EP0150289B1 - Système de positionnement de machines de fours à coke - Google Patents
Système de positionnement de machines de fours à coke Download PDFInfo
- Publication number
- EP0150289B1 EP0150289B1 EP84113640A EP84113640A EP0150289B1 EP 0150289 B1 EP0150289 B1 EP 0150289B1 EP 84113640 A EP84113640 A EP 84113640A EP 84113640 A EP84113640 A EP 84113640A EP 0150289 B1 EP0150289 B1 EP 0150289B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- positioning
- identification
- signal
- markings
- coke oven
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B41/00—Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
Definitions
- the invention relates to an arrangement of the type referred to in the preamble of claim 1.
- a coke oven plant usually consists of a coke oven that is divided into several successive chambers, which are provided with openings that can be closed by chamber doors on the side and on the top.
- Operating machines which can be moved on rails and are suitable for operating each of the oven chambers after the respectively associated chamber doors have been opened are arranged on both longitudinal sides and on the top of the oven, i. H. to load the chamber in question and to empty it after the end of the coking process by pushing the glowing coke onto a fire truck. To ensure trouble-free operation, it is necessary to precisely position the operating machines at the right time.
- the center of the individual oven chambers is determined by additional magnets on the code plates and correspondingly arranged magnetic receivers on the operating machines.
- the reading device emits positive or negative voltages which, as setpoint values dependent on the direction of travel, influence the speed control of the travel drives until the machine in the center of the furnace is stopped with signal «0.
- a positioning method by magnetic means has a relatively flat running in the zero range curve of the magnetic field strength depending on the direction of motion and thus also the erzeu g- by the Hall generators th control voltage.
- the present invention is based on the object of designing an arrangement of the type mentioned at the outset in such a way that millimeter-precise positioning of the operating machines in a predetermined position is possible in spite of large amounts of dust and heat.
- the positioning arrangement of an operating machine consists of a travel detection module 1, to which a signal transmitter 2 for travel detection and an angular step signal transmitter 3 coupled to the drive motor are assigned.
- the location signal detected by this position detection module 1 is supplied to an identification and positioning module 4 as well as to a reference command value transmitter 5.
- This is connected to control electronics 6 for the drive motor 7 of the relevant operating machine, not shown. All units mentioned communicate via one Data bus 8 with a process computer, not shown.
- the identification and positioning module 4 is connected to a signal transmitter 9 arranged on the operating machine, which generates identification and positioning signals in a manner to be described in connection with signal plates (not shown) attached to the coke oven.
- the position detection module 1 After determining the respective location of the operating machine in question by the position detection module 1, the latter generates a location signal which is compared in the process computer with the target location value. From these two values, the command setpoint generator 5 is supplied with a signal determining the direction of movement. This gives the control electronics 6 a corresponding switch-on and direction of rotation command, the execution of which is reported via the data bus 8 to the process computer.
- the identification and positioning module 4 receives a release command from the position detection module 1 and directional information from the process computer. As soon as the signal generator 9 reaches a signal plate, the identification and positioning module 4 controls the guide setpoint generator 5 for the location-dependent speed setpoint output and issues start and stop commands. The location is determined with the aid of an identification code assigned to each breakpoint, while the breakpoint itself is determined in a manner to be described with the aid of two positioning markings arranged on each signal plate in cooperation with a corresponding number of light barriers assigned by the signal transmitters 9.
- FIG. 2 A possible embodiment of a signal generator 9 of the type described above with one of the assigned coding plates 10 is shown in FIG. 2.
- the signal transmitter 9 is expediently assigned to the operating machine to be controlled and the marking plate to the relevant furnace chamber.
- the U-shaped signal transmitter 9 has infrared light transmitters 11, 12, 15 in one of its legs and infrared light receivers 13, 14, 16 in the opposite leg. Each transmitter and receiver form an infrared light barrier.
- the arrangement is such that two of these light barriers with the transmitters 11 and 12 and the associated receivers 13 and 14 for precise positioning and the remaining 8, with respect to the aforementioned light barriers arranged upwards, with the transmitters 15 and the receivers 16 Identification of the stopping point assigned to the respective furnace chamber (reading device).
- the marking plate 10 has correspondingly arranged, infrared-opaque markings.
- the two lower markings 18, 19 projecting somewhat laterally from the support body 17 of the marking plate 10 are arranged such that they at least partially interrupt the two positioning light barriers 11, 13 and 12, 14 in the holding position. At least one of these markings is provided with an elongated hole in the direction of movement of the marking plate 10 for adjustment purposes, so that after loosening an adjusting screw 20 this marking can be adjusted by a certain amount in the direction of movement.
- the upper edge of the support body 17 is provided with identification markings 21 projecting outside. They are placed in such a way that they completely interrupt the identification light barriers 15, 16 assigned to them at the breakpoints. Due to the number and arrangement of these identification markings, a specific coding can be assigned to each breakpoint, so that a suitably programmed read memory is able to identify the breakpoint in question.
