EP0150634B1 - Transducer for ultrasonic echography provided with an array of elements forming a convex surface - Google Patents

Transducer for ultrasonic echography provided with an array of elements forming a convex surface Download PDF

Info

Publication number
EP0150634B1
EP0150634B1 EP84402043A EP84402043A EP0150634B1 EP 0150634 B1 EP0150634 B1 EP 0150634B1 EP 84402043 A EP84402043 A EP 84402043A EP 84402043 A EP84402043 A EP 84402043A EP 0150634 B1 EP0150634 B1 EP 0150634B1
Authority
EP
European Patent Office
Prior art keywords
transducer elements
sections
probe
convex
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84402043A
Other languages
German (de)
French (fr)
Other versions
EP0150634A1 (en
Inventor
Robert Bele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CGR Ultrasonic SA
Original Assignee
CGR Ultrasonic SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9293252&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0150634(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CGR Ultrasonic SA filed Critical CGR Ultrasonic SA
Priority to AT84402043T priority Critical patent/ATE34863T1/en
Publication of EP0150634A1 publication Critical patent/EP0150634A1/en
Application granted granted Critical
Publication of EP0150634B1 publication Critical patent/EP0150634B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0637Spherical array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Definitions

  • the invention relates to a new type of static ultrasound probe and the method of manufacturing this probe.
  • the invention also relates to an ultrasound device incorporating such a probe.
  • the ultrasound probes most used to date are sector scanning probes, that is to say comprising either an oscillating moving element or several transducers mounted on a wheel and switched in their passage in front of an emission window.
  • the qualities of these probes are their speed of acquisition and their simplicity of principle which results in relatively simple and inexpensive signal processing means.
  • the coupling surface is relatively small, which allows the probe to be placed between two ribs of the patient for cardiac observations. However, the lifespan of these probes is limited.
  • the systems using the linear arrays of transducer elements are essentially reserved for the observation of the abdominal regions, because of the large dimensions of the probe.
  • the elements or groups of elements
  • the elements are successively switched to cause a scan perpendicular to the row of elements.
  • Linear array probe technology was used for rib cage observations, reducing the area of the probe coupling and distributing delays (both emission and reception) between the transducer elements of the array for reconstitute a sectoral scan, that is to say, to transmit and receive in converging directions falling within a range of scanning.
  • This technology known as “Phased Array” results in a static probe whose coupling surface is only 20 mm side.
  • the processing electronics are very expensive.
  • the delays to be achieved can reach 10 microseconds and an acceptable control of the directivity is only possible if these delays are controlled with a tolerance of 10 nanose- condes.
  • such precision is only obtained for delays of 2 to 3 microseconds at most.
  • the electronic circuits carrying out the frequency change represent an important part of the price of the equipment.
  • a type of probe with ring transducer in which the beam is generated by a group of transducer elements in the form of concentric rings.
  • This arrangement has the advantage of an "antenna diagram" as a function of Bessel (18dB attenuation of the secondary lobes relative to the main lobe). It has even been proposed to reconstitute such rings from a plane network of transducer elements, to cause displacements of these rings allowing scanning of ultrasonic shooting in a predetermined direction. This has the disadvantage of creating expensive and bulky probes (like linear bars). In addition, the coupling is poor. We thus know, from French patent application No. 7630476, published under the number FR-A-2 367 289, such a mosaic of transducer elements.
  • the invention relates firstly to a static probe structure ensuring, in all circumstances, excellent coupling of the transducer elements with the patient's body, with a reduced coupling surface for, in particular, examining the interior of the rib cage (in passing between the ribs) and with which a sectoral sweep can be carried out, at least in part by displacement of the rings.
  • the invention therefore relates to an ultrasound probe for medical use comprising a mosaic of transducer elements covering at least part of a coupling surface characterized in that this surface is convex.
  • the probe according to the invention has in particular the advantage of generating sectoral scanning essentially by switching of transducer elements and not exclusively by laws of delays. Coupling is also much better and the side lobes are attenuated by 18dB if a ring configuration is adopted.
  • the delays involved are much lower and therefore technologically easier to achieve by delay lines, with the required precision.
  • the invention also relates to a variant of this method according to which sections of curved piezoelectric material are individualized before molding an insulating support on the concave internal surface of each section.
  • the invention relates to an ultrasound device of the medical type comprising a probe with fixed transducers, distributed in a mosaic of transducer elements defining a coupling surface characterized in that this surface is convex, and in that it comprises in in addition to switching means for selectively grouping transducer elements in a configuration defining approximately rings centered on a firing axis and for moving said configuration according to an alternating angular scan of this axis and first means for associating a first delay law with the different rings.
  • the ultrasound device advantageously includes second means for associating additional delay laws with the various transducer elements of each ring.
  • These laws of additional delays which relate to elements of the same ring bring into play weaker delays than the first law, it is they which determine the microangulations on either side of the normal to the surface of coupling passing through the center of the ring configuration.
  • the first law is the only one applied to the rings, the shooting is done according to this normal and the laws of additional delays determine with each shot a given microangulation compared to this normal.
  • Each possible position of the configuration of rings can therefore give rise to several shots and therefore to several lines of the reconstructed image.
  • FIG. 1 shows the end part of an ultrasound probe 11 according to the invention, the coupling surface 12 of which (that is to say the surface intended to be brought into contact with the subject to be examined) is convex and partly made up of a mosaic of transducer elements 13.
  • the general shape of the coupling surface is a spherical cap because it is one of the shapes which is most suitable for achieving a good coupling between the probe and the patient.
  • other similar forms could be suitable, such as for example paraboloids or ellipsoids of revolution.
  • a strip of mosaic is sufficient for the type of use calling for a scanning of rings.
  • the probe may consist of the side-by-side assembly of sections each having a curved row of transducer elements, said sections having different mean radii of curvature.
  • Figure 2 illustrates one way of making such a probe. It is advantageous to start from a block of piezoelectric material in the form of a spherical cap 14 (FIG. 2a) since such shapes are in common use in the ultrasound technique, for different systems.
  • An insulating support 15 is molded against the concave face of the spherical cap 14 (FIG. 2b); the techniques for molding these supports are well known to those skilled in the art.
  • Slices 17 are then cut parallel to each other in a median strip of the spherical cap (FIG. 2c) using, for example, a very fine saw 18. These slices therefore have different mean radii of curvature.
  • the slices are individualized, they are partially cut at regular intervals (Figure 2d) in directions perpendicular to their convex curved surface.
  • the saw 19 is therefore adjusted to cut all of the piezoelectric material each time (by slightly cutting the insulating support) so as to define a curved row of individualized transducer elements 13 in each section.
  • printed circuits 20 are produced (FIG. 2e) comprising as many individualized conductors 21 as the wafers comprise transducer elements. Two such printed circuits are then fixed (for example by bonding) on each side of each wafer, so that each conductor 21 is in contact with a flank of a transducer element 13. Then said wafers are joined in the same order than for cutting (i.e. to reconstruct a mosaic of elements transducers distributed over a relatively regular convex surface) and are fixed side by side, for example by gluing.
  • FIG. 3 represents a possible configuration with three concentric rings 26, 27 and 28 (plus the central part 25); this configuration is also illustrated in FIG. 1 in a possible scanning position.
  • the central part 25 has four elements, the first ring 26 has twenty eight, the second ring 27 has fifty two and the third ring 28 has seventy two.
  • the electronic processing system For each emission-reception or firing sequence, the electronic processing system must therefore first select one hundred and fifty-six transducer elements neighboring each other, for each position of the rings.
  • the configuration of rings occupies fourteen transducer elements in the vicinity of the aforesaid plane of symmetry, in the direction of movement of the rings. Furthermore, if the diameter of the coupling surface is 30 mm (assuming that it is a half-sphere) and if the cutting pitch of the transducer elements is 1.5 mm, the two closest slices of the plane of symmetry will have about thirty elements. The number of possible positions of the ring configuration will therefore be sixteen.
  • the elements selected simultaneously are those which are interconnected in the probe head, as indicated above.
  • delays depend on the desired microangulation. We can therefore use a set of programmable delay lines and a switching matrix allowing the elements concerned to be associated (for a ring configuration) with the delays assigned to them. This arrangement will be described later.
  • the calculation of delays is within the reach of the skilled person. These simply correspond to the compensation of the different propagation times of the ultrasound emitted from different elements so that the wavefront in the direction of the desired microangulation benefits from a good phase agreement between the contributions of the transducer elements. .
  • This device comprises a first group 30 of delay lines (these are some relatively large delays, intended to be applied between the rings), a grouping matrix 31 for associating the delays of group 30 with the different rings, a second group 32 of programmable delay lines (seventy-two according to the example in FIG. 3) and a switching matrix 33 interconnected between the delay lines of group 32 and the different transducer elements (grouped symmetrically in pairs) of the mosaic.
  • the system further comprises a summing amplifier 34 grouping together the reception signals at the outputs of the group 30 of delay lines as well as at an independent access from the matrix 31 (link 31 a) corresponding to the outer ring to which one does not apply.
  • An ultrasonic signal transmitter 35 is also connected to the delay lines of group 30 and to the link 31 a.
  • the system described therefore uses the delay lines and the matrices 31 and 33 both on transmission and on reception, but a variant could be envisaged where these matrices and delay lines would only be used on reception and where the Delays in transmission would be developed by control logic coupled to a plurality of transmitters, each transmitter being directly connected to a pair of symmetrical transducer elements.
  • the switching matrix 33 can consist of a cascade assembly of analog multiplexers, such that any pair of transducer elements of the mosaic can be connected to any delay line of group 32. If we resume In the previous example, the matrix 33 will include 210 ports on the probe side and 72 ports on the group 32 side of the delay lines.
  • the switching of the switches is controlled by means of an integrated decoder, with 5 inputs, receiving coded digital information.
  • first stage of such booters in sufficient number to be connected to all the pairs of transducer elements, grouped by sixteen, and a second stage (a single box) grouping together on its inputs the outputs of the first stage, the output of the second stage being connected to one of the delay lines of group 32.
  • FIG. 5 A basic structure of such a delay line is shown in FIG. 5. It is subdivided into two lines 36, 37 with multiple outputs (for example 8), each output corresponding to a predetermined delay. Line 36 provides a range of "short” delays while line 37 provides a range of "long” delays. Two analog multiplexers 38 and 39 with eight inputs and one output have their inputs respectively connected to the outputs of lines 36 and 37. The output of multiplexer 38 is connected to the input of line 37.
  • the structure of the grouping matrix 31 is very simple. Its role is in fact only to "recognize” the elements belonging to the different rings. It is therefore only a static grouping matrix, which determines four groups among the accesses to the delay lines of group 32 and connects three of these to the three delay lines of group 30, respectively and the fourth to the summing amplifier 34 and the ultrasonic transmitter 35.
  • the delay lines of group 30 need not be programmable.
  • the delays are programmed at each transmission-reception sequence by adding a delay value in a line 36 and a delay value in a line 37; this for each of the 72 programmable delay lines in group 32. These delay values depend on the desired microangulation.
  • the role of the matrix 33 is to select all the elements corresponding to a given position of the configuration of an neaux on the mosaic and to "associate" them with the various delays.
  • the apparatus is completed by a program memory 40 (PROM) in which the addressing program of the matrix 33 and of the group of delay lines 32 is written once and for all.
  • PROM program memory 40
  • the sequencing of the reading of this memory is controlled by a microprocessor 41 which also controls the triggering of the transmitter 35 (pilot link 42).
  • the amplifier 34 performs the summation of the signals representative of the echoes received and to which the same delay laws have been applied as at transmission (focusing at reception).
  • the output signals of the amplifier 34 (output S) are processed, in particular “windowed” before being used as video signals from a television receiver on which the image is reconstructed line by line.
  • the memory 40 contains all the successive addressing orders of the matrix 33 and of the group of delay lines 32, for a complete scanning of the configuration of rings on the surface of the probe.
  • a transmit-receive sequence is generated after positioning the analog multiplexers of the matrix 33 selecting a position of the ring configuration on the mosaic and after programming the different delay lines of group 32, as a function of the value desired microangulation.
  • the matrix 33 remains in this state for 9 shots (4 microangulations on the right, 4 microangulations on the left and a normal shot on the surface).
  • the delays are modified, always by partial reading of the memory 40, after each shot.
  • the memory 40 controls the switching matrix 33 to advance the configuration of rings in the direction of scanning, by a distance corresponding to the width of a transducer element and the microangulation sequence begins again. These operations are repeated until the complete acquisition of a 144-line image, in a full scan.

