pivotement est commandé par un vérin 60 et permet d'adapter chaque train à la configuration du sol. De plus, les chaines sans fin 61, support des godets, passent sur des roues 62 montées sur des bras (63-64), reliés entre eux de façon élastique, par exemple par des ressorts 65, de telle sorte que lorsqu'un godet heurte un obstacle (grosse pierre, rocher), le bras inférieur 64 se relève et le godet passe au-dessus de l'obstacle au lieu de s'arc-bouter dessus. La protection des godets est également assurée par des pare-chocs 66.
  • Les godets déversent leur collecte dans un système de traitement et de lavage comprenant deux tapis roulants (67-68) superposés et constitués d'un grillage à mailles calibrées pour la sélection des nodules. Les trop gros nodules ainsi que les sediments sont évacués dans une trémie 69. Un premier lavage est. assuré par des rampes 70 situées au-dessus du tapis 67. Les nodules ainsi sélectionnés sont ensuite transportés dans un bac 71, à l'aide d'une vis 72 dans laquelle ils sont débarrassés de la gangue qui peut subsister et où ils subissent un deuxième lavage. Le bac 71 est raccordé au tuyau 5 de remontée des nodules vers le bloc relais 30.
  • Chaque véhicule 50 est bien entendu équipé d'un dispositif d'observation sous-marin, d'un dispositif de détection ou d'un système acoustique de visualisation, afin d'assurer des conditions de fonctionnement sûres et aisées, même dans le cas où l'eau est trouble et où la visibilité est réduite.
  • L'installation de ramassage du minerai fonctionne de la manière suivante.
  • L'ensemble : - station sous-marine 20 et bloc relais 30 raccordé à ladite station par la conduite 4 est maintenu, grâce aux propulseurs 26 et éventuellement de ballasts, dans une position telle que la station 20 se trouve à environ 300-350 mètres en-dessous du niveau de l'eau. Cet ensemble peut également évoluer suivant les ordres donnés depuis le navire 1. D'autre part, le personnel sur le navire contrôle le fonctionnement de l'installation et peut intervenir à tout instant.
  • Par ailleurs, l'énergie nécessaire pour le fonctionnement de l'installation et notamment des différents éléments des véhicules 50 est fournie par le navire 1 et l'eau sous pression pour la propulsion desdits véhicules est fournie par les groupes hydrauliques 33 du bloc relais 30. Les véhicules 50 se déplacent donc sur le fond 2 et ramassent le minerai. Dans chaque véhicule, les deux trains de chaines à godets 58 déversent leur collecte sur le tapis supérieur 67 où un premier lavage est réalisé par les rampes 70. Ce tapis 67 laisse passer les nodules d'un calibre maximum donné ainsi que les sediments et retient les nodules trop gros, lesquels sont évacués par la trémie 69. Le deuxième tapis roulant 68, situé en-dessous du premier, recueille les nodules acceptés et laisse passer les sediments qui sont également rejetés vers la trémie d'évacuation 69. Ensuite les nodules transportés par la vis 72 sont débarrassés de la gangue et subissent un deuxième lavage, avant de tomber dans le bac 71.
  • Le mélange de minerais et d'eau de mer recueilli dans le bac de chaque véhicule est remonté sous l'effet des pompes 37 jusqu'au bloc relais 30. La disposition des entrées tangentielles 36 dans le silo 32 est telle que les nodules subissent, sous l'effet du tourbillon ainsi créé, un nettoyage supplémentaire et naturel sans apport d'énergie. Ils subissent également un nouveau tri par l'intermédiaire de la grille 38 et sont stockés momentanément à l'intérieur du silo 32.
  • Les pompes primaires 23 de la station 20 aspirent par la conduite de remontée 4, le mélange de minerais et d'eau de mer depuis le bloc relais 30 et-refoulent ce mélange par la conduite de chargement 3 jusqu'au navire de surface.
  • L'utilisation d'une station sous-marine intermédiaire 20 entre le bloc relais 30 et le navire 1 présente de nombreux avantages. Cette station est maintenue à une profondeur d'environ 300 à 350 mètres en-dessous du niveau de l'eau, afin d'être constamment à l'abri des effets de la houle. En cas de tempête ou de mer agitée, il suffit de déconnecter le navire 1 de la conduite de chargement 3 qui est repérée en surface par une bouée 10 (figure 1). L'ensemble de l'installation sous-marine peut rester en place et être maintenu en position par les différents propulseurs qui sont alimentés en énergie par les groupes électrogènes 28 placés sur la station 20. La position de cet ensemble est contrôlée en permanence par le système de contrôle et de commande 27 également disposé sur la station 20.
  • De plus, pendant la déconnexion de l'installation sous-marine avec le navire, les groupes électrogènes 28 fournissent l'énergie nécessaire pour alimenter d'une part les pompes primaires 23 afin de remonter le mélange de minerai qui se trouve dans la conduite 4 et le silo 32 du bloc relais 30 et d'autre part les pompes 37 dudit bloc relais et les véhicules de ramassage pour que la collecte du minerai se poursuive. Dans ce cas, le mélange remonté est orienté par l'intermédiaire du caisson de raccordement 22 et les canalisations 25 vers les flotteurs 24 de la station 20 (figure 2) pour y être stocké, ce qui permet à l'installation de fonctionner encore pendant quelques heures après la déconnexion avec le navire. Dès que les flotteurs 24 sont remplis, le système de contrôle 27 coupe l'alimentation des pompes et des véhicules de ramassage en attendant que la connexion avec le navire puisse de nouveau se réaliser.
  • Cette disposition permet par conséquent d'éviter le démontage de l'installation sous-marine en cas d'intempéries et de maintenir un rendement suffisant de prélèvement du minerai.
  • Il est bien entendu que la description qui précède n'a été donnée qu'à titre purement illustratif et non limitatif et que des variantes et des modifications peuvent y être apportés dans le cadre de la présente invention..

