EP0150634B1 - Ultraschallwandler für Echographie mit einer eine convexe Oberfläche formende Matrix von Wandlerelementen - Google Patents

Ultraschallwandler für Echographie mit einer eine convexe Oberfläche formende Matrix von Wandlerelementen Download PDF

Info

Publication number
EP0150634B1
EP0150634B1 EP84402043A EP84402043A EP0150634B1 EP 0150634 B1 EP0150634 B1 EP 0150634B1 EP 84402043 A EP84402043 A EP 84402043A EP 84402043 A EP84402043 A EP 84402043A EP 0150634 B1 EP0150634 B1 EP 0150634B1
Authority
EP
European Patent Office
Prior art keywords
transducer elements
sections
probe
convex
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84402043A
Other languages
English (en)
French (fr)
Other versions
EP0150634A1 (de
Inventor
Robert Bele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CGR Ultrasonic SA
Original Assignee
CGR Ultrasonic SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9293252&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0150634(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CGR Ultrasonic SA filed Critical CGR Ultrasonic SA
Priority to AT84402043T priority Critical patent/ATE34863T1/de
Publication of EP0150634A1 publication Critical patent/EP0150634A1/de
Application granted granted Critical
Publication of EP0150634B1 publication Critical patent/EP0150634B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0637Spherical array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Definitions