Abstract

An echography apparatus comprising a probe reconstituting mobile rings by element switching, said probe comprising a plurality of transducer elements spread over a convex coupling surface, and switching means being provided for grouping together certain transducer elements into rings.

Description

L'invention concerne un nouveau type de sonde d'échographie statique ainsi que le procédé de fabrication de cette sonde. L'invention a également pour objet un appareil d'échographie incorporant une telle sonde.The invention relates to a new type of static ultrasound probe and the method of manufacturing this probe. The invention also relates to an ultrasound device incorporating such a probe.

Les sondes d'échographie les plus utilisées à ce jour sont les sondes à balayage sectoriel, c' est-à-dire comportant soit un équipage mobile oscillant soit plusieurs transducteurs montés sur une roue et commutés à leur passage devant une fenêtre d'émission. Les qualités de ces sondes sont leur rapidité d'acquisition et leur simplicité de principe qui se traduit par des moyens de traitement de signal relativement simples et peu coûteux. La surface de couplage est relativement faible, ce qui permet de disposer la sonde entre deux côtes du patient pour les observations cardiaques. En revanche, la durée de vie de ces sondes est limitée.The ultrasound probes most used to date are sector scanning probes, that is to say comprising either an oscillating moving element or several transducers mounted on a wheel and switched in their passage in front of an emission window. The qualities of these probes are their speed of acquisition and their simplicity of principle which results in relatively simple and inexpensive signal processing means. The coupling surface is relatively small, which allows the probe to be placed between two ribs of the patient for cardiac observations. However, the lifespan of these probes is limited.

Les systèmes utilisant les barrettes linéaires d'éléments transducteurs sont essentiellement réservées à l'observation des régions abdominales, en raison des dimensions importantes de la sonde. Dans ces systèmes, les éléments (ou des groupes d'éléments) sont commutés successivement pour provoquer un balayage perpendiculaire à la rangée d'éléments. On a utilisé la technologie des sondes à barrette linéaire pour les observations de la cage thoracique, en réduisant la surface de couplage de la sonde et en distribuant des retards (à l'émission comme à la réception) entre les éléments transducteurs de la barrette pour reconstituer un balayage sectoriel, c'est-à-dire pour émettre et recevoir suivant des directions convergentes s'inscrivant dans un éventail de balayage. Cette technologie connue sous le nom de «Phased Array» aboutit à une sonde statique dont la surface de couplage ne fait plus que 20 mm de côté. Cependant l'électronique de traitement est très coûteuse. En effet, les retards à réaliser (par des lignes à retard, à la réception au moins) peuvent attein- dre 10 microsecondes et un contrôle acceptable de la directivité n'est possible que si ces retards sont maîtrisés avec une tolérance de 10 nanose- condes. Or, pour l'instant, une telle précision n'est obtenue que pour des retards de 2 à 3 microsecondes au maximum. Pour résoudre ce problème on peut faire un changement de fréquence puis convertir les signaux reçus en informations numériques et appliquer des lois de retards prédéterminées sur les informations numériques. Les circuits électroniques réalisant le changement de fréquence représentent une part importante du prix de l'équipement.The systems using the linear arrays of transducer elements are essentially reserved for the observation of the abdominal regions, because of the large dimensions of the probe. In these systems, the elements (or groups of elements) are successively switched to cause a scan perpendicular to the row of elements. Linear array probe technology was used for rib cage observations, reducing the area of the probe coupling and distributing delays (both emission and reception) between the transducer elements of the array for reconstitute a sectoral scan, that is to say, to transmit and receive in converging directions falling within a range of scanning. This technology known as “Phased Array” results in a static probe whose coupling surface is only 20 mm side. However, the processing electronics are very expensive. Indeed, the delays to be achieved (by delay lines, at reception at least) can reach 10 microseconds and an acceptable control of the directivity is only possible if these delays are controlled with a tolerance of 10 nanose- condes. However, for the moment, such precision is only obtained for delays of 2 to 3 microseconds at most. To resolve this problem, it is possible to change the frequency and then convert the received signals into digital information and apply predetermined delay laws to the digital information. The electronic circuits carrying out the frequency change represent an important part of the price of the equipment.

Par ailleurs, on connaît un type de sonde à transducteur en anneaux dans lequel, le faisceau est engendré par un groupe d'éléments transducteurs en forme d'anneaux concentriques. Cet agencement a l'avantage d'un «diagramme d'antenne» en fonction de Bessel (18dB d'atténuation des lobes secondaires par rapport au lobe principal). On a même proposé de reconstituer de tels anneaux à partir d'un réseau plan d'éléments transducteurs, pour provoquer des déplacements de ces anneaux permettant un balayage de tir d'ultrasons selon une direction prédéterminée. Ceci a l'inconvénient de créer des sondes chères et encombrantes (comme les barrettes linéaires). En outre, le couplage est médiocre. On connait ainsi, par la demande de brevet Français n° 7630476, publiée sous le numéro FR-A-2 367 289, une telle mosaïque d'éléments transducteurs.Furthermore, a type of probe with ring transducer is known in which the beam is generated by a group of transducer elements in the form of concentric rings. This arrangement has the advantage of an "antenna diagram" as a function of Bessel (18dB attenuation of the secondary lobes relative to the main lobe). It has even been proposed to reconstitute such rings from a plane network of transducer elements, to cause displacements of these rings allowing scanning of ultrasonic shooting in a predetermined direction. This has the disadvantage of creating expensive and bulky probes (like linear bars). In addition, the coupling is poor. We thus know, from French patent application No. 7630476, published under the number FR-A-2 367 289, such a mosaic of transducer elements.