Claims (11)

1. Installation pour l'extraction de minerais des fonds marins à une grande profondeur comprenant:
- un navire de surface fournissant l'énergie nécessaire au fonctionnement de l'ensemble sous-marin et assurant le stockage du minerai,
- un bloc relais raccordé au navire par une conduite de remontée et disposé à une certaine hauteur au-dessus du fond marin ; ledit bloc relais comportant des moyens de stockage, de tri et de lavage intermédiaire du minerai ainsi que des moyens pour la remontée dudit minerai,
- une station sous-marine intermédiaire intercalée entre le navire de surface et le bloc relais, et raccordée d'une part au bloc relais par une conduite de remontée du minerai et d'autre part au navire par une conduite de chargement,
- et des véhicules évoluant sur le fond marin et comportant chacun un système de propulsion et un système de ramassage, de lavage et de traitement du minerai,

caractérisée par le fait que la station sous-marine intermédiaire (20) immergée à une certaine profondeur en-dessous du niveau de l'eau de façon à être constamment à l'abri de la houle, comporte, des moyens autonomes pour maintenir en fonctionnement le bloc relais (30) et les véhicules de ramassage (50) et pour assurer la remontée et le stockage du minerai en cas de déconnexion de la liaison (3) avec le navire de surface (1).
2. Installation selon la revendication 1, caractérisée par le fait que les moyens autonomes de la station sous- marine (20) sont constitués par :
- des pompes primaires (23) capables de pomper le minerai depuis le bloc relais (30),
- des flotteurs longitudinaux (24) servant également de réservoirs de stockage tampon du minerai,
- un ou plusieurs groupes électrogènes de secours (28) fournissant lé-ner- gie nécessaire au fonctionnement de la station sous-marine (20), du bloc relais (30) et des véhicules de ramassage (50),
- un système de propulseurs (26) longitudinaux et verticaux pour maintenir en cap et en altitude ladite station,
- et un système (27) de contrôle et de commande des pompes (23) et des propulseurs (26).
3. Installation selon la revendication 2,
caractérisée par le fait que les flotteurs longitudinaux (24) sont reliés par des canalisations (25) à un caisson (22) de raccordement des conduites (3-4) de remontée et de chargement dudit minerai.
4. Installation selon la revendication 1,
caractérisée par le fait que le bloc relais (30) comporte en plus :
- un dispositif (34) de contrôle et de commande capable d'assurer un certain nombre de tâches pré-programmées et d'exécuter des ordres donnés depuis le navire (1) ou la station sous-marine (20), par le système de contrôle (27),
- un ensemble de propulseurs (39) et de stabilisateurs verticaux (40) pour maintenir un cap par rapport à la station sous marine (20),
- et des moteurs électriques (35) pour actionner des groupes hydrauliques (33) fournissant l'eau sous pression nécessaire au fonctionnement des moteurs hydrauliques des véhicules (50).
5. Installation selon les revendications 1 et 4,
caractérisée par le fait que les moyens de stockage, de tri et de lavage du minerai du bloc rèlais (30) sont constitués par un silo (32) monté sur une plateforme (31).