  • the invention relates to a new type of static ultrasound probe and the method of manufacturing this probe.
  • the invention also relates to an ultrasound device incorporating such a probe.
  • the ultrasound probes most used to date are sector scanning probes, that is to say comprising either an oscillating moving element or several transducers mounted on a wheel and switched in their passage in front of an emission window.
  • the qualities of these probes are their speed of acquisition and their simplicity of principle which results in relatively simple and inexpensive signal processing means.
  • the coupling surface is relatively small, which allows the probe to be placed between two ribs of the patient for cardiac observations. However, the lifespan of these probes is limited.
  • the systems using the linear arrays of transducer elements are essentially reserved for the observation of the abdominal regions, because of the large dimensions of the probe.
  • the elements or groups of elements
  • the elements are successively switched to cause a scan perpendicular to the row of elements.
  • Linear array probe technology was used for rib cage observations, reducing the area of the probe coupling and distributing delays (both emission and reception) between the transducer elements of the array for reconstitute a sectoral scan, that is to say, to transmit and receive in converging directions falling within a range of scanning.
  • This technology known as “Phased Array” results in a static probe whose coupling surface is only 20 mm side.
  • the processing electronics are very expensive.
  • the delays to be achieved can reach 10 microseconds and an acceptable control of the directivity is only possible if these delays are controlled with a tolerance of 10 nanose- condes.
  • such precision is only obtained for delays of 2 to 3 microseconds at most.
  • the electronic circuits carrying out the frequency change represent an important part of the price of the equipment.
  • a type of probe with ring transducer in which the beam is generated by a group of transducer elements in the form of concentric rings.
  • This arrangement has the advantage of an "antenna diagram" as a function of Bessel (18dB attenuation of the secondary lobes relative to the main lobe). It has even been proposed to reconstitute such rings from a plane network of transducer elements, to cause displacements of these rings allowing scanning of ultrasonic shooting in a predetermined direction. This has the disadvantage of creating expensive and bulky probes (like linear bars). In addition, the coupling is poor. We thus know, from French patent application No. 7630476, published under the number FR-A-2 367 289, such a mosaic of transducer elements.
  • the invention relates firstly to a static probe structure ensuring, in all circumstances, excellent coupling of the transducer elements with the patient's body, with a reduced coupling surface for, in particular, examining the interior of the rib cage (in passing between the ribs) and with which a sectoral sweep can be carried out, at least in part by displacement of the rings.
  • the invention therefore relates to an ultrasound probe for medical use comprising a mosaic of transducer elements covering at least part of a coupling surface characterized in that this surface is convex.
  • the probe according to the invention has in particular the advantage of generating sectoral scanning essentially by switching of transducer elements and not exclusively by laws of delays. Coupling is also much better and the side lobes are attenuated by 18dB if a ring configuration is adopted.
  • the delays involved are much lower and therefore technologically easier to achieve by delay lines, with the required precision.
  • the invention also relates to a variant of this method according to which sections of curved piezoelectric material are individualized before molding an insulating support on the concave internal surface of each section.
  • the invention relates to an ultrasound device of the medical type comprising a probe with fixed transducers, distributed in a mosaic of transducer elements defining a coupling surface characterized in that this surface is convex, and in that it comprises in in addition to switching means for selectively grouping transducer elements in a configuration defining approximately rings centered on a firing axis and for moving said configuration according to an alternating angular scan of this axis and first means for associating a first delay law with the different rings.
  • the ultrasound device advantageously includes second means for associating additional delay laws with the various transducer elements of each ring.
  • These laws of additional delays which relate to elements of the same ring bring into play weaker delays than the first law, it is they which determine the microangulations on either side of the normal to the surface of coupling passing through the center of the ring configuration.