L'invention vise en premier lieu une structure de sonde statique assurant, en toutes circonstances, un excellent couplage des éléments transducteurs avec le corps du patient, avec une surface de couplage réduite pour, notamment, examiner l'intérieur de la cage thoracique (en passant entre les côtes) et avec laquelle on puisse réaliser un balayage sectoriel, au moins en partie par déplacement des anneaux.The invention relates firstly to a static probe structure ensuring, in all circumstances, excellent coupling of the transducer elements with the patient's body, with a reduced coupling surface for, in particular, examining the interior of the rib cage (in passing between the ribs) and with which a sectoral sweep can be carried out, at least in part by displacement of the rings.

Dans ce but, l'invention concerne donc une sonde d'échographie à usage médical comportant une mosaïque d'éléments transducteurs recouvrant au moins une partie d'une surface de couplage caractérisée en ce que cette surface est convexe.For this purpose, the invention therefore relates to an ultrasound probe for medical use comprising a mosaic of transducer elements covering at least part of a coupling surface characterized in that this surface is convex.

Par rapport, au système décrit ci-dessus et connu sous le nom de «Phased Array», la sonde selon l'invention a notamment l'avantage de générer le balayage sectoriel essentiellement par commutations d'éléments transducteurs et non exclusivement par des lois de retards. Le couplage est de plus bien meilleur et les lobes secondaires sont atténuées de 18dB si une configuration d'anneaux est adoptée. Comme on le verra plus loin, il est aussi prévu selon l'invention, de procéder à plusieurs séquences d'émission-réception pour chaque position des anneaux, en définissant un nombre limité de microangulations, grâce à des lois de retard appropriées entre les éléments des anneaux. Cependant, dans ce cas, les retards mis en jeu sont beaucoup plus faibles et donc technologiquement plus faciles à réaliser par des lignes à retard, avec la précision requise.Compared to the system described above and known under the name of "Phased Array", the probe according to the invention has in particular the advantage of generating sectoral scanning essentially by switching of transducer elements and not exclusively by laws of delays. Coupling is also much better and the side lobes are attenuated by 18dB if a ring configuration is adopted. As will be seen below, it is also provided according to the invention, to carry out several transmission-reception sequences for each position of the rings, by defining a limited number of microangulations, by virtue of appropriate delay laws between the elements. rings. However, in this case, the delays involved are much lower and therefore technologically easier to achieve by delay lines, with the required precision.

L'invention concerne également un procédé de fabrication d'une sonde d'échographie caractérisé en ce qu'il consiste:

  • - mouler un support isolant à la surface interne d'un matériau piézo-électrique présentant une surface externe convexe,
  • - à découper des tranches de largeur sensiblement constante dans l'ensemble formé par ledit bloc de matériau piézo-électrique et le support isolant,
  • -à couper partiellement lesdites tranches à intervalles réguliers suivant des directions perpendiculaires à leurs surfaces courbes convexes, en sectionnant à chaque fois la totalité dudit matériau piézo-électrique de façon à définir une rangée courbe d'éléments transducteurs individualisés dans chaque tranche,
  • - fixer de chaque côté de chaque tranche un circuit imprimé comportant autant de conducteurs individualisés qu'il y a d'éléments transducteurs dans ladite tranche de façon que chaque conducteur soit en contact avec un flanc d'élément transducteur, et
  • - à réunir et fixer côte à côte lesdites tranches dans un ordre propre à reconstituer une mosaïque d' éléments transducteurs répartis sur une surface convexe.
The invention also relates to a method for manufacturing an ultrasound probe, characterized in that it consists:
  • - molding an insulating support on the internal surface of a piezoelectric material having a convex external surface,
  • - cutting slices of substantially constant width in the assembly formed by said block of piezoelectric material and the insulating support,
  • to partially cut said slices at regular intervals in directions perpendicular to their convex curved surfaces, each time cutting all of said piezoelectric material so as to define a curved row of individual transducer elements in each slice,
  • fixing on each side of each wafer a printed circuit comprising as many individual conductors as there are transducer elements in said wafer so that each conductor is in contact with a flank of transducer element, and
  • - to bring together and fix side by side said sections in an order suitable for reconstituting a mosaic of transducer elements distributed over a convex surface.

L'invention concerne également une variante de ce procédé selon laquelle on individualise des tranches de matériau piézo-électrique courbes avant de mouler un support isolant à la surface interne concave de chaque tranche.The invention also relates to a variant of this method according to which sections of curved piezoelectric material are individualized before molding an insulating support on the concave internal surface of each section.

L'invention concerne enfin un appareil d'échographie du type médical comportant une sonde à transducteurs fixes, répartis en une mosaïque d'éléments transducteurs définissant une surface de couplage caractérisé en ce que cette surface est convexe, et en ce qu' il comporte en outre des moyens de commutation pour regrouper sélectivement des éléments transducteurs en une configuration définissant approximativement des anneaux centrés sur un axe de tir et pour déplacer ladite configuration suivant un balayage angulaire alternatif de cet axe et des premiers moyens pour associer une première loi de retards aux différents anneaux.Finally, the invention relates to an ultrasound device of the medical type comprising a probe with fixed transducers, distributed in a mosaic of transducer elements defining a coupling surface characterized in that this surface is convex, and in that it comprises in in addition to switching means for selectively grouping transducer elements in a configuration defining approximately rings centered on a firing axis and for moving said configuration according to an alternating angular scan of this axis and first means for associating a first delay law with the different rings.

Cette première loi de retards, appliquée aux anneaux, permet de définir les caractéristiques focales d'un tir (focalisation dynamique valable à l'e-mission comme à la réception). Pour augmenter le nombre de lignes de l'image reconstituée, l'appareil d'échographie comporte avantageusement des seconds moyens pour associer des lois de retards supplémentaires aux différents éléments transducteurs de chaque anneau. Ces lois de retards supplémentaires qui concernent des éléments d'un même anneau mettent en jeu des retards plus faibles que la première loi, ce sont elles qui déterminent les microangulations de part et d'autre de la normale à la surface de couplage passant par le centre de la configuration d'anneaux. En d'autres termes, si la première loi est seule appliquée aux anneaux, le tir se fait suivant cette normale et les lois de retards supplémentaires déterminent à chaque tir une microangulation donnée par rapport à cette normale. Chaque position possible de la configuration d'anneaux peut donc donner lieu à plusieurs tir et donc à plusieurs lignes de l'image reconstituée.This first law of delays, applied to the rings, makes it possible to define the focal characteristics of a shot (dynamic focusing valid at the e-mission as at the reception). To increase the number of lines of the reconstructed image, the ultrasound device advantageously includes second means for associating additional delay laws with the various transducer elements of each ring. These laws of additional delays which relate to elements of the same ring bring into play weaker delays than the first law, it is they which determine the microangulations on either side of the normal to the surface of coupling passing through the center of the ring configuration. In other words, if the first law is the only one applied to the rings, the shooting is done according to this normal and the laws of additional delays determine with each shot a given microangulation compared to this normal. Each possible position of the configuration of rings can therefore give rise to several shots and therefore to several lines of the reconstructed image.

L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront mieux à la lumière de la description qui va suivre d'une sonde, d'un procédé de fabrication de cette sonde et d'un appareil d'échographie incorporant la sonde, donnée uniquement à titre d'exemple et faite en référence aux annexés dans lesquels:

  • - la figure 1 représente une sonde conforme à l'invention;
  • -les figures 2a à 2e illustrent des étapes du procédé de fabrication d'une telle sonde;
  • - la figure 3 est une vue de dessus de la configuration d'anneaux assujettis à se déplacer à la surface de la sonde de la figure 1 et;
  • - la figure 4 est un schéma bloc d'un appareil d'échographie fonctionnant avec la sonde de la figure 1.
The invention will be better understood and other advantages of it will appear better in the light of the following description of a probe, a method of manufacturing this probe and an ultrasound machine incorporating the probe, given only by way of example and with reference to the annexes in which:
  • - Figure 1 shows a probe according to the invention;
  • FIGS. 2a to 2e illustrate steps in the method of manufacturing such a probe;
  • - Figure 3 is a top view of the configuration of rings subject to movement on the surface of the probe of Figure 1 and;
  • - Figure 4 is a block diagram of an ultrasound machine operating with the probe of Figure 1.