6. Installation selon la revendication 5,
caractérisée par le fait que le silo (32) comporte à sa partie supérieure des entrées multiples (36) tangentielles pour former à l'intérieur dudit silo un tourbillon naturel ; chacune de ces entrées étant raccordée par l'intermédiaire d'une pompe (37) à un tuyau (5) pour la remontée du minerai à partir d'un véhicule de ramassage (50).
7. Installation selon les revendications 5 et 6,
caractérisée par le fait qu'une grille (38) en forme de cône dirigé vers le bas est placée, à l'intérieur du silo (32) et au-dessous des entrées (36) de façon à réaliser par gravité le tri du minerai.
8. Installation selon les revendications 5 à 7,
caractérisée par le fait que la conduite (4) de remontée du minerai vers le navire (1) par la station sous-marine (20) pénètre à l'intérieur du silo (32) et débouche au-dessus de la grille (38).
9. Installation selon la revendication 1,
caractérisée par le fait que, pour chaque véhicule (50), le système de traitement du minerai ramassé par des trains de chaines à godets (58), connus en soi, est constitué par :
- un ensemble de tapis roulants (67, 68) superposés qui effectuent le tri du minerai en rejettant par l'intermédiaire d'une trémie (69) le minerai non sélectionné et les sédiments,
- une vis (72) disposée sous les tapis roulants (67, 68) qui enlève la gangue du minerai et le déverse dans un bac (71)
- et des rampes de lavage (70) disposées au-dessus des tapis roulants (67-68).
10. Installation selon la revendication 9,
caractérisée par le fait que les tapis roulants (67-68) sont formés par un grillage à mailles calibrées.
11. Installation selon la revendication 9,
caractérisée par le fait que le bac (71) est raccordé au tuyau (5) de remontée du minerai dans le silo (32) du bloc relais (30).
EP85400311A 1984-02-24 1985-02-20 Installation pour l'extraction de minerais des fonds marins Withdrawn EP0155869A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8402813A FR2560281B1 (fr) 1984-02-24 1984-02-24 Installation pour l'extraction de minerais des fonds marins
FR8402813 1984-02-24

Publications (1)

Publication Number Publication Date
EP0155869A1 true EP0155869A1 (fr) 1985-09-25

Family

ID=9301355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400311A Withdrawn EP0155869A1 (fr) 1984-02-24 1985-02-20 Installation pour l'extraction de minerais des fonds marins

Country Status (4)

Country Link
US (1) US4685742A (fr)
EP (1) EP0155869A1 (fr)
JP (1) JPS60212591A (fr)
FR (1) FR2560281B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032121A1 (fr) * 1994-05-19 1995-11-30 Yung Yul Gung Navire de positionnement d'excavateurs sous-marins
WO1998042922A1 (fr) * 1997-03-25 1998-10-01 De Beers Marine (Proprietary) Limited Machine miniere sous-marine
NL1013439C2 (nl) * 1999-11-01 2001-05-08 Bos & Kalis Baggermaatsch Werkwijze en inrichting voor het verwijderen van sediment-materiaal van een waterbodem.
WO2012146730A1 (fr) * 2011-04-27 2012-11-01 Technip France Dispositif d'extraction de matériau solide sur le fond d'une étendue d'eau et procédé associé