  • the first law is the only one applied to the rings, the shooting is done according to this normal and the laws of additional delays determine with each shot a given microangulation compared to this normal.
  • Each possible position of the configuration of rings can therefore give rise to several shots and therefore to several lines of the reconstructed image.
  • FIG. 1 shows the end part of an ultrasound probe 11 according to the invention, the coupling surface 12 of which (that is to say the surface intended to be brought into contact with the subject to be examined) is convex and partly made up of a mosaic of transducer elements 13.
  • the general shape of the coupling surface is a spherical cap because it is one of the shapes which is most suitable for achieving a good coupling between the probe and the patient.
  • other similar forms could be suitable, such as for example paraboloids or ellipsoids of revolution.
  • a strip of mosaic is sufficient for the type of use calling for a scanning of rings.
  • the probe may consist of the side-by-side assembly of sections each having a curved row of transducer elements, said sections having different mean radii of curvature.
  • Figure 2 illustrates one way of making such a probe. It is advantageous to start from a block of piezoelectric material in the form of a spherical cap 14 (FIG. 2a) since such shapes are in common use in the ultrasound technique, for different systems.
  • An insulating support 15 is molded against the concave face of the spherical cap 14 (FIG. 2b); the techniques for molding these supports are well known to those skilled in the art.
  • Slices 17 are then cut parallel to each other in a median strip of the spherical cap (FIG. 2c) using, for example, a very fine saw 18. These slices therefore have different mean radii of curvature.
  • the slices are individualized, they are partially cut at regular intervals (Figure 2d) in directions perpendicular to their convex curved surface.
  • the saw 19 is therefore adjusted to cut all of the piezoelectric material each time (by slightly cutting the insulating support) so as to define a curved row of individualized transducer elements 13 in each section.
  • printed circuits 20 are produced (FIG. 2e) comprising as many individualized conductors 21 as the wafers comprise transducer elements. Two such printed circuits are then fixed (for example by bonding) on each side of each wafer, so that each conductor 21 is in contact with a flank of a transducer element 13. Then said wafers are joined in the same order than for cutting (i.e. to reconstruct a mosaic of elements transducers distributed over a relatively regular convex surface) and are fixed side by side, for example by gluing.
  • FIG. 3 represents a possible configuration with three concentric rings 26, 27 and 28 (plus the central part 25); this configuration is also illustrated in FIG. 1 in a possible scanning position.
  • the central part 25 has four elements, the first ring 26 has twenty eight, the second ring 27 has fifty two and the third ring 28 has seventy two.
  • the electronic processing system For each emission-reception or firing sequence, the electronic processing system must therefore first select one hundred and fifty-six transducer elements neighboring each other, for each position of the rings.
  • the configuration of rings occupies fourteen transducer elements in the vicinity of the aforesaid plane of symmetry, in the direction of movement of the rings. Furthermore, if the diameter of the coupling surface is 30 mm (assuming that it is a half-sphere) and if the cutting pitch of the transducer elements is 1.5 mm, the two closest slices of the plane of symmetry will have about thirty elements. The number of possible positions of the ring configuration will therefore be sixteen.
  • the elements selected simultaneously are those which are interconnected in the probe head, as indicated above.
  • delays depend on the desired microangulation. We can therefore use a set of programmable delay lines and a switching matrix allowing the elements concerned to be associated (for a ring configuration) with the delays assigned to them. This arrangement will be described later.
  • the calculation of delays is within the reach of the skilled person. These simply correspond to the compensation of the different propagation times of the ultrasound emitted from different elements so that the wavefront in the direction of the desired microangulation benefits from a good phase agreement between the contributions of the transducer elements. .
  • This device comprises a first group 30 of delay lines (these are some relatively large delays, intended to be applied between the rings), a grouping matrix 31 for associating the delays of group 30 with the different rings, a second group 32 of programmable delay lines (seventy-two according to the example in FIG. 3) and a switching matrix 33 interconnected between the delay lines of group 32 and the different transducer elements (grouped symmetrically in pairs) of the mosaic.
