EP0149619A1 - Verfahren zur erzeugung eines referenzpotentials bei potentiometrischen lambdasonden - Google Patents

Verfahren zur erzeugung eines referenzpotentials bei potentiometrischen lambdasonden

Info

Publication number
EP0149619A1
EP0149619A1 EP84901968A EP84901968A EP0149619A1 EP 0149619 A1 EP0149619 A1 EP 0149619A1 EP 84901968 A EP84901968 A EP 84901968A EP 84901968 A EP84901968 A EP 84901968A EP 0149619 A1 EP0149619 A1 EP 0149619A1
Authority
EP
European Patent Office
Prior art keywords
lean
rich
electrode
counter electrode
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP84901968A
Other languages
German (de)
English (en)
French (fr)
Inventor
Hermann Fischer
Roland Stahl
Günther STRAUB
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0149619A1 publication Critical patent/EP0149619A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures

Definitions

  • the invention is based on aiaea method according to the type of the main claim.
  • the most common type of lambda probe so far uses the oxygen partial pressure of the air as a reference, so the counter electrode of these probes is in contact with the outside air.
  • the construction of lambda probe ⁇ becomes simpler if it is possible to expose both the measuring electrode and the counter electrode to the exhaust gas. This also facilitates the possibility of going from a tubular structure to a platelet structure. It yields; the difficulty, however, of creating a reference potential at the counterelectrode from the same gas to which the measuring electrode is also exposed.
  • Various possible solutions have already been proposed here.
  • DE-OS 25 47 633 shows a counter electrode, which is made of a kataiy-isch inactive material, so that there is a potential difference between this electrode and the catalytically active measuring electrode.
  • the disadvantage of such a solution can be seen in the fact that there are hardly any materials which are catalytically inactive for a long time, since these materials gradually acquire a certain catalytic activity as a result of the operating conditions, so that the reference potential is gradually shifted.
  • FIG. 1 shows the simplified representation of a lean reference
  • FIG. 2 schematically shows the voltage / time curves of this lean reference
  • FIG. 3 functional curves of the lambda probe
  • FIG. 4 shows the simplified representation of a rich reference
  • FIG. 5 finally schematically shows the voltage / time surfing of the rich reference according to FIG 4 ..
  • FIG. 1 shows a lean reference, ie a counter electrode, in which the response time when the sample gas changes from rich to lean is shorter than the response time when changing from lean to rich.
  • the lambda probe consists of a plate made of stabilized zirconium dioxide, which on one side carries the measuring electrode 2, which in a known manner can consist of platinum or a piazin-zirconium dioxide mixture.
  • a conductor track 3 for the electrical connection of this electrode is connected to the measuring electrode 2.
  • the opposite side of the cookie 1 carries the electrode 4, which corresponds in its structure to the measuring electrode 2 and to which a conductor track 5 is connected for electrical contact.
  • About half of the electrode h is covered with a gas-tight glaze 6, for example from a 3-arium borate glass.
  • FIG. 3a shows the course of the lambda value over time, which is brought about by the lambda probe itself in cooperation with a control device.
  • Figure 3b shows the voltage of the counter electrode described - measured z. 3. against an air reference - with the lambda curve according to FIG. 3a. These curves were derived from those in FIG. 2 for a plurality of successive lambda changes.
  • FIG. 3c shows the voltage of a conventional lambda probe electrode - measured against air reference. This Eiekzrode serves as a measuring electrode.
  • FIG. 3a shows the course of the lambda value over time, which is brought about by the lambda probe itself in cooperation with a control device.
  • Figure 3b shows the voltage of the counter electrode described - measured z. 3. against an air reference - with the lambda curve according to FIG. 3a. These curves were derived from those in FIG. 2 for a plurality of successive lambda changes.
  • FIG. 3c shows the voltage of a conventional lambda probe
  • the voltage of a sensor according to the invention with fez reference can be made in the same way by forming a difference be obtained as described above in the lean reference. By reversing the polarity, a sensor signal is obtained which is compatible both with signals from probes with an air reference and with signals from probes with a lean reference according to the invention.
  • electrodes of this type with asymmetrical response times can only serve as a reference if a regulation is provided which brings about a constant change between rich and lean.
  • the control frequency is approximately one Hz.
  • the slow process taking place at the counterelectrode takes at least approximately as long as a control oscillation. This must be taken into account when coordinating the regulation and design of the counter electrode. If the process slowly taking place on the counter electrode takes less time than a control oscillation, the entire system takes too long to settle.
  • the lambda probe for example, also carries a heater on the side of the measuring electrode, since the functionality of the solid electrolyte only occurs at a specific threshold temperature, which, depending on the festival, causes electriometry between 300 and lies at 400 °.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
EP84901968A 1983-05-27 1984-05-09 Verfahren zur erzeugung eines referenzpotentials bei potentiometrischen lambdasonden Withdrawn EP0149619A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3319186 1983-05-27
DE19833319186 DE3319186A1 (de) 1983-05-27 1983-05-27 Verfahren zur erzeugung eines referenzpotentials bei potentiometrischen lambdasonden

Publications (1)

Publication Number Publication Date
EP0149619A1 true EP0149619A1 (de) 1985-07-31

Family

ID=6199972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84901968A Withdrawn EP0149619A1 (de) 1983-05-27 1984-05-09 Verfahren zur erzeugung eines referenzpotentials bei potentiometrischen lambdasonden

Country Status (6)