On a représenté en figure 1 la partie extrême d'une sonde d'échographie 11 selon l'invention, dont la surface de couplage 12 (c'est-à-dire la surface destinée à être mise en contact avec le sujet à examiner) est convexe et constituée en partie d' une mosaïque d'éléments transducteurs 13. Selon l'exemple, la forme générale de la surface de couplage est une calotte sphérique car c'est l'une des formes qui convient le mieux pour réaliser un bon couplage entre la sonde et le patient. Cependant, d'autres formes voisines pourraient convenir, comme par exemple des paraboloïdes ou él- lipsoides de révolution. On peut aussi envisager une surface convexe cylindrique puisque l'un des modes d'utilisation préféré de la sonde (lequel sera décrit plus loin) consiste à sélectionner et à commuter les éléments transducteurs de façon à déplacer une configuration approximativement en anneaux concentriques d'un côté à l'autre de la sonde. Une surface cylindrique pourvue d'une bande de mosaïque de largeur égale au diamètre du plus grand anneau pourrait donc convenir.FIG. 1 shows the end part of an ultrasound probe 11 according to the invention, the coupling surface 12 of which (that is to say the surface intended to be brought into contact with the subject to be examined) is convex and partly made up of a mosaic of transducer elements 13. According to the example, the general shape of the coupling surface is a spherical cap because it is one of the shapes which is most suitable for achieving a good coupling between the probe and the patient. However, other similar forms could be suitable, such as for example paraboloids or ellipsoids of revolution. It is also possible to envisage a cylindrical convex surface since one of the preferred modes of use of the probe (which will be described later) consists in selecting and switching the transducer elements so as to displace a configuration approximately in concentric rings of a side to side of the probe. A cylindrical surface provided with a strip of mosaic of width equal to the diameter of the largest ring could therefore be suitable.

Pour la même raison les modes de réalisation en calotte sphérique, paraboloïde ou ellipsoïde, ne sont pas nécessairement pourvus d'une mosaïque sur toute leur surface de couplage, une bande de mosaique suffit pour le type d'utilisation faisant appel à un balayage d'anneaux.For the same reason, the embodiments in a spherical, paraboloid or ellipsoid cap are not necessarily provided with a mosaic over their entire coupling surface, a strip of mosaic is sufficient for the type of use calling for a scanning of rings.

Structurellement, la sonde peut être constituée de l'assemblage côte à côte de tranches comportant chacune une rangée courbe d'éléments transducteurs, lesdites tranches ayant des rayons de courbure moyens différents.Structurally, the probe may consist of the side-by-side assembly of sections each having a curved row of transducer elements, said sections having different mean radii of curvature.

La figure 2 illustre une façon de réaliser une telle sonde. On peut partir avantageusement d'un bloc de matériau piézo-électrique en forme de calotte sphérique 14 (figure 2a) puisque de telles formes sont d'utilisation courante dans la technique des ultrasons, pour des systèmes différents. Un support isolant 15 est moulé contre la face concave de la calotte sphérique 14 (figure 2b); les techniques de moulage de ces supports sont bien connues de l' homme du métier. Des tranches 17 sont ensuite découpées parallèlement les unes aux autres dans une bande médiane de la calotte sphérique (figure 2c) à l'aide, par exemple, d'une scie très fine 18. Ces tranches ont donc des rayons de courbure moyens différents. Une fois les tranches individualisées, on les sectionne partiellement à intervalles réguliers (figure 2d) suivant des directions perpendiculaires à leur surface courbe convexe. La scie 19 est donc réglée pour sectionner à chaque fois la totalité du matériau piézo-électrique (en entaillant légèrement le support isolant) de façon à définir une rangée courbe d'éléments transducteurs 13 individualisés, dans chaque tranche. Parallèlement, on fabrique des circuits imprimés 20 (figure 2e) comportant autant de conducteurs 21 individualisés que les tranches comportent d'éléments transducteurs. On fixe ensuite deux circuits imprimés de ce genre (par exemple par collage) de chaque côté de chaque tranche, de façon que chaque conducteur 21 soit en contact avec un flanc d'un élément transducteur 13. On réunit ensuite lesdites tranches dans le même ordre que pour le découpage (c'est-à-dire pour reconstituer une mosaïque d'éléments transducteurs répartis sur une surface convexe relativement régulière) et on les fixe côte à côte, par exemple par collage.Figure 2 illustrates one way of making such a probe. It is advantageous to start from a block of piezoelectric material in the form of a spherical cap 14 (FIG. 2a) since such shapes are in common use in the ultrasound technique, for different systems. An insulating support 15 is molded against the concave face of the spherical cap 14 (FIG. 2b); the techniques for molding these supports are well known to those skilled in the art. Slices 17 are then cut parallel to each other in a median strip of the spherical cap (FIG. 2c) using, for example, a very fine saw 18. These slices therefore have different mean radii of curvature. Once the slices are individualized, they are partially cut at regular intervals (Figure 2d) in directions perpendicular to their convex curved surface. The saw 19 is therefore adjusted to cut all of the piezoelectric material each time (by slightly cutting the insulating support) so as to define a curved row of individualized transducer elements 13 in each section. At the same time, printed circuits 20 are produced (FIG. 2e) comprising as many individualized conductors 21 as the wafers comprise transducer elements. Two such printed circuits are then fixed (for example by bonding) on each side of each wafer, so that each conductor 21 is in contact with a flank of a transducer element 13. Then said wafers are joined in the same order than for cutting (i.e. to reconstruct a mosaic of elements transducers distributed over a relatively regular convex surface) and are fixed side by side, for example by gluing.

A ce stade de la fabrication de la sonde, on dispose donc d'autant de paires de conducteurs électriques que d'éléments transducteurs individualisés. Dans le cas où on veut organiser un balayage d'anneaux, il est à noter que les lois de retards appliquables sont les mêmes pour les éléments transducteurs symétriques par rapport à un plan de symétrie de la surface de couplage perpendiculaire à celle-ci et dans lequel s'inscrit la trajectoire désirée du centre de la configuration d'anneaux. Par conséquent, les conducteurs reliés aux éléments transducteurs symétriques par rapport à ce plan peuvent avantageusement être branchés en parallèle ou en série (de préférence directement à l'intérieur de la tête de la sonde) ce qui réduit de moitié le nombre de fils à connecter à l'unité électronique de traitement des signaux.At this stage of the manufacture of the probe, there are therefore as many pairs of electrical conductors as individual transducer elements. In the case where one wishes to organize a ring scan, it should be noted that the applicable delay laws are the same for the transducer elements symmetrical with respect to a plane of symmetry of the coupling surface perpendicular thereto and in which fits the desired path from the center of the ring configuration. Consequently, the conductors connected to the transducer elements symmetrical with respect to this plane can advantageously be connected in parallel or in series (preferably directly inside the head of the probe), which reduces the number of wires to be halved. to the electronic signal processing unit.

La figure 3 représente une configuration possible à trois anneaux concentriques 26, 27 et 28 (plus la partie centrale 25); cette configuration est également illustrée à la figure 1 dans une position de balayage possible. La partie centrale 25 comporte quatre éléments, le premier anneau 26 en comporte vingt huit, le second anneau 27 en comporte cinquante deux et le troisième anneau 28 en comporte soixante douze.FIG. 3 represents a possible configuration with three concentric rings 26, 27 and 28 (plus the central part 25); this configuration is also illustrated in FIG. 1 in a possible scanning position. The central part 25 has four elements, the first ring 26 has twenty eight, the second ring 27 has fifty two and the third ring 28 has seventy two.

Pour chaque séquence d'émission-réception ou tir, le système électronique de traitement doit donc d'abord sélectionner cent cinquante six éléments transducteurs voisins les uns des autres, pour chaque position des anneaux. La configuration d' anneaux occupe quatorze éléments transducteurs au voisinage du plan de symétrie précité, dans la direction de déplacement des anneaux. Par ailleurs, si le diamètre de la surface de couplage est de 30 mm (en supposant que celle-ci soit une demi-sphère) et si le pas de découpage des éléments transducteurs est de 1,5 mm, les deux tranches les plus proches du plan de symétrie auront une trentaine d'éléments. Le nombre de positions possibles de la configuration d'anneaux sera donc de seize.For each emission-reception or firing sequence, the electronic processing system must therefore first select one hundred and fifty-six transducer elements neighboring each other, for each position of the rings. The configuration of rings occupies fourteen transducer elements in the vicinity of the aforesaid plane of symmetry, in the direction of movement of the rings. Furthermore, if the diameter of the coupling surface is 30 mm (assuming that it is a half-sphere) and if the cutting pitch of the transducer elements is 1.5 mm, the two closest slices of the plane of symmetry will have about thirty elements. The number of possible positions of the ring configuration will therefore be sixteen.

En programmant une première loi de retards entre les différents anneaux (la partie centrale 25 étant assimilée à l'un d'eux), on peut obtenir une focalisation très directive avec un faisceau émis perpendiculairement à la surface de couplage à partir du centre de la configuration. Le calcul de ces retards est à la portée de l'homme du métier. Ils correspondent à la compensation des temps de propagation différents des ultrasons émis à partir d'anneaux différents situés dans des plans différents (puisqu'on peut considérer que chaque anneau est inscrit dans un même plan pour une surface de couplage sphérique) pour que le front d'ondes suivant la normale au centre de la configuration d'anneaux bénéficie d'une bonne con- cor dance de phases, dans la direction de tir entre les contributions des différents anneaux. Ces retards sont de l'ordre de une à trois microsecondes. Ils sont donc technologiquement réalisables avec une bonne précision de l'ordre de dix nanosecon- des. Ce sont les retards les plus importants qui doivent être mis en jeu. Le prix de revient des lignes à retards correspondantes n'est cependant pas prohibitif et de toutes façons ces lignes ne sont qu'en nombre limité (trois dans l'exemple décrit). Les retards sont appliqués à partir de l'anneau extérieur. Autrement dit, l'excitation de l'anneau extérieur (à rémission) constitue la référence à partir de laquelle les différents retards sont décomptés avant l'excitation des anneaux suivants.By programming a first delay law between the different rings (the central part 25 being assimilated to one of them), one can obtain a very directive focusing with a beam emitted perpendicular to the coupling surface from the center of the configuration. The calculation of these delays is within the reach of the skilled person. They correspond to the compensation of the different propagation times of the ultrasound emitted from different rings located in different planes (since we can consider that each ring is inscribed in the same plane for a spherical coupling surface) so that the front of waves following the normal at the center of the configuration of rings has a good phase agreement, in the direction of fire between the contributions of the different rings. These delays are of the order of one to three microseconds. They are therefore technologically feasible with good precision of the order of ten nanoseconds. These are the most important delays which must be brought into play. The cost price of the corresponding delay lines is however not prohibitive and in any case these lines are only in limited number (three in the example described) . Delays are applied from the outer ring. In other words, the excitation of the outer ring (at remission) constitutes the reference from which the different delays are counted before the excitation of the following rings.

En considérant plus particulièrement la configuration d'anneaux de la figure 3, on peut aussi »affiner» la première loi de retards précitée en sélectionnant chaque anneau en deux temps, puisqu'ils ont une «largeur» correspondant à deux éléments transducteurs. On peut donc appliquer des retards différents aux éléments internes et externes de chaque anneau, ce qui revient à considérer que la configuration de la figure 3 comporte en fait six anneaux, bien que les formes de ces anneaux soient alors beaucoup plus approximatives, notamment près du centre. Il est aussi possible de faire varier le nombre d'anneaux en fonction de la profondeur de pénétration désirée et aussi de changer le nombre d'anneaux dans une même séquence de tir, entre rémission et la réception.By considering more particularly the configuration of rings of FIG. 3, one can also "refine" the first law of delays mentioned above by selecting each ring in two stages, since they have a "width" corresponding to two transducer elements. It is therefore possible to apply different delays to the internal and external elements of each ring, which amounts to considering that the configuration of FIG. 3 in fact comprises six rings, although the shapes of these rings are then much more approximate, in particular near the center. It is also possible to vary the number of rings according to the desired penetration depth and also to change the number of rings in the same firing sequence, between remission and reception.

Cependant, on a vu plus haut que le nombre de positions possibles de la configuration d'anneaux n'est que de seize dans l'exemple décrit. C'est pourquoi, dans chaque position des anneaux on peut réaliser un certain nombre de microangulations de part et d'autre de la normale. Ainsi, quatre microangulations à droite et quatre microangulations à gauche donnent huit lignes supplémentaires par position de la configuration d'anneaux. En augmentant ainsi le nombre des directions de tir, on peut obtenir une image de résolution bien plus fine. Dans l'exemple cette image peut alors être composée de cent quarante quatre lignes. Si on considère à nouveau la figure 3 dans laquelle la configuration d'anneaux est centrée sur un repère orthonormé x o y, où l'axe x'o x désigne la direction de balayage et où les différents éléments sont repérés par des chiffres 1, 2, 3, etc... positivement et par des chiffres 1 ', 2', 3', etc ... négativement suivant cet axe et par des lettres A, B, C, etc ... positivement et A', B', C', etc ... négativement, suivant l'axe y'o y, l'ordre d'excitation des différents éléments pourra être le suivant, pour une microangulation «à gauche» en considérant le dessin:

  • Anneau 28:
    • B7 et B'7-A7 et A'7-D6 et D'6-C6 et C'6-B6 et B'6-A6 et A'6-F5 et F'5-E5 et E'5-D5 et D'5-C5 et C'5-F4 et F'4-E4 et E'4-G3 et G'3-F3 et F'3-G2 et G'2-F2etF'2-G1 et G'1-F1 et F'1-G1' et G'1'-F1' et F'1'-G2' et G'2'-F2' et F'2'-G3' et G'3'-F3' et F'3'-F4' et F'4'-E4' et E'4'-F5' et F'5'-E5' et E'5'-D5'et D'5'-C5' et C'5'-D6'et D'6'-C6' et C'6'-B6'et B'6'-A6' et A'6'-B7' et B'7'-A7' et A'7'-
  • Anneau 27:
    • B5 et B'5-A5 et A'5-D4 et D'4-C4 et C'4-B4 et B'4-A4 et A'4-E3 et E'3-D3 et D'3-C3 et C'3-E2 et E'2-D2 et D'2-E1 et E'1-D1 et D'1'-E1' et E'1 '-D1 ' et D'1 '-E2' et E'2'-D2' et D'2'-E3' et E'3'-D3' et D'3'-C3' et C'3'-D4' et D'4'-C4' et C'4'-B4' et B'4'-A4' etA'4'-B5' et B'5'-A5' et A'5'-
  • Anneau 26:
    • B3 et B'3-A3 et A'3-C2 et C'2-B2 et B'2-A2 et A'2-C1 et C'1-B1 et B'1-C1' et C'1'-B2' et B'2'-A2' et A'2'-B3' et A'3'-A3' et A'3'.
  • Partie centrale 25:
    • A1 etA'1-A1'etA'1'.
However, we have seen above that the number of possible positions of the ring configuration is only sixteen in the example described. This is why, in each position of the rings, a certain number of microangulations can be produced on either side of the normal. Thus, four microangulations on the right and four microangulations on the left give eight additional lines per position of the ring configuration. By thus increasing the number of shooting directions, a much finer resolution image can be obtained. In the example, this image can then be composed of one hundred and forty four lines. If we again consider FIG. 3 in which the configuration of rings is centered on an orthonormal reference frame xoy, where the axis x'o x designates the scanning direction and where the different elements are marked with numbers 1, 2, 3, etc ... positively and by numbers 1 ', 2', 3 ', etc ... negatively along this axis and by letters A, B, C, etc ... positively and A', B ', C ', etc ... negatively, along the axis y'o y, the order of excitation of the different elements could be as follows, for a microangulation "to the left" considering the drawing:
  • Ring 28:
    • B7 and B'7-A7 and A'7-D6 and D'6-C6 and C'6-B6 and B'6-A6 and A'6-F5 and F'5-E5 and E'5-D5 and D'5-C5 and C'5-F4 and F'4-E4 and E'4-G3 and G'3-F3 and F'3-G2 and G'2-F2etF'2-G1 and G'1- F1 and F'1-G1 'and G'1'-F1' and F'1'-G2 'and G'2'-F2' and F'2'-G3 'and G'3'-F3' and F '3'-F4' and F'4'-E4 'and E'4'-F5' and F'5'-E5 'and E'5'-D5'and D'5'-C5' and C'5 '-D6' and D'6'-C6 'and C'6'-B6' and B'6'-A6 'and A'6'-B7' and B'7'-A7 'and A'7'-
  • Ring 27:
    • B5 and B'5-A5 and A'5-D4 and D'4-C4 and C'4-B4 and B'4-A4 and A'4-E3 and E'3-D3 and D'3-C3 and C'3-E2 and E'2-D2 and D'2-E1 and E'1-D1 and D'1'-E1 'and E'1' -D1 'and D'1' -E2 'and E'2'-D2'andD'2'-E3' and E'3'-D3 'and D'3'-C3' and C'3'-D4 'and D'4'-C4' and C'4 ' -B4 'and B'4'-A4'andA'4'-B5'andB'5'-A5' and A'5'-
  • Ring 26:
    • B3 and B'3-A3 and A'3-C2 and C'2-B2 and B'2-A2 and A'2-C1 and C'1-B1 and B'1-C1 'and C'1'- B2 'and B'2'-A2' and A'2'-B3 'and A'3'-A3' and A'3 '.
  • Central part 25:
    • A1 andA'1-A1'andA'1 '.

Pour une microangulation «à droite» il y a lieu d'exciter les éléments dans l'ordre inverse. Les éléments sélectionnés simultanément sont ceux qui sont interconnectés dans la tête de sonde, comme indiqué précédemment.For a “right” microangulation it is necessary to excite the elements in reverse order. The elements selected simultaneously are those which are interconnected in the probe head, as indicated above.

On compte donc 35 retards pour l'anneau extérieur 28, 25 retards pour l'anneau 27, il retard pour l'anneau 26 et 1 pour la partie centrale 25, soit un total de 72 retards.There are therefore 35 delays for the outer ring 28, 25 delays for the ring 27, there are delays for the ring 26 and 1 for the central part 25, for a total of 72 delays.

Les valeurs de ces retards dépendent de la microangulation désirée. On pourra donc avoir recours à un jeu de lignes à retard programmables et à une matrice de commutation permettant d'associer les éléments concernés (pour une configuration d'anneaux) aux retards qui leur sont affectés. Cet agencement sera décrit plus loin. Le calcul des retards est à la portée de l'homme du métier. Ceux-ci correspondent simplement à la compensation des temps de propagation différents des ultrasons émis à partir d'éléments différents pour que le front d'onde dans la direction de la microangulation désirée bénéficie d'une bonne concordance de phases entre les contributions des éléments transducteurs.The values of these delays depend on the desired microangulation. We can therefore use a set of programmable delay lines and a switching matrix allowing the elements concerned to be associated (for a ring configuration) with the delays assigned to them. This arrangement will be described later. The calculation of delays is within the reach of the skilled person. These simply correspond to the compensation of the different propagation times of the ultrasound emitted from different elements so that the wavefront in the direction of the desired microangulation benefits from a good phase agreement between the contributions of the transducer elements. .

On va maintenant décrire un exemple possible d'appareil d'échographie susceptible de fonctionner avec la sonde décrite ci-dessus. Cet appareil comprend un premier groupe 30 de lignes à retard (il s'agit ici des quelques retards relativement importants, destinés à être appliqués entre les anneaux), une matrice de regroupement 31 pour associer les retards du groupe 30 aux différents anneaux, un second groupe 32 de lignes à retard programmables (au nombre de soixante douze selon l'exemple de la figure 3) et une matrice de commutation 33 interconnectée entre les lignes à retard du groupe 32 et les différents éléments transducteurs (regroupés symétriquement par paires) de la mosaïque. Le système comporte en outre un amplificateur sommateur 34 regroupant les signaux de réception aux sorties du groupe 30 de lignes à retard ainsi qu'à un accès indépendant de la matrice 31 (liaison 31 a) correspondant à l'anneau extérieur auquel on n'applique pas de retard, à ce niveau. Un émetteur de signaux ultrasonores 35 est également connecté aux lignes à retard du groupe 30 et à la liaison 31 a. Le système décrit utilise donc les lignes à retard et les matrices 31 et 33 aussi bien à l'émission qu'à la réception mais on pourrait envisager une variante où ces matrices et lignes à retard ne seraient utilisées qu'à la réception et où les retards à l'émission seraient élaborés par une logique de commande couplée à une pluralité d'émetteurs, chaque émetteur étant directement connecté à une paire d'éléments transducteurs symétriques.We will now describe a possible example of an ultrasound device capable of operating with the probe described above. This device comprises a first group 30 of delay lines (these are some relatively large delays, intended to be applied between the rings), a grouping matrix 31 for associating the delays of group 30 with the different rings, a second group 32 of programmable delay lines (seventy-two according to the example in FIG. 3) and a switching matrix 33 interconnected between the delay lines of group 32 and the different transducer elements (grouped symmetrically in pairs) of the mosaic. The system further comprises a summing amplifier 34 grouping together the reception signals at the outputs of the group 30 of delay lines as well as at an independent access from the matrix 31 (link 31 a) corresponding to the outer ring to which one does not apply. no delay at this level. An ultrasonic signal transmitter 35 is also connected to the delay lines of group 30 and to the link 31 a. The system described therefore uses the delay lines and the matrices 31 and 33 both on transmission and on reception, but a variant could be envisaged where these matrices and delay lines would only be used on reception and where the Delays in transmission would be developed by control logic coupled to a plurality of transmitters, each transmitter being directly connected to a pair of symmetrical transducer elements.

La matrice de commutation 33 peut être constituée d'un assemblage en cascade de multiplexeurs analogiques, tel que n'importe quelle paire d'éléments transducteurs de la mosaïque puisse être reliée à n'importe quelle ligne à retard du groupe 32. Si on reprend l'exemple précédent, la matrice 33 comportera 210 accès du côté de la sonde et 72 accès du côté du groupe 32 des lignes à retard. On pourra par exemple utiliser des groupements en cascade de multiplexeurs analogiques du type DG507, commercialisé par la firme SILICONIX. Chacun de ces boitiers comporte 16 interrupteurs analogiques regroupés pour disposer de 16 entrées et d'une sortie commune. La commutation des interrupteurs est commandée par l'intermédiaire d'un décodeur intégré, à 5 entrées, recevant des informations numériques codées. Pour chaque accès du groupe 32 de lignes à retard, on pourra donc prévoir un premier étage de tels bottiers en nombre suffisant pour être connectés à toutes les paires d'éléments transducteurs, regroupées par seize, et un second étage (un seul boitier) regroupant sur ses entrées les sorties du premier étage, la sortie du second étage étant reliée à l'une des lignes à retard du groupe 32.The switching matrix 33 can consist of a cascade assembly of analog multiplexers, such that any pair of transducer elements of the mosaic can be connected to any delay line of group 32. If we resume In the previous example, the matrix 33 will include 210 ports on the probe side and 72 ports on the group 32 side of the delay lines. We could for example use cascaded groupings of analog multiplexers of the DG507 type, marketed by the company SILICONIX. Each of these boxes has 16 analog switches grouped together to provide 16 inputs and a common output. The switching of the switches is controlled by means of an integrated decoder, with 5 inputs, receiving coded digital information. For each access of the group 32 of delay lines, it will therefore be possible to provide a first stage of such booters in sufficient number to be connected to all the pairs of transducer elements, grouped by sixteen, and a second stage (a single box) grouping together on its inputs the outputs of the first stage, the output of the second stage being connected to one of the delay lines of group 32.

Ces dernières sont programmables, c'est-à-dire que la valeur des retards peut être modifiée. Une structure de base d'une telle ligne à retard est représentée à la figure 5. Elle se subdivise en deux lignes 36, 37 à sorties multiples (par exemple 8), chaque sortie correspondant à un retard prédéterminé. La ligne 36 fournit une gamme de retards «courts» tandis que la ligne 37 fournit une gamme de retards «longs». Deux multiplexeurs analogiques 38 et 39 à huit entrées et une sortie ont leurs entrées respectivement reliées aux sorties des lignes 36 et 37. La sortie du multiplexeur 38 est reliée à l'entrée de la ligne 37.These are programmable, i.e. the value of the delays can be changed. A basic structure of such a delay line is shown in FIG. 5. It is subdivided into two lines 36, 37 with multiple outputs (for example 8), each output corresponding to a predetermined delay. Line 36 provides a range of "short" delays while line 37 provides a range of "long" delays. Two analog multiplexers 38 and 39 with eight inputs and one output have their inputs respectively connected to the outputs of lines 36 and 37. The output of multiplexer 38 is connected to the input of line 37.

La structure de la matrice de regroupement 31 est très simple. Son rôle n'est en effet que de «reconnaître» les éléments appartenant aux différents anneaux. Il ne s'agit donc que d'une matrice statique de regroupement, qui détermine quatre groupes parmi les accès aux lignes à retard du groupe 32 et relie trois de ceux-ci aux trois lignes à retard du groupe 30, respectivement et le quatrième à l'amplificateur sommateur 34 et à l'émetteur d'ultrasons 35. Les lignes à retard du groupe 30 n'ont pas besoin d'être programmables.The structure of the grouping matrix 31 is very simple. Its role is in fact only to "recognize" the elements belonging to the different rings. It is therefore only a static grouping matrix, which determines four groups among the accesses to the delay lines of group 32 and connects three of these to the three delay lines of group 30, respectively and the fourth to the summing amplifier 34 and the ultrasonic transmitter 35. The delay lines of group 30 need not be programmable.

Les retards sont programmés à chaque séquence d'émission-réception par l'addition d'une valeur de retard dans une ligne 36 et d'une valeur de retard dans une ligne 37; ceci pour chacune des 72 lignes à retard programmables du groupe 32. Ces valeurs de retard dépendent de la microangulation désirée. Le rôle de la matrice 33 est de sélectionner tous les éléments correspondant à une position donnée de la configuration d'anneaux sur la mosaïque et de les «associer» aux différents retards.The delays are programmed at each transmission-reception sequence by adding a delay value in a line 36 and a delay value in a line 37; this for each of the 72 programmable delay lines in group 32. These delay values depend on the desired microangulation. The role of the matrix 33 is to select all the elements corresponding to a given position of the configuration of an neaux on the mosaic and to "associate" them with the various delays.

Pour cela l'appareil est complété par une mémoire-programme 40 (PROM) dans laquelle le programme d'adressage de la matrice 33 et du groupe de lignes à retard 32 est inscrit une fois pour toutes. Le séquencement de la lecture de cette mémoire est piloté par un microprocesseur 41 qui commande aussi le déclenchement de l'émetteur 35 (liaison de pilotage 42). L'amplificateur 34 réalise la sommation des signaux représentatifs des échos reçus et auxquels on a appliqué les mêmes lois de retard qu'à l'émission (focalisation à la réception). Les signaux de sortie de l'amplificateur 34 (sortie S) sont traités, notamment «fenêtrés» avant d'être utilisés en tant que signaux vidéo d'un récepteur de télévision sur lequel l'image est reconstituée ligne par ligne.For this, the apparatus is completed by a program memory 40 (PROM) in which the addressing program of the matrix 33 and of the group of delay lines 32 is written once and for all. The sequencing of the reading of this memory is controlled by a microprocessor 41 which also controls the triggering of the transmitter 35 (pilot link 42). The amplifier 34 performs the summation of the signals representative of the echoes received and to which the same delay laws have been applied as at transmission (focusing at reception). The output signals of the amplifier 34 (output S) are processed, in particular “windowed” before being used as video signals from a television receiver on which the image is reconstructed line by line.