- Each of the infrared transmitters and infrared receivers is connected to the identification and positioning module 4, which evaluates the identification and positioning signals transmitted by the receivers 13, 14, 16 in connection with the central process computer.
- a functional diagram is shown, from which the principle of operation of the arrangement emerges.
- This includes a positioning light barrier 22, consisting of the positioning transmitter 23 with the transmitting diode 24 and the optical lens 25, and the positioning receiver 26 with the receiving diode 27 and the optical lens 28, and an identification light barrier 29, consisting of the identification transmitter 30 with the Transmitting diode 31 and the optical lens 32, and the identification receiver 33 with the receiver diode 34 and the optical lens 35 are shown.
- the transmitters and receivers of the aforementioned light barriers 22, 29 are connected to the identification and positioning assembly 4 via a cable 36.
- This has a logic module 37, a read memory 38 with a position indicator 39, a position evaluation module 40, an automatic read-monitoring module 41 and a power supply part 42.
- the process computer supplies the logic module 37 via line 43 with an enable signal, it switches on the positioning transmitter and receiver, so that their transmitter diodes emit infrared light, which is converted into parallel light beams by the associated optical lenses, which are emitted by the opposite optical lenses assigned to the receivers are focused on the receiver diode assigned to the respective light barrier.
- the marking plate 10 is initially outside the effective range of the light barriers and the operator machine in question is moving towards the signal transmitter.
- the outer edge of the positioning marker 19 first reaches the positioning light barrier 11, 13 facing it, so that it crosses the cross section of the light beam from zero over a maximum value in the middle of the light barrier runs through until complete interruption at the end (Fig. 2). The one assigned to this light barrier.
- Positioning receiver transmits this via the position evaluation module 40, which supplies the process computer with a start marking pulse via line 44, and the logic module 37 of the identification and positioning module 4.
- This has at the beginning of the journey from the process computer via Line 45 receives a target direction specification information and now checks whether the direction of movement of the operating machine corresponds to the desired direction specification. If this is not the case, the process computer stops the drive 7 via the control electronics 6 by means of a corresponding control pulse at the control setpoint generator 5 and, by means of further control pulses, reverses the direction of rotation and restarts the drive machine 7 in the opposite direction.
- the position evaluation module feeds the process computer a “pre-position impulse” via line 46, whereupon the latter instructs the command setpoint generator 5 to switch to “creep speed” during one of the path detection Assembly 1 predetermined path of the operating machine.
- the position evaluation module 40 receives a corresponding pulse from the assigned positioning receiver and reports this to the logic module 37, which in turn reads the memory 38 and puts the identification transmitter and the identification receiver into operation. The identification receivers then feed their identification pulses to the read memory 38, which then forwards the read coding via the data bus 47 to the process computer.
- the process computer reports this to the logic module 37, which resets the position evaluation module 40, so that the drive of the operating machine concerned is not stopped, thus eliminating the "creep speed" and the Operating machine can continue their way with normal driving.
- the position evaluation module 40 sends an “in-position signal” to the process computer via line 48 when the desired position is reached.
- the position evaluation module 40 supplies the guide setpoint generator 5 with a stop signal, which in turn via the control electronics 6 Drive motor 7 of the operating machine stops.
- the read memory 38 outputs its content in a position display 39, which displays the position reached in digital form.
- the logic module 37 receives an enable and renewed directional signal from the process computer.
- the position evaluation module 40 sends a “post-position pulse” to the process computer via line 48.
- the automatic reading monitoring module 41 is released, which constantly checks the reading device 15, 16 for errors if both positioning light barriers 11, 13 and 12, 14 are not covered. If an error occurs, position evaluation module 40 and read memory are reset and the error is reported to the process computer. This decides whether the journey is continued or interrupted.
- the position evaluation module of the identification and positioning module assigned to this signal transmitter sends a corresponding signal to the process computer and the process described is repeated.
- the position marker 18 is provided with an elongated hole.