  • the system further comprises a summing amplifier 34 grouping together the reception signals at the outputs of the group 30 of delay lines as well as at an independent access from the matrix 31 (link 31 a) corresponding to the outer ring to which one does not apply.
  • An ultrasonic signal transmitter 35 is also connected to the delay lines of group 30 and to the link 31 a.
  • the system described therefore uses the delay lines and the matrices 31 and 33 both on transmission and on reception, but a variant could be envisaged where these matrices and delay lines would only be used on reception and where the Delays in transmission would be developed by control logic coupled to a plurality of transmitters, each transmitter being directly connected to a pair of symmetrical transducer elements.
  • the switching matrix 33 can consist of a cascade assembly of analog multiplexers, such that any pair of transducer elements of the mosaic can be connected to any delay line of group 32. If we resume In the previous example, the matrix 33 will include 210 ports on the probe side and 72 ports on the group 32 side of the delay lines.
  • the switching of the switches is controlled by means of an integrated decoder, with 5 inputs, receiving coded digital information.
  • first stage of such booters in sufficient number to be connected to all the pairs of transducer elements, grouped by sixteen, and a second stage (a single box) grouping together on its inputs the outputs of the first stage, the output of the second stage being connected to one of the delay lines of group 32.
  • FIG. 5 A basic structure of such a delay line is shown in FIG. 5. It is subdivided into two lines 36, 37 with multiple outputs (for example 8), each output corresponding to a predetermined delay. Line 36 provides a range of "short” delays while line 37 provides a range of "long” delays. Two analog multiplexers 38 and 39 with eight inputs and one output have their inputs respectively connected to the outputs of lines 36 and 37. The output of multiplexer 38 is connected to the input of line 37.
  • the structure of the grouping matrix 31 is very simple. Its role is in fact only to "recognize” the elements belonging to the different rings. It is therefore only a static grouping matrix, which determines four groups among the accesses to the delay lines of group 32 and connects three of these to the three delay lines of group 30, respectively and the fourth to the summing amplifier 34 and the ultrasonic transmitter 35.
  • the delay lines of group 30 need not be programmable.
  • the delays are programmed at each transmission-reception sequence by adding a delay value in a line 36 and a delay value in a line 37; this for each of the 72 programmable delay lines in group 32. These delay values depend on the desired microangulation.
  • the role of the matrix 33 is to select all the elements corresponding to a given position of the configuration of an neaux on the mosaic and to "associate" them with the various delays.
  • the apparatus is completed by a program memory 40 (PROM) in which the addressing program of the matrix 33 and of the group of delay lines 32 is written once and for all.
  • PROM program memory 40
  • the sequencing of the reading of this memory is controlled by a microprocessor 41 which also controls the triggering of the transmitter 35 (pilot link 42).
  • the amplifier 34 performs the summation of the signals representative of the echoes received and to which the same delay laws have been applied as at transmission (focusing at reception).
  • the output signals of the amplifier 34 (output S) are processed, in particular “windowed” before being used as video signals from a television receiver on which the image is reconstructed line by line.
  • the memory 40 contains all the successive addressing orders of the matrix 33 and of the group of delay lines 32, for a complete scanning of the configuration of rings on the surface of the probe.
  • a transmit-receive sequence is generated after positioning the analog multiplexers of the matrix 33 selecting a position of the ring configuration on the mosaic and after programming the different delay lines of group 32, as a function of the value desired microangulation.
  • the matrix 33 remains in this state for 9 shots (4 microangulations on the right, 4 microangulations on the left and a normal shot on the surface).
  • the delays are modified, always by partial reading of the memory 40, after each shot.
  • the memory 40 controls the switching matrix 33 to advance the configuration of rings in the direction of scanning, by a distance corresponding to the width of a transducer element and the microangulation sequence begins again. These operations are repeated until the complete acquisition of a 144-line image, in a full scan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Claims (9)