La mémoire 40 renferme tous les ordres d'adressage successifs de la matrice 33 et du groupe de lignes à retard 32, pour un balayage complet de la configuration d'anneaux à la surface de la sonde. Autrement dit, une séquence d'émission- réception est générée après positionnement des multiplexeurs analogiques de la matrice 33 sélectionnant une position de la configuration d'anneaux sur la mosaïque et après programmation des différentes lignes à retard du groupe 32, en fonction de la valeur de microangulation voulue. La matrice 33 reste dans cet état pendant 9 tirs (4 microangulations à droite, 4 microangulations à gauche et un tir normal à la surface). Les retards sont modifiés, toujours par lecture partielle de la mémoire 40, après chaque tir. Puis la mémoire 40 pilote la matrice de commutation 33 pour faire progresser la configuration d'anneaux dans le sens du balayage, d'une distance correspondant à la largeur d'un élément transducteur et la séquence de microangulations recommence. Ces opérations se renouvellent jusqu'à l'acquisition complète d'une image de 144 lignes, en un balayage complet.The memory 40 contains all the successive addressing orders of the matrix 33 and of the group of delay lines 32, for a complete scanning of the configuration of rings on the surface of the probe. In other words, a transmit-receive sequence is generated after positioning the analog multiplexers of the matrix 33 selecting a position of the ring configuration on the mosaic and after programming the different delay lines of group 32, as a function of the value desired microangulation. The matrix 33 remains in this state for 9 shots (4 microangulations on the right, 4 microangulations on the left and a normal shot on the surface). The delays are modified, always by partial reading of the memory 40, after each shot. Then the memory 40 controls the switching matrix 33 to advance the configuration of rings in the direction of scanning, by a distance corresponding to the width of a transducer element and the microangulation sequence begins again. These operations are repeated until the complete acquisition of a 144-line image, in a full scan.

Claims (9)

1. Echographic probe for medical use, comprising an array of transducer elements (13) at least partially covering a coupling surface (12), characterized in that this surface is convex.
2. Echographic probe according to claim 1; characterized in that said convex coupling surface (12) is a spherical dome.
3. Echographic probe according to claims 1 or 2, characterized in that it is made up of a side by side assembly of sections (17) each comprising a curved row of transducer elements (13), said sections having different radii of curvature.
4. Echographic probe according to claim 3, characterized in that two conductors are respectively laterally fixed on two flanges of each transducer element (13) and in that the conductors of transducers lying symmetrically with respect to a symmetry plane of said concave surface are interconnected in such a manner that said transducers are connected in parallel or in series.
5. Probe according to claims 3 or 4, characterized in that two printed circuits (20) carrying individualized conductors (21 ) are laterally fixed on both sides of each section in such a manner that for each transducer element two conductors belonging to different printed circuits are contacting flanges of said transducer elements.
6. Method of producing an echographic probe, characterized in that it consists, in particular, in:
- molding an insulating carrier (15) on the inner surface of a block of piezoelectric material (14) having an outer convex surface,
-cutting sections (17) of substantially constant width from the unit formed by said block of piezoelectric material and said insulating carrier,
- partially cutting into said sections at regular intervals along directions perpendicular to their convex curved surface, each time by cutting through the entire piezoelectric material in a manner to define a curved row of individualized transducer elements in each section,
- fixing on each side of each section a printed circuit (20) carrying as many individualized conductors (21) as transducer elements are provided in said section, in such a manner that each conductor contacts a flange of a transducer element, and
-joining and fixing said sections side by side in an order appropriate to constitute an array of transducer elements distributed on a convex surface.
7. Method of producing an echographic probe, characterized in that it consists, in particular, in:
- individualizing curved sections of piezoelectric material and of substantially constant width, the mean radii of curvature of these sections being different and such that the side by side assembly of these sections can substantially constitute an outer convex surface,
- molding an insulating carrier on the inner concave surface of each section,
-partially cutting these sections at regular intervals along directions perpendicular to their convex curved surface, each time by cutting through the entire piezoelectric material in a manner to define a curved row of individualized transducer elements in each section,
- fixing on each side of each section a printed circuit having as many individualized conductors as there are transducer elements in said section so that each conductor contacts one flange of a transducer element, and
- side by side joining and fixing said sections in an order appropriate to constitute an array of transducer elements distributed on a convex surface.
8. Echographic apparatus of medical type comprising a probe with fixed transducers distributed as an array of transducer elements (13) defining a coupling surface, characterized in that this surface is convex, and in that further comprises switching means (31, 33) for selectively (31) grouping transducer elements (13) in a configuration approximately defining rings centered on a shot axis, and to displace (33) said configuration according to an angular alternative scanning of this axis, and first means (30) for associating a first law of delays with the different rings.
9. Echographic apparatus according to claim 8, characterized in that it comprises second means (32) for associating supplementary laws of delays to the different transducer elements of each ring.
EP84402043A 1983-10-18 1984-10-11 Transducer for ultrasonic echography provided with an array of elements forming a convex surface Expired EP0150634B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84402043T ATE34863T1 (en) 1983-10-18 1984-10-11 ULTRASONIC TRANSDUCER FOR ECHOGRAPHY WITH A CONVEX SURFACE FORMING MATRIX OF TRANSDUCER ELEMENTS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8316550 1983-10-18
FR8316550A FR2553521B1 (en) 1983-10-18 1983-10-18 ULTRASOUND PROBE, MANUFACTURING METHOD THEREOF AND ULTRASOUND APPARATUS INCORPORATING SUCH PROBE

Publications (2)

Publication Number Publication Date
EP0150634A1 EP0150634A1 (en) 1985-08-07
EP0150634B1 true EP0150634B1 (en) 1988-06-01

Family

ID=9293252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84402043A Expired EP0150634B1 (en) 1983-10-18 1984-10-11 Transducer for ultrasonic echography provided with an array of elements forming a convex surface

Country Status (6)