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8702774A (nl) * 1987-11-19 1989-06-16 Grint & Zandexpl Mij Vh Smals Werkwijze en installatie voor het winnen van korrelvormig materiaal in een gedefinieerde mengselverhouding en mengeenheid.
US5431483A (en) * 1990-03-16 1995-07-11 University Of Hawaii Submarine solution mining containment and regulation cover and method
US5328250A (en) * 1993-03-11 1994-07-12 Ronald Upright Self-propelled undersea nodule mining system
US5585707A (en) * 1994-02-28 1996-12-17 Mcdonnell Douglas Corporation Tendon suspended platform robot
GB9600242D0 (en) * 1996-01-06 1996-03-06 Susman Hector F A Improvements in or relating to underwater mining apparatus
US6550162B2 (en) * 2000-03-23 2003-04-22 Robert E. Price Sediment removal system
CA2342489C (fr) 2000-04-07 2004-03-23 Marc Riverin Appareil de cueillette d'oursins de mer
FI116305B (fi) * 2001-07-27 2005-10-31 Antti Happonen Menetelmä ja laitteisto vesienergian hyödyntämiseksi
JP2006024768A (ja) * 2004-07-08 2006-01-26 Seiko Epson Corp 配線基板、配線基板の製造方法および電子機器
GB0623450D0 (en) * 2006-11-24 2007-01-03 Drabble Ray Faunal friendly dredging system
EP2603642B1 (fr) 2010-08-13 2019-03-13 Deep Reach Technology Inc. Systèmes et procédés d'excavation sous-marine
WO2012171074A1 (fr) 2011-06-17 2012-12-20 Nautilus Minerals Pacific Pty Ltd Système et procédé d'empilage de fond océanique
GB2495286B (en) * 2011-10-03 2015-11-04 Marine Resources Exploration Internat Bv A method of recovering a deposit from the sea bed
JP6161075B2 (ja) * 2011-12-23 2017-07-12 ノーチラス・ミネラルズ・パシフイツク・プロプライエタリー・リミテツド 海底採掘のための連結解除可能な方法及び連結解除可能なシステム
KR101426020B1 (ko) * 2012-10-30 2014-08-05 한국해양과학기술원 양방향 망간단괴 집광장비
CN103967071B (zh) * 2013-01-24 2016-08-03 中港疏浚有限公司 摊铺船
CN105121748B (zh) * 2013-02-12 2018-11-13 诺蒂勒斯矿物新加坡有限公司 海底结核集中系统和方法
NL2011157C2 (en) * 2013-07-12 2015-01-13 Ihc Holland Ie Bv Tailing deposit tool.
NL2011251C2 (en) 2013-08-01 2015-02-03 Ihc Holland Ie Bv Subsea container transport system for deep-sea mining.
KR101349661B1 (ko) 2013-10-16 2014-01-10 한국해양과학기술원 심해저 광물자원 채광을 위한 버퍼시스템
NL2012579C2 (en) * 2013-12-02 2015-06-03 Oceanflore B V Subsurface mining vehicle and method for collecting mineral deposits from a sea bed at great depths and transporting said deposits to a floating vessel.
KR102019150B1 (ko) 2014-05-19 2019-11-04 노틸러스 미네랄스 싱가포르 피티이 엘티디 분리식 해저 채굴 시스템
JP6386802B2 (ja) * 2014-06-12 2018-09-05 東亜建設工業株式会社 水底地盤掘削装置および水底地盤掘削システム
CN104653184B (zh) * 2015-01-23 2017-11-21 三亚深海科学与工程研究所 一种深海矿产资源组装式采矿系统
US20180187395A1 (en) * 2015-08-28 2018-07-05 Tetsuzo NAGATA Mineral lifting system and mineral lifting method
CN106368652A (zh) * 2016-11-18 2017-02-01 长沙矿冶研究院有限责任公司 深海采矿水力输送试验系统
WO2019123080A1 (fr) * 2017-12-18 2019-06-27 Saipem S.P.A. Système et procédé de transmission de puissance et de données dans une étendue d'eau jusqu'à des véhicules sous-marins sans équipage
RU186415U1 (ru) * 2018-07-03 2019-01-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Придонное добычное устройство для сбора железомарганцевых конкреций со дна морей
JP6557762B1 (ja) * 2018-08-03 2019-08-07 三菱重工業株式会社 揚鉱システム及び鉱石投入装置
CN109209386A (zh) * 2018-10-19 2019-01-15 中南大学 一种深海矿石输送设备中继仓系统
US11363829B2 (en) * 2018-12-04 2022-06-21 Ideal Brain Co., Ltd. Pressurization processing system
CN109488258B (zh) * 2018-12-06 2019-08-06 青岛海洋地质研究所 海底浅表层水合物开采装置及其开采方法
SG10201902911YA (en) 2019-04-01 2020-11-27 Keppel Marine & Deepwater Tech Pte Ltd Apparatus and method for seabed resources collection
RU193043U1 (ru) * 2019-07-29 2019-10-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Устройство для сбора железомарганцевых конкреций со дна морей
RU2715108C1 (ru) * 2019-09-25 2020-02-25 Общество с ограниченной ответственностью "Научно-технологический Центр"Геомеханика" (ООО"НТЦ "Геомеханика") Способ добычи железомарганцевых конкреций со дна океана с глубин до 5 км и более и устройство для его осуществления
CN111594173A (zh) * 2020-01-17 2020-08-28 招商局深海装备研究院(三亚)有限公司 自平衡易转场的矿石混输系统
CN111173515B (zh) * 2020-01-17 2021-07-02 江苏科技大学 一种深海采矿提升系统
CN112049641A (zh) * 2020-09-28 2020-12-08 上海交通大学 一种基于浮力重力差垂直提升装置的节能深海采矿系统
CN112844883B (zh) * 2020-12-24 2023-06-06 吉县古贤泵业有限公司 固液分离输送装置及深海采矿装置
NO347900B1 (en) * 2021-03-10 2024-05-06 Loke Marine Minerals As System for subsea crust mining
NO347431B1 (en) * 2022-02-10 2023-10-30 Loke Marine Minerals As Subsea Nodule Collector
US11760453B1 (en) 2022-03-03 2023-09-19 Roger P. McNamara Deep-ocean polymetallic nodule collector
CN115258080B (zh) * 2022-09-13 2023-11-24 海南大学 一种深海采矿紧急避险的自升式下潜平台及避险方法
CN116291464A (zh) * 2023-05-25 2023-06-23 中国地质大学(北京) 一种用于深海采矿输送的多功能中间舱及其采矿系统
CN118346278A (zh) * 2024-03-25 2024-07-16 江苏科技大学 一种具有坐底式中继站的采矿系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697134A (en) * 1971-03-25 1972-10-10 Bethlehem Steel Corp Nodule collector
US3868312A (en) * 1968-01-25 1975-02-25 Frederick Wheelock Wanzenberg Deep sea mining system
FR2282036A1 (fr) * 1974-08-16 1976-03-12 Tax Hans Installation pour l'extraction des nodules de minerai situes au fond de la mer
DE2522697A1 (de) * 1975-05-22 1976-12-09 Ramm Franz Josef Dipl Ing Vorrichtung zum hydraulischen gewinnen und foerdern von mineralien vom meeresgrund
US4030216A (en) * 1975-10-28 1977-06-21 Nor-Am Resources Technology Inc. Method of and apparatus for underwater hydraulic conveying, as for ocean mining and the like, and continued transport of material in controlled floating containers
DE2950922A1 (de) * 1978-12-28 1980-07-17 Lockheed Missiles Space Verfahren und einrichtung zum manganknollenabbau am meeresboden
FR2455162A1 (fr) * 1979-04-27 1980-11-21 Commissariat Energie Atomique Vehicule sous-marin de dragage et de remontee de mineraux a grande profondeur