1. Echographiesonde für medizinische Anwendungen, mit einem Mosaik von Wandlerelementen (13), welche wenigstens einen Teil einer Koppeloberfläche (12) bedecken, dadurch gekennzeichnet, dass diese Oberfläche konvex ist.
2. Echographiesonde nach Anspruch 1; dadurch gekennzeichnet, dass die genannte konvexe Koppeloberfläche (12) eine Kugelschale ist.
3. Echographiesonde nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie gebildet ist durch ein Zusammensetzen Seite an Seite von Abschnitten (17), die jeweils eine gekrümmte Reihe von Wandlerelementen (13) enthalten, wobei die genannten Abschnitte verschiedene mittlere Krümmungsradien aufweisen.
4. Echographiesonde nach Anspruch 3, dadurch gekennzeichnet, dass zwei Leiter jeweils seitlich an zwei Flanken jedes Wandlerelementes (13) befestigt sind und dass die Leiter von Wandlern, die symmetrisch in bezug auf eine Symmetrieebene die konkaven Oberfläche liegen, so geschaltet sind , dass die genannten Wandler parallel oder in Reihe geschaltet sind.
5. Sonde nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass zwei gedruckte Schaltungen (20), die individualisierte Leiter (21) tragen, seitlich beiderseits jedes Abschnittes so befestigt sind, dass für jedes Wandlerelement zwei Leiter, die zu verschiedenen gedruckten Schaltungen gehören, in Berührung mit Flanken des genannten Wandlerelementes sind.
6. Verfahren zur Herstellung einer Echographiesonde, dadurch gekennzeichnet, dass es insbesondere darin besteht:
- dass ein isolierender Träger (15) auf der Innenoberfläche eines Blocks aus piezoelektrischem Material (14) aufgeformt wird, welcher eine konvexe Aussenoberfläche aufweist,
- dass Abschnitte (17) einer Breite abgeschnitten werden, die im wesentlichen konstant ist in der Menge, welche durch diesen Block aus piezoelektrischem Material und dem genannten isolierenden Träger gebildet ist,
- dass die genannten Abschnitte in regelmässigen Abständen teilweise eingeschnitten werden entlang Richtungen, die senkrecht zu ihrer konvexen Krümmungsoberfläche sind, indem jeweils durch die Gesamtheit des piezoelektrischen Materials hindurchgeschnitten wird, so dass eine gekrümmte Reihe von individualisierten Wandlerelementen in jedem Abschnitt gebildet wird,
- dass auf jeder Seite jedes Abschnittes eine gedruckte Schaltung (20) befestigt wird, welche ebenso viele individualisierte Leiter (21 ) enthält, wie Wandlerelemente in dem genannten Abschnitt vorhanden sind, so dass jeder Leiter in Berührung mit einer Flanke eines Wandlerelementes ist, und _
- dass die genannten Abschnitte Seite an Seite aneinandergesetzt und befestigt werden in einer geeigneten Reihenfolge, um ein Mosaik von Wandlerelementen zu rekonstruieren, welche auf einer konvexen Oberfläche verteilt sind.
7. Verfahren zur Herstellung einer Echographiesonde, dadurch gekennzeichnet, dass es insbesondere darin besteht:
- dass gekrümmte Abschnitte aus piezoelektrischem Material von im wesentlichen konstanter Breite individualisiert werden, wobei die mittleren Krümmungsradien dieser Abschnitte verschieden und so sind, dass die Gesamtheit dieser aneinander angesetzten Abschnitte im wesentlichen eine konvexe Aussenoberfläche rekonstruieren kann,
- dass ein isolierender Träger auf der konkaven Innenoberfläche jedes Abschnittes aufgeformt wird,
- dass die genannten Abschnitte teilweise in regelmässigen Abschnitten in Richtungen eingeschnitten werden, die senkrecht zu ihrer konvexen gekrümmten Oberfläche sind, indem jeweils durch die Gesamtheit des piezoelektrischen Materials hindurchgeschnitten wird, so dass eine gekrümmte Reihe von individualisierten Wandlerelementen in jedem Abschnitt gebildet wird,
- dass auf jeder Seite jedes Abschnittes eine gedruckte Schaltung befestigt wird, die ebenso viele individualisierte Leiter enthält, wie Wandlerelemente in dem genannten Abschnitt vorhanden sind, so dass jeder Leiter in Berührung mit einer Flanke eines Wandlerelementes ist, und
- dass die genannten Abschnitte Seite an Seite zusammengesetzt und miteinander verbunden werden in einer Reihenfolge, die geeignet ist, um ein Mosaik von Wandlerelementen zu rekonstruieren, welche über eine konvexe Oberfläche verteilt sind.
8. Echographiegerät vom medizinischen Typ mit einer Sonde, die feste Wandler aufweist, welche als Mosaik von Wandlerelementen (13) verteilt sind, die eine Koppeloberfläche bilden, dadurch gekennzeichnet, dass diese Oberfläche konvex ist und dass es ferner Umschaltmittel (31, 33) enthält, um selektiv (31) Wandlerelemente (13) in einer Konfiguration zu gruppieren, durch welche annähernd Ringe gebildet werden, die auf einer Sendeachse zentriert sind, und um die genannte Konfiguration durch eine alternierende Winkelverschwenkung um diese Achse zu bewegen (3-3), sowie erste Mittel (30) enthält, um den verschiedenen Ringen ein erstes Verzögerungsgesetz zuzuordnen.
9. Echographiegerät nach Anspruch 8, dadurch gekennzeichnet, dass es zweite Mittel (32) umfasst, um zusätzliche Verzögerungsgesetze den verschiedenen Wandlerelementen jedes Ringes zuzuordnen.
EP84402043A 1983-10-18 1984-10-11 Ultraschallwandler für Echographie mit einer eine convexe Oberfläche formende Matrix von Wandlerelementen Expired EP0150634B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84402043T ATE34863T1 (de) 1983-10-18 1984-10-11 Ultraschallwandler fuer echographie mit einer eine convexe oberflaeche formende matrix von wandlerelementen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8316550 1983-10-18
FR8316550A FR2553521B1 (fr) 1983-10-18 1983-10-18 Sonde d'echographie, procede de fabrication de cette sonde et appareil d'echographie incorporant une telle sonde

Publications (2)

Publication Number Publication Date
EP0150634A1 EP0150634A1 (de) 1985-08-07
EP0150634B1 true EP0150634B1 (de) 1988-06-01

Family

ID=9293252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84402043A Expired EP0150634B1 (de) 1983-10-18 1984-10-11 Ultraschallwandler für Echographie mit einer eine convexe Oberfläche formende Matrix von Wandlerelementen

Country Status (6)

Country Link
US (1) US4641660A (de)
EP (1) EP0150634B1 (de)
JP (1) JPS60150734A (de)
AT (1) ATE34863T1 (de)
DE (1) DE3471785D1 (de)
FR (1) FR2553521B1 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3634504A1 (de) * 1985-10-09 1987-04-16 Hitachi Ltd Ultraschall-bildvorrichtung
JPH0263441A (ja) * 1988-08-30 1990-03-02 Aloka Co Ltd 超音波探触子及び超音波診断装置
FR2638884B1 (fr) * 1988-11-10 1990-12-28 Labo Electronique Physique Dispositif de focalisation tridimensionnelle d'un faisceau ultrasonore
JPH0790026B2 (ja) * 1989-08-25 1995-10-04 株式会社東芝 超音波診断装置
JP3090718B2 (ja) * 1990-07-11 2000-09-25 株式会社東芝 超音波診断装置
US5269309A (en) * 1991-12-11 1993-12-14 Fort J Robert Synthetic aperture ultrasound imaging system
US5622177A (en) * 1993-07-08 1997-04-22 Siemens Aktiengesellschaft Ultrasound imaging system having a reduced number of lines between the base unit and the probe
US5485843A (en) * 1993-08-09 1996-01-23 Hewlett Packard Company Acoustic arrays and methods for sensing fluid flow
DE69516444T2 (de) * 1994-03-11 2001-01-04 Intravascular Res Ltd Ultraschall Wandleranordnung und Verfahren zu dessen Herstellung
JP3487981B2 (ja) * 1994-10-20 2004-01-19 オリンパス株式会社 超音波プローブ
US7226417B1 (en) 1995-12-26 2007-06-05 Volcano Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
US5897501A (en) * 1997-05-07 1999-04-27 General Electric Company Imaging system with multiplexer for controlling a multi-row ultrasonic transducer array
US5902241A (en) * 1997-11-24 1999-05-11 General Electric Company Large-aperture imaging using transducer array with adaptive element pitch control
US6102860A (en) * 1998-12-24 2000-08-15 Agilent Technologies, Inc. Ultrasound transducer for three-dimensional imaging
US6183419B1 (en) 1999-02-01 2001-02-06 General Electric Company Multiplexed array transducers with improved far-field performance
US6368281B1 (en) * 1999-07-30 2002-04-09 Rodney J Solomon Two-dimensional phased array ultrasound transducer with a convex environmental barrier
EP1214909A4 (de) * 1999-09-17 2011-11-23 Hitachi Medical Corp Ultraschallsonde und diese beinhaltendes ultraschalldiagnosegerät
JP2001190551A (ja) * 2000-01-12 2001-07-17 Hitachi Medical Corp 超音波診断装置
US6468216B1 (en) 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
US7135809B2 (en) * 2001-06-27 2006-11-14 Koninklijke Philips Electronics, N.V. Ultrasound transducer
US6890301B2 (en) 2002-03-05 2005-05-10 Koninklijke Philips Electronics Nv Diagnostic ultrasonic imaging system having combined scanhead connections
JP4201311B2 (ja) * 2002-03-12 2008-12-24 株式会社日立メディコ 超音波診断装置
US6783497B2 (en) * 2002-05-23 2004-08-31 Volumetrics Medical Imaging, Inc. Two-dimensional ultrasonic array with asymmetric apertures
US6957583B2 (en) * 2002-10-31 2005-10-25 Hitachi, Ltd. Ultrasonic array sensor, ultrasonic inspection instrument and ultrasonic inspection method
US7257051B2 (en) 2003-03-06 2007-08-14 General Electric Company Integrated interface electronics for reconfigurable sensor array
US7353056B2 (en) * 2003-03-06 2008-04-01 General Electric Company Optimized switching configurations for reconfigurable arrays of sensor elements
US6865140B2 (en) 2003-03-06 2005-03-08 General Electric Company Mosaic arrays using micromachined ultrasound transducers
US7313053B2 (en) * 2003-03-06 2007-12-25 General Electric Company Method and apparatus for controlling scanning of mosaic sensor array
US7280435B2 (en) * 2003-03-06 2007-10-09 General Electric Company Switching circuitry for reconfigurable arrays of sensor elements
US7443765B2 (en) 2003-03-06 2008-10-28 General Electric Company Reconfigurable linear sensor arrays for reduced channel count
US7300403B2 (en) * 2004-07-20 2007-11-27 Angelsen Bjoern A J Wide aperture array design with constrained outer probe dimension
JP5399632B2 (ja) * 2005-05-09 2014-01-29 株式会社日立メディコ 超音波診断装置
US20070232921A1 (en) * 2006-04-03 2007-10-04 General Electric Company Transducer assembly having a wide field of view
US9289188B2 (en) 2012-12-03 2016-03-22 Liposonix, Inc. Ultrasonic transducer
US10256538B2 (en) * 2015-08-25 2019-04-09 The Boeing Company Integrated true time delay for broad bandwidth time control systems and methods
JP7305479B2 (ja) * 2019-07-31 2023-07-10 キヤノンメディカルシステムズ株式会社 超音波プローブ及び超音波診断装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469617A (en) * 1967-03-20 1969-09-30 Parkson Ind Equipment Co Method for stripping of volatile substanes from fluids
US3496617A (en) * 1967-11-08 1970-02-24 Us Navy Technique for curving piezoelectric ceramics
DE2645738A1 (de) * 1975-10-13 1977-04-21 Commw Of Australia Ultraschallstrahlabtastung
US4307613A (en) * 1979-06-14 1981-12-29 University Of Connecticut Electronically focused ultrasonic transmitter
DE3124979A1 (de) * 1980-06-27 1982-03-11 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka "ultraschallwandler-anordnung fuer bogenabtastung"
US4328569A (en) * 1979-11-14 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Array shading for a broadband constant directivity transducer
DE2604048C2 (de) * 1975-02-03 1984-04-19 Raytheon Co., 02173 Lexington, Mass. Strahlergruppe, deren Strahler in zu einer Symmetrieachse koaxialen, axial beabstandeten Ringen angeordnet sind
DE3521473C2 (de) * 1984-06-15 1988-08-25 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa, Jp