Country Link
US (1) US4641660A (en)
EP (1) EP0150634B1 (en)
JP (1) JPS60150734A (en)
AT (1) ATE34863T1 (en)
DE (1) DE3471785D1 (en)
FR (1) FR2553521B1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3634504A1 (en) * 1985-10-09 1987-04-16 Hitachi Ltd ULTRASONIC IMAGE DEVICE
JPH0263441A (en) * 1988-08-30 1990-03-02 Aloka Co Ltd Ultrasonic wave feeler and ultrasonic wave diagnosis device
FR2638884B1 (en) * 1988-11-10 1990-12-28 Labo Electronique Physique THREE-DIMENSIONAL FOCUSING DEVICE OF AN ULTRASONIC BEAM
JPH0790026B2 (en) * 1989-08-25 1995-10-04 株式会社東芝 Ultrasonic diagnostic equipment
JP3090718B2 (en) * 1990-07-11 2000-09-25 株式会社東芝 Ultrasound diagnostic equipment
US5269309A (en) * 1991-12-11 1993-12-14 Fort J Robert Synthetic aperture ultrasound imaging system
WO1995002197A1 (en) * 1993-07-08 1995-01-19 Siemens Aktiengesellschaft Ultrasonic imaging system with a reduced number of lines between the main apparatus and a two-dimensional applicator
US5485843A (en) * 1993-08-09 1996-01-23 Hewlett Packard Company Acoustic arrays and methods for sensing fluid flow
DE69516444T2 (en) * 1994-03-11 2001-01-04 Intravascular Res Ltd Ultrasonic transducer arrangement and method for its production
JP3487981B2 (en) * 1994-10-20 2004-01-19 オリンパス株式会社 Ultrasonic probe
US7226417B1 (en) 1995-12-26 2007-06-05 Volcano Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
US5897501A (en) * 1997-05-07 1999-04-27 General Electric Company Imaging system with multiplexer for controlling a multi-row ultrasonic transducer array
US5902241A (en) * 1997-11-24 1999-05-11 General Electric Company Large-aperture imaging using transducer array with adaptive element pitch control
US6102860A (en) * 1998-12-24 2000-08-15 Agilent Technologies, Inc. Ultrasound transducer for three-dimensional imaging
US6183419B1 (en) 1999-02-01 2001-02-06 General Electric Company Multiplexed array transducers with improved far-field performance
US6368281B1 (en) * 1999-07-30 2002-04-09 Rodney J Solomon Two-dimensional phased array ultrasound transducer with a convex environmental barrier
US6736779B1 (en) * 1999-09-17 2004-05-18 Hitachi Medical Corporation Ultrasonic probe and ultrasonic diagnostic device comprising the same
JP2001190551A (en) * 2000-01-12 2001-07-17 Hitachi Medical Corp Ultrasonograph
US6468216B1 (en) 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
US7135809B2 (en) * 2001-06-27 2006-11-14 Koninklijke Philips Electronics, N.V. Ultrasound transducer
US6890301B2 (en) 2002-03-05 2005-05-10 Koninklijke Philips Electronics Nv Diagnostic ultrasonic imaging system having combined scanhead connections
JP4201311B2 (en) * 2002-03-12 2008-12-24 株式会社日立メディコ Ultrasonic diagnostic equipment
US6783497B2 (en) * 2002-05-23 2004-08-31 Volumetrics Medical Imaging, Inc. Two-dimensional ultrasonic array with asymmetric apertures
US6957583B2 (en) * 2002-10-31 2005-10-25 Hitachi, Ltd. Ultrasonic array sensor, ultrasonic inspection instrument and ultrasonic inspection method
US7257051B2 (en) 2003-03-06 2007-08-14 General Electric Company Integrated interface electronics for reconfigurable sensor array
US7313053B2 (en) * 2003-03-06 2007-12-25 General Electric Company Method and apparatus for controlling scanning of mosaic sensor array
US7443765B2 (en) 2003-03-06 2008-10-28 General Electric Company Reconfigurable linear sensor arrays for reduced channel count
US7353056B2 (en) * 2003-03-06 2008-04-01 General Electric Company Optimized switching configurations for reconfigurable arrays of sensor elements
US6865140B2 (en) 2003-03-06 2005-03-08 General Electric Company Mosaic arrays using micromachined ultrasound transducers
US7280435B2 (en) * 2003-03-06 2007-10-09 General Electric Company Switching circuitry for reconfigurable arrays of sensor elements
US7300403B2 (en) * 2004-07-20 2007-11-27 Angelsen Bjoern A J Wide aperture array design with constrained outer probe dimension
CN101160098B (en) * 2005-05-09 2011-01-05 株式会社日立医药 Ultrasonograph
US20070232921A1 (en) * 2006-04-03 2007-10-04 General Electric Company Transducer assembly having a wide field of view
US9289188B2 (en) 2012-12-03 2016-03-22 Liposonix, Inc. Ultrasonic transducer
US10256538B2 (en) * 2015-08-25 2019-04-09 The Boeing Company Integrated true time delay for broad bandwidth time control systems and methods
JP7305479B2 (en) * 2019-07-31 2023-07-10 キヤノンメディカルシステムズ株式会社 Ultrasonic probe and ultrasonic diagnostic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469617A (en) * 1967-03-20 1969-09-30 Parkson Ind Equipment Co Method for stripping of volatile substanes from fluids
US3496617A (en) * 1967-11-08 1970-02-24 Us Navy Technique for curving piezoelectric ceramics
DE2645738A1 (en) * 1975-10-13 1977-04-21 Commw Of Australia ULTRASONIC BEAM SCANNING
US4307613A (en) * 1979-06-14 1981-12-29 University Of Connecticut Electronically focused ultrasonic transmitter
DE3124979A1 (en) * 1980-06-27 1982-03-11 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka Ultrasonic transducer arrangement for sensing sheets
US4328569A (en) * 1979-11-14 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Array shading for a broadband constant directivity transducer
DE2604048C2 (en) * 1975-02-03 1984-04-19 Raytheon Co., 02173 Lexington, Mass. Emitter group, the emitters of which are arranged in axially spaced rings that are coaxial to an axis of symmetry
DE3521473C2 (en) * 1984-06-15 1988-08-25 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa, Jp

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203162A (en) * 1964-04-10 1980-05-13 The United States Of America As Represented By The Secretary Of The Navy Electrically steerable spherical hydrophone array
FR2367289A1 (en) * 1976-10-11 1978-05-05 Anvar IMPROVEMENTS IN ACOUSTIC IMAGE TRAINING METHODS AND DEVICES
IT1162336B (en) * 1979-06-22 1987-03-25 Consiglio Nazionale Ricerche PROCEDURE FOR THE CREATION OF ULTRA ACOUSTIC TRANSDUCERS WITH CURTAIN OF LINES OR WITH A MATRIX OF POINTS AND TRANSDUCERS OBTAINED
FR2460075B1 (en) * 1979-06-22 1988-12-09 Cit Alcatel ADAPTIVE ECHO CANCELLER FOR DUPLEX DATA TRANSMISSION
DE3021449A1 (en) * 1980-06-06 1981-12-24 Siemens AG, 1000 Berlin und 8000 München ULTRASONIC TRANSDUCER ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF
FR2485858B1 (en) * 1980-06-25 1986-04-11 Commissariat Energie Atomique METHOD FOR MANUFACTURING ULTRASONIC TRANSDUCERS OF COMPLEX SHAPES AND APPLICATION TO OBTAINING ANNULAR TRANSDUCERS
US4409982A (en) * 1980-10-20 1983-10-18 Picker Corporation Ultrasonic step scanning utilizing curvilinear transducer array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469617A (en) * 1967-03-20 1969-09-30 Parkson Ind Equipment Co Method for stripping of volatile substanes from fluids
US3496617A (en) * 1967-11-08 1970-02-24 Us Navy Technique for curving piezoelectric ceramics
DE2604048C2 (en) * 1975-02-03 1984-04-19 Raytheon Co., 02173 Lexington, Mass. Emitter group, the emitters of which are arranged in axially spaced rings that are coaxial to an axis of symmetry
DE2645738A1 (en) * 1975-10-13 1977-04-21 Commw Of Australia ULTRASONIC BEAM SCANNING
US4307613A (en) * 1979-06-14 1981-12-29 University Of Connecticut Electronically focused ultrasonic transmitter
US4328569A (en) * 1979-11-14 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Array shading for a broadband constant directivity transducer
DE3124979A1 (en) * 1980-06-27 1982-03-11 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka Ultrasonic transducer arrangement for sensing sheets
DE3521473C2 (en) * 1984-06-15 1988-08-25 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa, Jp

Also Published As

Publication number Publication date
FR2553521A1 (en) 1985-04-19
EP0150634A1 (en) 1985-08-07
DE3471785D1 (en) 1988-07-07
ATE34863T1 (en) 1988-06-15
US4641660A (en) 1987-02-10
FR2553521B1 (en) 1986-04-11
JPS60150734A (en) 1985-08-08

Similar Documents

Publication Publication Date Title
EP0150634B1 (en) Transducer for ultrasonic echography provided with an array of elements forming a convex surface
EP0335759B1 (en) Ultrasonic anemometer
EP0543445B1 (en) Examination device for media by means of ultrasonic echography
EP0459583B1 (en) Ultrasonic echograph with phase aberration adaptive correction
EP0119911B1 (en) Method of ultrasonic imaging using a linear array of transducer elements
EP0003696A1 (en) Device for localizing a radiating source and its use in a system for direction marking
FR2763166A1 (en) Imaging system using a network of ultra-sonic transducers.
EP0333552B1 (en) Sonde, device for image formation with such a sonde and method for using the device
EP0225900B1 (en) Echograph probe and echograph provided with such a probe
FR2467413A1 (en) METHOD AND DEVICE FOR EXAMINING USING ULTRASONIC BEAMS
FR2570837A1 (en) ULTRASONIC PROBE FOR ELECTRONIC SECTOR SCAN AND ECHOGRAPH INCORPORATING SUCH A PROBE
EP0733408B1 (en) Ultrasonic sensor and detection method using such a sensor
FR2815723A1 (en) System and probe for obtaining images using waves emitted by an antennae after reflection of these waves from a illuminated target, used in radar, sonar or medical imaging systems
EP3463691B1 (en) Array of ultrasonic transducer elements
FR2688894A1 (en) FAST SIDE SONAR WITH MULTIPLE BEAMS COMPRISING LITTLE ELEMENTS AND METHOD FOR ITS IMPLEMENTATION.
EP0069677B1 (en) Device for ultrasonic echography to scan sectorially
EP0133135B1 (en) Ultrasonic search unit with several transducers of different dimensions
FR2466164A1 (en) ULTRASONIC TRANSDUCER WITH VARIABLE SENSITIVITY AND ULTRASONIC TRANSCEIVER DEVICE EQUIPPED WITH SAID TRANSDUCER
US4484476A (en) Acoustic microscope device
FR2686457A1 (en) Electronic scanning antenna
EP0040566B1 (en) Dynamically-focused sector-scan imaging unit
FR2755242A1 (en) Rapid ultrasonic inspection in opaque liquid for use in fast reactor
FR2559052A1 (en) Apparatus for ultrasound exploration by echotomography and Doppler effect and method of exciting ultrasonic transducers
FR2503938A1 (en) COMPACT DIFFERENTIAL COUPLER FOR RADAR MONOPULSE
WO2004055941A1 (en) Device for generating delays for beam synthesis apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19850918

17Q First examination report despatched

Effective date: 19870114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 34863

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3471785

Country of ref document: DE

Date of ref document: 19880707

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19890301

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900919

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900928

Year of fee payment: 7

Ref country code: BE

Payment date: 19900928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901030

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911031

BERE Be: lapsed

Owner name: CGR ULTRASONIC

Effective date: 19911031

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
27W Patent revoked

Effective date: 19920215

EUG Se: european patent has lapsed

Ref document number: 84402043.8

Effective date: 19920510