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2238035B1 (fr) * 1973-07-18 1981-04-17 Commissariat Energie Atomique
SU522366A1 (ru) * 1974-11-15 1976-07-25 Курский Политехнический Институт Безреактивный двигатель
US3975054A (en) * 1974-12-11 1976-08-17 The International Nickel Company, Inc. Undersea mining and separating vehicle having motor-powered water jet
US4070061A (en) * 1976-07-09 1978-01-24 Union Miniere Method and apparatus for collecting mineral aggregates from sea beds
US4368923A (en) * 1981-02-17 1983-01-18 Director-General Of Agency Of Industrial Science & Technology Nodule collector
US4503629A (en) * 1984-01-23 1985-03-12 Masaaki Uchida System for collecting and conveying undersea mineral resources

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868312A (en) * 1968-01-25 1975-02-25 Frederick Wheelock Wanzenberg Deep sea mining system
US3697134A (en) * 1971-03-25 1972-10-10 Bethlehem Steel Corp Nodule collector
FR2282036A1 (fr) * 1974-08-16 1976-03-12 Tax Hans Installation pour l'extraction des nodules de minerai situes au fond de la mer
DE2522697A1 (de) * 1975-05-22 1976-12-09 Ramm Franz Josef Dipl Ing Vorrichtung zum hydraulischen gewinnen und foerdern von mineralien vom meeresgrund
US4030216A (en) * 1975-10-28 1977-06-21 Nor-Am Resources Technology Inc. Method of and apparatus for underwater hydraulic conveying, as for ocean mining and the like, and continued transport of material in controlled floating containers
DE2950922A1 (de) * 1978-12-28 1980-07-17 Lockheed Missiles Space Verfahren und einrichtung zum manganknollenabbau am meeresboden
FR2455162A1 (fr) * 1979-04-27 1980-11-21 Commissariat Energie Atomique Vehicule sous-marin de dragage et de remontee de mineraux a grande profondeur

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032121A1 (fr) * 1994-05-19 1995-11-30 Yung Yul Gung Navire de positionnement d'excavateurs sous-marins
WO1998042922A1 (fr) * 1997-03-25 1998-10-01 De Beers Marine (Proprietary) Limited Machine miniere sous-marine
NL1013439C2 (nl) * 1999-11-01 2001-05-08 Bos & Kalis Baggermaatsch Werkwijze en inrichting voor het verwijderen van sediment-materiaal van een waterbodem.
WO2012146730A1 (fr) * 2011-04-27 2012-11-01 Technip France Dispositif d'extraction de matériau solide sur le fond d'une étendue d'eau et procédé associé
FR2974585A1 (fr) * 2011-04-27 2012-11-02 Technip France Dispositif d'extraction de materiau solide sur le fond d'une etendue d'eau et procede associe
US9062434B2 (en) 2011-04-27 2015-06-23 Technip France Device for extracting solid material on the bed of a body of water, and associated method
AU2012247461B2 (en) * 2011-04-27 2017-08-17 Technip France Device for extracting solid material on the bed of a body of water, and associated method

Also Published As

Publication number Publication date
US4685742A (en) 1987-08-11
FR2560281B1 (fr) 1986-09-19
JPS60212591A (ja) 1985-10-24
FR2560281A1 (fr) 1985-08-30

Similar Documents

Publication Publication Date Title
EP0155869A1 (fr) Installation pour l'extraction de minerais des fonds marins
FR2467283A1 (fr) Systeme et procede pour l'exploitation miniere des oceans
EP3854673B1 (fr) Procédé d'installation d'une éolienne offshore munie d'une structure de support flottant
US5028325A (en) Water rake
FR2472058A1 (fr) Procede et appareil pour creuser dans le sol des tranchees a parois paralleles a peu pres verticales
CN106133251A (zh) 用于在大深度处从海床采集矿藏并将所述矿藏输送至浮船的水下采矿运载工具和方法
CA1156689A (fr) Vehicule sous-marin de dragage et de remontee de mineraux a grande profondeur
WO1991013211A1 (fr) Procede, systeme et appareil de manipulation de substances flottant sur l'eau ou dispersees dans celle-ci
US3697134A (en) Nodule collector
CN110667780A (zh) 雷达的布置方法与布置系统
EP0687331A1 (fr) Dispositif de comblement d'une tranchee creusee dans le fond sous-marin pour recouvrir une canalisation deposee dans ladite tranchee
US3433531A (en) Method and apparatus for undersea mining
CN113565072B (zh) 一种水库专用漂浮物拦截清理装置
US5183579A (en) Method, system and apparatus for handling substances on or in water
FR2970748A1 (fr) Procede pour la realisation d'operations de maintenance sur un dispositif d'eolienne flottante offshore et systeme correspondant
EP1641983A2 (fr) Appareil et procede d'excavation de tranchees
WO2014098913A1 (fr) Système et procédé d'exploitation minière sous-marine
KR100381624B1 (ko) 심해저 광물의 무삭 연속채굴 방법
FR2684065A1 (fr) Bateau recuperateur d'objets flottants.
JP2965519B2 (ja) 水底付着物の除去装置
FR2694737A1 (fr) Navire dépollueur.
FR3077556A1 (fr) Station automatisee flottante de lavage de bateaux a flot
NO852903L (no) Utstyr til utvinning av malm fra havbunn.
FR2513212A1 (fr) Engin d'intervention de plongeurs a faible profondeur
CA2502185A1 (fr) Systeme de bucheronnage submersible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19850807

17Q First examination report despatched

Effective date: 19861006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19870417

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOREAU, JEAN-PIERRE