Country Link
EP (1) EP0149619A1 (it)
JP (1) JPS60501474A (it)
DE (1) DE3319186A1 (it)
ES (1) ES8503130A1 (it)
IT (1) IT1178480B (it)
WO (1) WO1984004816A1 (it)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111431A1 (de) 2020-06-29 2021-12-30 Dräger Safety AG & Co. KGaA Überwachungssystem

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006168A1 (en) * 1985-04-17 1986-10-23 Bayer Diagnostic + Electronic Gmbh Electro-chemical sensor
DE3931235A1 (de) * 1989-09-19 1991-03-28 Max Planck Gesellschaft Sensor zum messen des partialdrucks eines gases

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2304464C2 (de) * 1973-01-31 1983-03-10 Robert Bosch Gmbh, 7000 Stuttgart Meßfühler für die Überwachung der Funktionsfähigkeit von Katalysatoren in Abgas
CA1015827A (en) * 1974-11-18 1977-08-16 General Motors Corporation Air/fuel ratio sensor having catalytic and noncatalytic electrodes
JPS5274385A (en) * 1975-12-18 1977-06-22 Nissan Motor Airrfuel ratio detector
GB2004067A (en) * 1977-09-09 1979-03-21 Bendix Autolite Corp Solid electrolyte exhaust gas oxygen sensor
JPS54149698A (en) * 1978-05-16 1979-11-24 Nippon Denso Co Ltd Oxygen concentration detector
FR2444272A1 (fr) * 1978-12-12 1980-07-11 Thomson Csf Capteur electrochimique des concentrations d'especes dans un melange fluide du type a electrode de reference interne de pression partielle
US4253934A (en) * 1979-04-17 1981-03-03 General Motors Corporation Aging treatment for exhaust gas oxygen sensor
JPS6034062B2 (ja) * 1979-05-25 1985-08-06 日産自動車株式会社 空燃比検出装置
DE2922131A1 (de) * 1979-05-31 1980-12-18 Bosch Gmbh Robert Polarographischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen, insbesondere in abgasen von verbrennungsmotoren
JPS58158553A (ja) * 1982-03-17 1983-09-20 Toyota Motor Corp 酸素センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8404816A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111431A1 (de) 2020-06-29 2021-12-30 Dräger Safety AG & Co. KGaA Überwachungssystem
WO2022002555A1 (de) 2020-06-29 2022-01-06 Dräger Safety AG & Co. KGaA Überwachungssystem

Also Published As

Publication number Publication date
IT8421098A1 (it) 1985-11-25
WO1984004816A1 (en) 1984-12-06
JPS60501474A (ja) 1985-09-05
ES532854A0 (es) 1985-02-01
IT8421098A0 (it) 1984-05-25
IT1178480B (it) 1987-09-09
ES8503130A1 (es) 1985-02-01
DE3319186A1 (de) 1984-11-29

Similar Documents

Publication Publication Date Title
DE3010632C2 (it)
DE69714112T2 (de) Oxidsensor
DE3405576C2 (it)
DE69730054T2 (de) Verfahren zur Bestimmung von Stickoxyd
DE69533778T2 (de) Verfahren zum Messen einer Gaskomponente
EP0627078B1 (de) Sensor zur bestimmung von gaskomponenten und/oder von gaskonzentrationen von gasgemischen
DE3028274C2 (de) Einrichtung zum Erzeugen eines Steuersignals für die Rückkopplungssteuerung des Luft-Kraftstoff-Verhältnisses eines Luft-Kraftstoff-Gemisches für eine Brennkraftmaschine
DE3543759C2 (de) Luft/Kraftstoff-Verhältnisdetektor
DE69703018T2 (de) Verfahren und Vorrichtung zur Messung der Stickstoffoxidkonzentration
DE68917821T2 (de) Messung und Kontrolle des Abgaskreislaufs mit einer Sauerstoffpumpvorrichtung.
DE68919970T2 (de) Sensor zur Bestimmung der relativen Quantität von einem Sauerstoff enthaltenden Gas in einer Gasmischung.
DE3021745A1 (de) Vorrichtung zur bestimmung des luft/brennstoff-verhaeltnisses in einem auspuffgas
DE69209562T2 (de) Verfahren und Vorrichtung zur Bestimmung von Stickstoffoxiden
EP0020938A1 (de) Polarographischer Messfühler für die Bestimmung des Sauerstoffgehaltes in Gasen, insbesondere in Abgasen von Verbrennungsmotoren
DE2917160A1 (de) Verfahren zum feststellen eines luft-brennstoff-verhaeltnisses in verbrennungseinrichtungen durch messung des sauerstoffgehalts im abgas
DE3022282A1 (de) Vorrichtung zur bestimmung des luft/ brennstoff-verhaeltnisses
DE3508153A1 (de) Brennstoffzelle
DE2922218A1 (de) Sauerstoff/brennstoff-ueberwachungsgeraet
DE3343405A1 (de) Fuehler zum bestimmen des luft/brennstoff-verhaeltnisses im ansauggas einer brennkraftmaschine
DE4344826C2 (de) Mehrlagiger Dünnschicht-Luft/Kraftstoffverhältnis-Sensor
DE3445755A1 (de) Luft/kraftstoffverhaeltnis-detektor
DE69733509T2 (de) Sensoranordnung zur Bestimmung von Stickstoffoxiden
DE3405162A1 (de) Polarographischer sauerstoffmessfuehler
DE3609227C2 (it)
DE10324408A1 (de) Gassensorelement zur Messung wasserstoffhaltiger Gase und Messverfahren, bei dem dieses Gassensorelement Verwendung findet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841119

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19880601

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STRAUB, GUENTHER

Inventor name: STAHL, ROLAND

Inventor name: FISCHER, HERMANN