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203162A (en) * 1964-04-10 1980-05-13 The United States Of America As Represented By The Secretary Of The Navy Electrically steerable spherical hydrophone array
FR2367289A1 (fr) * 1976-10-11 1978-05-05 Anvar Perfectionnements aux procedes et dispositifs de formation d'image acoustique
FR2460075B1 (fr) * 1979-06-22 1988-12-09 Cit Alcatel Annuleur d'echo adaptatif pour transmission de donnees en duplex
IT1162336B (it) * 1979-06-22 1987-03-25 Consiglio Nazionale Ricerche Procedimento per la realizzazione di trasduttori ultraacustici a cortina di linee o a matrice di punti e trasduttori ottenuti
DE3021449A1 (de) * 1980-06-06 1981-12-24 Siemens AG, 1000 Berlin und 8000 München Ultraschallwandleranordnung und verfahren zu seiner herstellung
FR2485858B1 (fr) * 1980-06-25 1986-04-11 Commissariat Energie Atomique Procede de fabrication de transducteurs ultrasonores de formes complexes et application a l'obtention de transducteurs annulaires
US4409982A (en) * 1980-10-20 1983-10-18 Picker Corporation Ultrasonic step scanning utilizing curvilinear transducer array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469617A (en) * 1967-03-20 1969-09-30 Parkson Ind Equipment Co Method for stripping of volatile substanes from fluids
US3496617A (en) * 1967-11-08 1970-02-24 Us Navy Technique for curving piezoelectric ceramics
DE2604048C2 (de) * 1975-02-03 1984-04-19 Raytheon Co., 02173 Lexington, Mass. Strahlergruppe, deren Strahler in zu einer Symmetrieachse koaxialen, axial beabstandeten Ringen angeordnet sind
DE2645738A1 (de) * 1975-10-13 1977-04-21 Commw Of Australia Ultraschallstrahlabtastung
US4307613A (en) * 1979-06-14 1981-12-29 University Of Connecticut Electronically focused ultrasonic transmitter
US4328569A (en) * 1979-11-14 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Array shading for a broadband constant directivity transducer
DE3124979A1 (de) * 1980-06-27 1982-03-11 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka "ultraschallwandler-anordnung fuer bogenabtastung"
DE3521473C2 (de) * 1984-06-15 1988-08-25 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa, Jp

Also Published As

Publication number Publication date
JPS60150734A (ja) 1985-08-08
FR2553521B1 (fr) 1986-04-11
ATE34863T1 (de) 1988-06-15
FR2553521A1 (fr) 1985-04-19
DE3471785D1 (en) 1988-07-07
EP0150634A1 (de) 1985-08-07
US4641660A (en) 1987-02-10

Similar Documents

Publication Publication Date Title
EP0150634B1 (de) Ultraschallwandler für Echographie mit einer eine convexe Oberfläche formende Matrix von Wandlerelementen
EP0335759B1 (de) Ultraschallwindmesser
EP0050060B1 (de) Bilderzeugungssystem mit gleichzeitiger mehrfacher Aussendung
EP0543445B1 (de) Untersuchungsgerät von Medien mittels Ultraschall-Echographie
EP0459583B1 (de) Ultraschallbildgerät mit adaptiver Phasenaberrationskorrektur
EP0119911B1 (de) Verfahren zur Ultraschallabbildung mittels auf einer geraden Linie angeordneten Wandlerelemente
EP0003696A1 (de) Einrichtung zur Ortung einer Strahlungsquelle und ihre Verwendung in einem Richtungsermittlungsapparat
FR2763166A1 (fr) Reseau de transducteurs a ultrasons et systeme d'imagerie utilisant un tel reseau
EP0333552B1 (de) Sonde, Vorrichtung zur Bilderstellung mit dieser Sonde und Verfahren zur Benutzung dieser Vorrichtung
FR2570837A1 (fr) Sonde a ultrasons pour balayage sectoriel electronique et echographe incorporant une telle sonde
EP0225900B1 (de) Sonde für echographie und damit ausgestattetes echographisches gerät
FR2467413A1 (fr) Procede et dispositif pour proceder a des examens a l'aide de faisceaux d'ultrasons
EP0733408B1 (de) Ultraschallsensor und Messverfahren unter Verwendung eines derartigen Sensors
FR2815723A1 (fr) Procede systeme et sonde pour l'obtention d'images par l'intermediaire d'ondes emises par une antenne apres reflexion de ces ondes au niveau d'un ensemble servant de cible
FR2688894A1 (fr) Sonar lateral rapide a faisceaux multiples comportant peu d'elements et procede pour sa mise en óoeuvre.
EP0069677B1 (de) Vorrichtung für Ultraschall-Echographie zur Sektorabtastung
EP0133135B1 (de) Ultraschallmultisensor mit Sensoren von verschiedenen Grössen
FR2466164A1 (fr) Transducteur ultrasonore a sensibilite variable et dispositif d'emission-reception ultrasonore equipe de ce transducteur
FR2686457A1 (fr) Antenne a balayage electronique.
EP0040566B1 (de) Echographisches Gerät mit dynamischer Fokussierung und Sektorabtastung
EP0131328A1 (de) Sende-Empfangseinrichtung für ein Radar zur Anwesenheitswahrnehmung und Verfahren zur Herstellung
FR2559052A1 (fr) Appareil d'exploration ultrasonore par echotomographie et effet doppler et procede d'excitation de transducteurs ultrasonores
EP1342103A1 (de) Echographiegerät und dazugehörige ultraschallsonde
FR2535075A1 (fr) Appareil d'exploration de milieux par echographie ultrasonore
FR2848674A1 (fr) Dispositif de production de retards pour appareil de synthese de faisceaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19850918

17Q First examination report despatched

Effective date: 19870114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 34863

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3471785

Country of ref document: DE

Date of ref document: 19880707

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19890301

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900919

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900928

Year of fee payment: 7

Ref country code: BE

Payment date: 19900928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901030

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911031

BERE Be: lapsed

Owner name: CGR ULTRASONIC

Effective date: 19911031

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
27W Patent revoked

Effective date: 19920215

EUG Se: european patent has lapsed

Ref document number: 84402043.8

Effective date: 19920510