- the sensitivity and tolerance of the position markers it is possible to set the sensitivity and tolerance of the position markers to the desired value and thus also the hysteresis, i. H. to optimize the deviation of the target position depending on the direction of travel, d. H. to choose the most favorable value depending on the various parameters of the operating machine.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Coke Industry (AREA)
- Control Of Conveyors (AREA)
- Length Measuring Devices By Optical Means (AREA)
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84113640T ATE26995T1 (de) | 1984-01-26 | 1984-11-12 | Anordnung zur feinpositionierung von kokereimaschinen. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19843402690 DE3402690A1 (de) | 1984-01-26 | 1984-01-26 | Anordnung zur feinpositionierung von kokereimaschinen |
DE3402690 | 1984-01-26 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0150289A2 EP0150289A2 (fr) | 1985-08-07 |
EP0150289A3 EP0150289A3 (en) | 1985-09-04 |
EP0150289B1 true EP0150289B1 (fr) | 1987-05-06 |
EP0150289B2 EP0150289B2 (fr) | 1999-07-14 |
Family
ID=6225986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84113640A Expired - Lifetime EP0150289B2 (fr) | 1984-01-26 | 1984-11-12 | Système de positionnement de machines de fours à coke |
Country Status (5)
Country | Link |
---|---|
US (1) | US4557805A (fr) |
EP (1) | EP0150289B2 (fr) |
AT (1) | ATE26995T1 (fr) |
CA (1) | CA1233542A (fr) |
DE (2) | DE3402690A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3806224A1 (de) * | 1988-02-26 | 1989-09-07 | Siemens Ag | Vorrichtung zur wegverfolgung eines bewegten objektes, insbesondere einer gewinnungsmaschine im bergbau |
DE102005059296B3 (de) * | 2005-12-09 | 2007-09-13 | Schalker Eisenhütte Maschinenfabrik Gmbh | Verfahren zur Positionskontrolle und zur Positionierung einer Koksausdrückeinrichtung sowie Koksausdrückmaschine |
KR20080086991A (ko) | 2005-12-09 | 2008-09-29 | 샬커 아이젠휴테 마쉬넨파브릭 게엠베하 | 코크스 방출장치의 위치 모니터링 방법 및 코크스 방출기 |
DE102008011552B4 (de) * | 2008-02-28 | 2012-08-30 | Thyssenkrupp Uhde Gmbh | Verfahren und Vorrichtung zur Positionierung von Bedieneinheiten eines Kohlefüllwagens an Füllöffnungen eines Koksofens |
DE102010004367A1 (de) * | 2010-01-12 | 2011-07-14 | Flsmidth A/S | Ofenbedieneinheit für eine Verkokungsbatterie einer Verkokungsanlage |
CN101851519B (zh) * | 2010-06-01 | 2013-06-19 | 大连华锐重工集团股份有限公司 | 焦炉机械炉号识别检测装置 |
CN102559216A (zh) * | 2011-12-31 | 2012-07-11 | 山西沁新能源集团股份有限公司 | 一种清洁型热回收焦炉配套三大车自动对位系统 |
CN102980473B (zh) * | 2012-12-05 | 2015-11-04 | 大连华锐重工集团股份有限公司 | 一种高精度位置检测装置及其定位方法 |
DE102013104210A1 (de) * | 2013-04-25 | 2014-11-13 | Koch Industrieanlagen Gmbh | Maschine zur Bedienung einer Batterie von Verkokungsöfen |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7009105A (fr) * | 1969-06-27 | 1970-12-29 | ||
BE794364A (fr) * | 1972-01-26 | 1973-05-16 | Siemens Ag | Installation pour determiner le point de stationnement et l'arret prevu des vehicules de cokerie |
DE2648049A1 (de) * | 1976-10-23 | 1978-04-27 | Bergwerksverband Gmbh | Verfahren zur steuerung und ueberwachung des betriebes von koksofenbedienungsmaschinen und anderer, den verkokungsoefen zugeordneter einrichtungen |
FR2392102A1 (fr) * | 1977-05-26 | 1978-12-22 | Koppers Co Inc | Systeme de centrage de machine d'exploitation de four a coke |
SU883147A1 (ru) * | 1980-02-05 | 1981-11-23 | Государственное конструкторское бюро коксохимического машиностроения | Устройство дл дистанционного управлени коксовыми машинами |
SU889682A1 (ru) * | 1980-03-27 | 1981-12-15 | Конструкторское Бюро Гипрококса По Автоматизации И Механизации Производственных Процессов На Коксохимических Предприятиях | Устройство дл определени загрузки печей коксовой батареи |
SU912747A1 (ru) * | 1980-07-14 | 1982-03-15 | Государственное конструкторское бюро коксохимического машиностроения | Устройство дл управлени коксовой машины |
JPS58180582A (ja) * | 1982-04-16 | 1983-10-22 | Koubukuro Kosakusho:Kk | コ−クス炉作業機械の走行制御装置 |
JPS5949286A (ja) * | 1982-09-14 | 1984-03-21 | Toshiba Corp | 移動機制御方法 |
-
1984
- 1984-01-26 DE DE19843402690 patent/DE3402690A1/de not_active Withdrawn
- 1984-11-12 EP EP84113640A patent/EP0150289B2/fr not_active Expired - Lifetime
- 1984-11-12 AT AT84113640T patent/ATE26995T1/de not_active IP Right Cessation
- 1984-11-12 DE DE8484113640T patent/DE3463524D1/de not_active Expired
-
1985
- 1985-01-24 CA CA000472719A patent/CA1233542A/fr not_active Expired
- 1985-01-25 US US06/695,070 patent/US4557805A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE3463524D1 (en) | 1987-06-11 |
ATE26995T1 (de) | 1987-05-15 |
EP0150289A2 (fr) | 1985-08-07 |
CA1233542A (fr) | 1988-03-01 |
EP0150289B2 (fr) | 1999-07-14 |
EP0150289A3 (en) | 1985-09-04 |
US4557805A (en) | 1985-12-10 |
DE3402690A1 (de) | 1985-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0388390B1 (fr) | Système de mesure incrémentiel | |
DE3311204C2 (fr) | ||
DE2722222C2 (de) | Steuersystem für ein unbemanntes Arbeitsfahrzeug | |
EP0150289B1 (fr) | Système de positionnement de machines de fours à coke | |
EP1230563A1 (fr) | Procede et dispositif pour adjoindre un outil a une piece | |
EP0742504A2 (fr) | Dispositif de commande numérique d'une machine-outil ou d'un robot | |
WO2003079772A1 (fr) | Procede permettant de faire fonctionner un dispositif de traite et dispositif de traite | |
WO1993006303A1 (fr) | Procede de mesurage de voies de chemin de fer | |
EP0819913A1 (fr) | Procédé et dispositif pour positionner des pièces de machine à déplacement non linéaire et plus particulièrement rotationnel | |
EP0320683B1 (fr) | Installation de conduite de véhicules de transport pourvus au moins d'une roue orientable et d'une transmission de signal de détermination de direction sur le véhicule de transport | |
DE4411263C2 (de) | Verfahren zur Überprüfung der Führungsgenauigkeit einer Brennschneidmaschine und Anordnung zur Durchführung des Verfahrens | |
EP0404787B1 (fr) | Installation de fabrication et/ou de montage de composants | |
EP0381658A2 (fr) | Système de mesure incrémental | |
EP0294731A2 (fr) | Ligne de fabrication et procédé de fabrication de pièces sur celle-ci | |
DE2621939C2 (de) | Steuer- und Kontrolleinrichtung zur Positionierung eines Fahrzeuges, insbesondere Lagerfahrzeuges | |
DE3408720A1 (de) | Gleisloses flurfoerdersystem | |
DE3709129C2 (fr) | ||
EP0937965B1 (fr) | Système de positionnement | |
DE102007031218B4 (de) | Vorrichtung, Etikettiermaschine und Verfahren zum Betreiben einer Vorrichtung | |
DE4012668A1 (de) | Rocar-steuerung | |
EP0120197A1 (fr) | Procédé et dispositif pour acquérir et compenser la déviation de la voie d'un robot industriel | |
EP0041918B1 (fr) | Dispositif de codage pour marques de destination de récipients | |
DE102017221213A1 (de) | Transportgutträger, Transportsystem und Verfahren zum Transport eines Transportguts unter Verwendung einer Fahrsteuerung | |
EP3507096A1 (fr) | Machine de traitement comprenant plusieurs postes de traitement pour le traitement de corps | |
CH654780A5 (en) | Apparatus for advancing and withdrawing units to be exchanged of a machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE GB SE |
|
AK | Designated contracting states |
Designated state(s): AT BE DE GB SE |
|
17P | Request for examination filed |
Effective date: 19851009 |
|
17Q | First examination report despatched |
Effective date: 19860718 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE GB SE |
|
REF | Corresponds to: |
Ref document number: 26995 Country of ref document: AT Date of ref document: 19870515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3463524 Country of ref document: DE Date of ref document: 19870611 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: FOTOELEKTRIK PAULY GMBH Effective date: 19880123 |
|
26 | Opposition filed |
Opponent name: INDUSTRONIC INDUSTRIE-ELECTRONIC GMBH & CO. KG Effective date: 19880205 Opponent name: FOTOELEKTRIK PAULY GMBH Effective date: 19880123 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: FOTOELEKTRIK PAULY GMBH * 880205 INDUSTRONIC INDU Effective date: 19880123 |
|
R26 | Opposition filed (corrected) |
Opponent name: FOTOELEKTRIK PAULY GMBH * 880205 INDUSTRONIC INDU Effective date: 19880123 |
|
R26 | Opposition filed (corrected) |
Opponent name: FOTOELEKTRIK PAULY GMBH * 880205 INDUSTRONIC INDU Effective date: 19880123 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 84113640.1 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19971027 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19971113 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19971114 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19971118 Year of fee payment: 14 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981112 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981113 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. BERLIN UND MUNCHEN Effective date: 19981130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19981112 |
|
27A | Patent maintained in amended form |
Effective date: 19990714 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE DE GB SE |
|
EUG | Se: european patent has lapsed |
Ref document number: 84113640.1 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030120 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040602 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |