EP0148495B1 - Multivalent radiator for space heating - Google Patents

Multivalent radiator for space heating Download PDF

Info

Publication number
EP0148495B1
EP0148495B1 EP84116177A EP84116177A EP0148495B1 EP 0148495 B1 EP0148495 B1 EP 0148495B1 EP 84116177 A EP84116177 A EP 84116177A EP 84116177 A EP84116177 A EP 84116177A EP 0148495 B1 EP0148495 B1 EP 0148495B1
Authority
EP
European Patent Office
Prior art keywords
convector
radiator
lamellae
convectors
operated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84116177A
Other languages
German (de)
French (fr)
Other versions
EP0148495A2 (en
EP0148495A3 (en
Inventor
Ulrich Grigat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT84116177T priority Critical patent/ATE41226T1/en
Publication of EP0148495A2 publication Critical patent/EP0148495A2/en
Publication of EP0148495A3 publication Critical patent/EP0148495A3/en
Application granted granted Critical
Publication of EP0148495B1 publication Critical patent/EP0148495B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight

Definitions

  • the invention relates to a radiator for room air heating with convectors acted upon by heating media from different energy sources and at different temperature levels, which carry heat-conducting fins, which, according to their temperature level with thermal insulation distance between them, divide an air duct in the direction of flow into many rising, open at the top and bottom .
  • Such multivalent radiators are used, for example, to a conventional convector by connecting a z. B. to support with solar energy or flue gas operated convector.
  • the known multivalent heating system according to DE-A-2 945 071 has the disadvantage that the overall efficiency is impaired by thermal feedback, be it by turbulence in the air flow or by conduction of heat from the convector system to the convector system at a lower temperature and the efficiency remains below 50%.
  • the invention is therefore based on the object of suppressing the thermal feedback from the convector system to the convector system of low temperature in the multivalent radiator system of the type described in DE-A-2 945 071.
  • This object is achieved in that the slats of the convector of higher temperature with the slats of the convector of low temperature are connected with each other by keeping the open cables by thermal bridges made of a poorly conductive material. This results in a multivalent heating system with undisturbed laminar air flow and practically non-reactive heat exchange in several, spatially and thermally superimposed stages. This creates a so-called mode of operation between the upper convector with a higher working temperature and the lower convector with a lower working temperature.
  • the fins are arranged at a heat-insulating distance from one another.
  • the invention is primarily concerned with excluding feedback via the shaft wall.
  • the arrangement of heat-insulating zones made of heat-insulating solid material is particularly important in the area of the adjacent lamella edges in order to avoid air vortices in this area.
  • it is even more important to exclude the heat conduction from the convector to the convector of lower temperature, which is present in the known radiator according to DE-A-2 945 071 via the shaft wall.
  • this heat conduction is suppressed in the invention in that the heat feedback is also suppressed via the path of indirect heat conduction via the shaft wall through thermal insulation zones.
  • the examples of a multivalent radiator shown in the drawing are used for room air heating with convectors acted on from different energy sources, a lower convector 1 and an upper convector 2.
  • the convectors 1 are arranged in a common air duct. They are operated by heating media M 1 and M 2 from different heating sources, the upper convector 2 from a conventional heating source, the lower convector 1 from an auxiliary heating source, in particular for the use of solar energy.
  • the tubular convectors 1 and 2 are covered with rectangular slats 3 and 4. Between the convector zone a of the lower temperature and the convector zone c of the higher temperature there is a transition zone b in which the lamellae 3 and 4 forming vertical trains 14 are separated from each other, either by a separation gap 8 or by insulating bridges 11 poorly heat-conducting material, for example plastic (see FIGS. 6 and 7).
  • the shaft 5 is formed by a metallic one running from top to bottom Shaft wall 5 limited.
  • a heat insulation zone is switched on in the heat conduction path from the convector zone c to the convector zone a in order to prevent thermal feedback via heat conduction paths.
  • the outer metallic shaft wall 5 is lined overall by an inner insulating wall 6 made of plastic or other, poorly heat-conducting material to form the thermal insulation zone. 3, this lining can be interrupted in the transition zone b.
  • FIG. 4 the lining is replaced by insulation strips 7 with which the slats 3, 4 are connected to the metal shaft wall 5.
  • the lining can also, as FIG. 9 shows, be designed as an insulation collar, which adjoin one another from lamella 3 to lamella 4 and likewise form a continuous lining.
  • FIGS. 6 and 7 show lamellae 3, 4 with a solid body connection by means of insulating bridges 11.
  • This embodiment is distinguished in particular by that continuous, that is, uninterrupted trains 14 are formed via the convector systems, which ensure an undisturbed ascending laminar air flow which is only subjected to the thermals. This prevents feedback from both heat conduction and air flow due to eddy formation.
  • FIG. 5 shows an embodiment in which the slats 4 of the upper convector 2 are connected directly to the metal shaft wall 5.
  • the feedback by heat conduction to the lower convector 1 is avoided by switching on an insulation barrier 9 between the metallic wall above and below. If heat radiation is to take place in the area of the upper convector 2, the slats 4 of this convector 2 can be connected in a heat-conducting manner to the upper shaft wall 5 ′′, while the slats 3 of the lower convector 1 against the lower metal shaft wall 5 ′ through an insulating wall or through Insulation strips 7 are thermally insulated, which means that the thermal energy of the lower convector 1 is largely used to support the upper convector 2.
  • a flap 15 can be provided on the upper exit side of the shaft, through which a baffle surface for deflecting the warm air, This flap 15 can also be arranged so that it can be deflected so that, if necessary, the warm air flow is deflected away from the window front into the room.

Abstract

1. Radiator for space heating with convectors supplied from different energy sources. The upper convector (2) is operated by means of a heating medium of a higher temperature and the lower convector (1) is operated by means of a heating medium of a lower temperature. The convectors are equipped with heatconducting lamellae (3, 4) - arranged one after the other in flow direction - that divide an air duct into a number of continuously ascending open flues (14). The radiator is characterized by the fact that the lamellae (4) of the higher temperature convector are connected with the lamellae (3) of the lower temperature convector by means of heat insulating bridges (11) made of a material of minor heat conductivity, such that the open flues (14) are kept free.

Description

Die Erfindung bezieht sich auf einen Heizkörper zur Raumluftbeheizung mit durch Heizmedien aus unterschiedlichen Energiequellen und verschieden hoher Temperaturstufen beaufschlagten Konvektoren, welche wärmeleitende Lamellen tragen, die entsprechend ihrer Temperaturstufe mit wärmedämmendem Abstand untereinanderliegend, einen Luftschacht in Strömungsrichtung in viele aufsteigende, unten und oben offene Züge unterteilen. Solche multivalenten Heizkörper werden beispielsweise eingesetzt, um einen Konvektor herkömmlicher Art durch Vorschaltung eines z. B. mit Sonnenenergie oder aus Rauchgasabwärme betriebenen Konvektors zu unterstützen.The invention relates to a radiator for room air heating with convectors acted upon by heating media from different energy sources and at different temperature levels, which carry heat-conducting fins, which, according to their temperature level with thermal insulation distance between them, divide an air duct in the direction of flow into many rising, open at the top and bottom . Such multivalent radiators are used, for example, to a conventional convector by connecting a z. B. to support with solar energy or flue gas operated convector.

Das bekannte multivalente Heizsystem nach der DE-A-2 945 071 hat den Nachteil, daß der Gesamtwirkungsgrad durch thermische Rückkoppelung, sei es durch Turbulenzen der Luftströmung oder durch Värmeleitung vom Konvektorsystem höherer zum Konvektorsystem niederer Temperatur beeinträchtigt wird und wirkungsgradmäßig unterhalb 50 % verbleibt. Der Erfindung liegt deshalb die Aufgabe zugrunde, im multivalenten Heizkörpersystem der nach der DE-A-2 945 071 bezeichneten Art die thermische Rückkoppelung vom Konvektorsystem höherer zum Konvektorsystem niederer Temperatur zu unterdrücken.The known multivalent heating system according to DE-A-2 945 071 has the disadvantage that the overall efficiency is impaired by thermal feedback, be it by turbulence in the air flow or by conduction of heat from the convector system to the convector system at a lower temperature and the efficiency remains below 50%. The invention is therefore based on the object of suppressing the thermal feedback from the convector system to the convector system of low temperature in the multivalent radiator system of the type described in DE-A-2 945 071.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Lamellen des Konvektors höherer Temperatur mit den Lamellen des Konvektors niederer Temperatur unter Freihaltung der offenen Züge durch Wärmedämmbrücken aus einem schlecht leitenden Material miteinander verbunden sind. Dadurch ergibt sich ein multivalentes Heizsystem mit ungestörter laminarer Strömung der Luft und praktisch rückwirkungsfreiem Wärmeaustausch in mehreren, räumlich und thermisch übereinanderliegenden Stufen. Hierbei entsteht zwischen dem oberen Konvektor mit höherer Arbeitstemperatur und dem unteren Konvektor mit niederer Arbeitstemperatur eine sogartige Arbeitsweisen.This object is achieved in that the slats of the convector of higher temperature with the slats of the convector of low temperature are connected with each other by keeping the open cables by thermal bridges made of a poorly conductive material. This results in a multivalent heating system with undisturbed laminar air flow and practically non-reactive heat exchange in several, spatially and thermally superimposed stages. This creates a so-called mode of operation between the upper convector with a higher working temperature and the lower convector with a lower working temperature.

Nach der aus der DE-A-2 945 071 bekannten Entwicklung sind die Lamellen zwar mit wärmedämmendem Abstand von einander angeordnet. Es besteht jedoch der Nachteil, daß eine thermische Rückkoppelung zwischen den beiden Konvektoren über die Schachtwandung hinweg gegeben ist. Darum geht es bei der Erfindung hier in erster Linie darum, die Rückkoppelung über die Schachtwandung auszuschließen.Die Anordnung von Wärmedämmzonen aus wärmedämmendem Feststoff ist im Bereich der benachbarten Lamellenkanten besonders wichtig zur Vermeidung von Luftwirbeln in diesem Bereich. Noch viel wichtiger ist es jedoch, die Wärmeleitung vom Konvektor höherer zum Konvektor niederer Temperatur auszuschließen, welche bei dem bekannten Heizkörper nach der DE-A-2 945 071 über die Schachtwandung vorliegt. Diese Wärmeleitung wird bei der Erfindung im Gegensatz zu der bekannten Technik dadurch unterdrückt, daß die Wärmerückkoppelung auch über den Weg mittelbarer Wärmeleitung über die Schachtwandung durch Wärmedämmzonen unterdrückt werden.According to the development known from DE-A-2 945 071, the fins are arranged at a heat-insulating distance from one another. However, there is the disadvantage that there is thermal feedback between the two convectors across the shaft wall. This is why the invention is primarily concerned with excluding feedback via the shaft wall. The arrangement of heat-insulating zones made of heat-insulating solid material is particularly important in the area of the adjacent lamella edges in order to avoid air vortices in this area. However, it is even more important to exclude the heat conduction from the convector to the convector of lower temperature, which is present in the known radiator according to DE-A-2 945 071 via the shaft wall. In contrast to the known technology, this heat conduction is suppressed in the invention in that the heat feedback is also suppressed via the path of indirect heat conduction via the shaft wall through thermal insulation zones.

In der Zeichnung ist die Erfindung an einigen Ausführungsbeispielen veranschaulicht. Es zeigt

  • Fig. 1 in einem Vertikalschnitt nach nach der Linie I/I der Fig. 2 einen zweistufigen multivalenten Heizkörper,
  • Fig. 2 einen Vertikalschnitt nach der Linie 11/11 der Fig. 1 und 2,
  • Fig. 3 eine andere Ausführungsform der Übergangszone b der Fig. 1 und 2,
  • Fig. 4 eine Ausführungsform mit Dämmleisten zum Anschluß der Konvektorlamellen an die Schachtwandung,
  • Fig. 5 eine andere Gestaltung der Übergangszone,
  • Fig. 6 eine Ausführungsform mit Dämmbrücken zwischen den Lamellen benachbarter Konvektoren,
  • Fig. 7 einen Schnitt nach der Linie VII/VII der Fig. 6,
  • Fig. 8 eine Ausführungsform mit Luftspalt zwischen den Lamellen benachbarter Konvektoren und zwischen den Lamellen und der Schachtwandung,
  • Fig. 9 eine Ausführung mit kragenförmigen Dämmleisten,
  • Fig. 10 eine Ausführung mit oberer Schachtwandung aus Dämmstoff.
In the drawing, the invention is illustrated in some embodiments. It shows
  • 1 is a vertical section along the line I / I of FIG. 2, a two-stage multivalent radiator,
  • 2 shows a vertical section along the line 11/11 of FIGS. 1 and 2,
  • 3 shows another embodiment of the transition zone b of FIGS. 1 and 2,
  • 4 shows an embodiment with insulating strips for connecting the convector slats to the shaft wall,
  • 5 shows another design of the transition zone,
  • 6 shows an embodiment with insulating bridges between the lamellae of adjacent convectors,
  • 7 shows a section along the line VII / VII of FIG. 6,
  • 8 shows an embodiment with an air gap between the lamellae of adjacent convectors and between the lamellae and the shaft wall,
  • 9 shows an embodiment with collar-shaped insulating strips,
  • Fig. 10 shows an embodiment with an upper shaft wall made of insulating material.

Die in der Zeichnung dargestellten Beispiele eines multivalenten Heizkörpers dienen zur Raumluftbeheizung mit aus verschiedenen Energiequellen beaufschlagten Konvektoren, einem unteren Konvektor 1 und einem oberen Konvektor 2. Die Konvektoren 1, sind in einem gemeinsamen Luftschacht angeordnet. Sie werden durch Heizmedien M1 und M2 aus verschiedenen Heizquellen betrieben, der obere Konvektor 2 aus einer herkömmlichen Heizquelle, der untere Konvektor 1 aus einer Hilfsheizquelle, insbesondere zur Nutzung von Sonnenenergie.The examples of a multivalent radiator shown in the drawing are used for room air heating with convectors acted on from different energy sources, a lower convector 1 and an upper convector 2. The convectors 1 are arranged in a common air duct. They are operated by heating media M 1 and M 2 from different heating sources, the upper convector 2 from a conventional heating source, the lower convector 1 from an auxiliary heating source, in particular for the use of solar energy.

Die rohrförmigen Konvektoren 1 und 2 sind mit rechteckigen Lamellen 3 und 4 besetzt. Zwischen der Konvektorzone a der niederen Temperatur und der Konvektorzone c der höheren Temperatur befindet sich eine Übergangszone b, in welcher die miteinander fluchtenden, vertikalen Züge 14 bildenden Lamellen 3 und 4 voneinander getrennt sind, und zwar entweder durch einen Trennspalt 8 oder durch Dämmbrücken 11 aus schlecht wärmeleitendem Material, beispielsweise Kunststoff (vgl. Fig. 6 und 7). In den Ausführungsformen nach Fig. 1, 2 und 3 wird der Schacht 5 durch eine von oben bis unten durchlaufende metallische Schachtwandung 5 begrenzt. In allen Ausführungsformen ist in den Wärmeleitweg von der Konvektorzone c zur Konvektorzone a eine Wärmedämmzone eingeschaltet, um eine thermische Rückkoppelung über Wärmeleitwege zu unterbinden. In der Ausführungsform nach Fig. 1 und 2 ist zur Bildung der Wärmedämmzone die äußere metallene Schachtwandung 5 insgesamt durch eine innere Dämmwandung 6 aus Kunststoff oder sonstigem, schlecht wärmeleitendem Material ausgekleidet. Diese Auskleidung kann, wie Fig. 3 zeigt, in der Übergangszone b unterbrochen sein.The tubular convectors 1 and 2 are covered with rectangular slats 3 and 4. Between the convector zone a of the lower temperature and the convector zone c of the higher temperature there is a transition zone b in which the lamellae 3 and 4 forming vertical trains 14 are separated from each other, either by a separation gap 8 or by insulating bridges 11 poorly heat-conducting material, for example plastic (see FIGS. 6 and 7). In the embodiments according to FIGS. 1, 2 and 3, the shaft 5 is formed by a metallic one running from top to bottom Shaft wall 5 limited. In all embodiments, a heat insulation zone is switched on in the heat conduction path from the convector zone c to the convector zone a in order to prevent thermal feedback via heat conduction paths. In the embodiment according to FIGS. 1 and 2, the outer metallic shaft wall 5 is lined overall by an inner insulating wall 6 made of plastic or other, poorly heat-conducting material to form the thermal insulation zone. 3, this lining can be interrupted in the transition zone b.

In Fig. 4 ist die Auskleidung durch Dämmleisten 7 ersetzt, mit denen die Lamellen 3,4 an die metallene Schachtwandung 5 angeschlossen sind. Die Auskleidung kann auch, wie Fig. 9 zeigt, als Dämmkragen ausgebildet sein, welche sich von Lamelle 3 zu Lamelle 4 dicht aneinander anschließen und ebenfalls eine durchgehende Auskleidung bilden. Während in Fig. 5 und 10 die Lamellen 3,4 der Konvektoren 1, 2 durch einen einfachen Trennspalt 8 voneinander getrennt sind, zeigen Fig. 6 und 7 Lamellen 3,4 mit Festkörperverbindung durch Dämmbrücken 11. Diese Ausführungsform zeichnet sich insbesondere dadurch aus, daß über die Konvektorsysteme durchgehende, das heißt ununterbrochene Züge 14 gebildet werden, welche eine ungestörte aufsteigende laminare Luftströmung gewährleistenwelche nur der Thermik unterworfen ist. Damit werden Rückkoppelungen sowohl durch Wärmeleitung als auch durch Luftströmung infolge von Wirbelbildungen ausgeschlossen.In Fig. 4, the lining is replaced by insulation strips 7 with which the slats 3, 4 are connected to the metal shaft wall 5. The lining can also, as FIG. 9 shows, be designed as an insulation collar, which adjoin one another from lamella 3 to lamella 4 and likewise form a continuous lining. 5 and 10, the lamellae 3, 4 of the convectors 1, 2 are separated from one another by a simple separating gap 8, FIGS. 6 and 7 show lamellae 3, 4 with a solid body connection by means of insulating bridges 11. This embodiment is distinguished in particular by that continuous, that is, uninterrupted trains 14 are formed via the convector systems, which ensure an undisturbed ascending laminar air flow which is only subjected to the thermals. This prevents feedback from both heat conduction and air flow due to eddy formation.

In der Ausführungsform nach Fig. 3 ergibt sich in der Übergangszone b eine Wärmeübertragung aus der Heizenergie des unteren Konvektorsystems auf die metallene Schachtwandung 5.In the embodiment according to FIG. 3, heat transfer from the heating energy of the lower convector system to the metal shaft wall 5 results in the transition zone b.

Fig. 5 zeigt eine Ausführungsform, in welcher die Lamellen 4 des oberen Konvektors 2 unmittelbar mit der metallenen Schachtwandung 5 verbunden sind. Die Rückkoppelung durch Wärmeleitung zum unteren Konvektor 1 wird durch Einschaltung einer Dämmschranke 9 zwischen der metallischen Wandung oben und unten vermieden. Soll dabei eine Wärmeabstrahlung im Bereich des oberen Konvektors 2 erfolgen, so können die Lamellen 4 dieses Konvektors 2 wärmeleitend an die obere Schachtwandung 5" angeschlossen werden, während die Lamellen 3 des unteren Konvektors 1 gegen die untere metallene Schachtwandung 5' durch eine Dämmwandung oder durch Dämmleisten 7 thermisch isoliert sind. Dadurch wird erreicht, daß die Wärmeenergie des unteren Konvektors 1 weitgehend zur Unterstützung des oberen Konvektors 2 herangezogen wird. An der oberen Austrittsseite des Schachtes kann eine Klappe 15 vorgesehen sein, durch welche eine Prallfläche zur Ablenkung der warmen Luft, beispielsweise zur Fensterfront hin, erfolgt. Diese Klappe 15 kann auch umsetzbar angeordnet sein, so daß im Bedarfsfalle eine Umlenkung des Warmluftstromes von der Fensterfront weg in den Raum erreicht wird.FIG. 5 shows an embodiment in which the slats 4 of the upper convector 2 are connected directly to the metal shaft wall 5. The feedback by heat conduction to the lower convector 1 is avoided by switching on an insulation barrier 9 between the metallic wall above and below. If heat radiation is to take place in the area of the upper convector 2, the slats 4 of this convector 2 can be connected in a heat-conducting manner to the upper shaft wall 5 ″, while the slats 3 of the lower convector 1 against the lower metal shaft wall 5 ′ through an insulating wall or through Insulation strips 7 are thermally insulated, which means that the thermal energy of the lower convector 1 is largely used to support the upper convector 2. A flap 15 can be provided on the upper exit side of the shaft, through which a baffle surface for deflecting the warm air, This flap 15 can also be arranged so that it can be deflected so that, if necessary, the warm air flow is deflected away from the window front into the room.

BezugszeichenlisteReference symbol list

  • 1, 2 Konvektoren1, 2 convectors
  • 1 unterer Konvektor1 lower convector
  • 2 oberer Konvektor2 upper convector
  • 3 Lamellen von 13 slats of 1
  • 4 Lamellen von 24 slats of 2
  • 5 Schachtwandung5 shaft wall
  • 5' und 5" untere u. obere Schachtwandung5 'and 5 "lower and upper shaft wall
  • 6 Dämmwandung6 insulation wall
  • 7 Dämmleisten7 insulation strips
  • 8 Trennspalt8 separation gap
  • 9 Dämmschranke9 insulation barrier
  • 10 Dämmkragen10 insulation collar
  • 11 Dämmzonen11 insulation zones
  • 12 Dämmplatte12 insulation board
  • 13 Luftspalt13 air gap
  • 14 Luftspalt14 air gap
  • 15 Klappe15 flap
  • a untere Konvektorzonea lower convector zone
  • b Übergangszoneb transition zone
  • c obere Konvektorzonec upper convector zone
  • s Luftschachts air shaft

Claims (2)

1. Radiator for space heating with convectors supplied from different energy sources. The upper convector (2) is operated by means of a heating medium of a higher temperature and the lower convector (1) is operated by means of a heating medium of a lower temperature. The convectors are equipped with heatconducting lamellae (3, 4) - arranged one after the other in flow direction - that divide an air duct into a number of continuously ascending open flues (14). The radiator is characterized by the fact that the lamellae (4) of the higher temperature convector are connected with the lamellae (3) of the lower temperature convector by means of heat insulating bridges (11) made of a material of minor heat conductivity, such that the open flues (14) are kept free.
2. Radiator as described in patent application No. 1, however, characterized by a metal wall (5) of the air duct, that is provided with an insulation lining (6).
EP84116177A 1983-12-29 1984-12-22 Multivalent radiator for space heating Expired EP0148495B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84116177T ATE41226T1 (en) 1983-12-29 1984-12-22 MULTIVALENT RADIATOR FOR ROOM HEATING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3347438 1983-12-29
DE3347438A DE3347438A1 (en) 1983-12-29 1983-12-29 MULTIVALENT RADIATOR FOR INDOOR AIR HEATING

Publications (3)

Publication Number Publication Date
EP0148495A2 EP0148495A2 (en) 1985-07-17
EP0148495A3 EP0148495A3 (en) 1986-07-23
EP0148495B1 true EP0148495B1 (en) 1989-03-08

Family

ID=6218374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84116177A Expired EP0148495B1 (en) 1983-12-29 1984-12-22 Multivalent radiator for space heating

Country Status (4)

Country Link
EP (1) EP0148495B1 (en)
JP (1) JPH0689934B2 (en)
AT (1) ATE41226T1 (en)
DE (2) DE3347438A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245971B (en) * 2007-04-10 2010-12-08 马永锡 Enclosed cavity type heat exchanger
JP5006122B2 (en) 2007-06-29 2012-08-22 株式会社Sokudo Substrate processing equipment
JP5128918B2 (en) 2007-11-30 2013-01-23 株式会社Sokudo Substrate processing equipment
JP5001828B2 (en) 2007-12-28 2012-08-15 株式会社Sokudo Substrate processing equipment
JP5179170B2 (en) 2007-12-28 2013-04-10 株式会社Sokudo Substrate processing equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE840252C (en) * 1942-06-06 1952-05-29 Basf Ag Gas-heated cross-flow heat exchanger
FR1217649A (en) * 1958-05-17 1960-05-04 Central heating radiator with hot water or low pressure steam
FR1389311A (en) * 1964-04-13 1965-02-12 Finned tube system, in particular for steam boiler feedwater preheaters
DE2747344A1 (en) * 1977-10-21 1979-04-26 Gerhard Dipl Ing Pruefling Heating radiator with rectangular steel water tubes - has adhesive bonded aluminium ribs providing high heat transfer rate
DE7928453U1 (en) * 1979-10-06 1980-02-28 Skapargiotis, Georg, 7850 Loerrach RADIATOR, IN PARTICULAR FOR A CENTRAL HEATING SYSTEM
DE2945071A1 (en) * 1979-11-08 1981-05-21 Ulrich 2814 Bruchhausen-Vilsen Grigat Heat exchanger which operates upward air flow - directed across horizontal pipes of conventional and solar heating systems

Also Published As

Publication number Publication date
EP0148495A2 (en) 1985-07-17
DE3347438C2 (en) 1987-06-04
DE3477049D1 (en) 1989-04-13
JPH0689934B2 (en) 1994-11-14
DE3347438A1 (en) 1985-07-18
ATE41226T1 (en) 1989-03-15
JPS60228896A (en) 1985-11-14
EP0148495A3 (en) 1986-07-23

Similar Documents

Publication Publication Date Title
DE2725239A1 (en) HEAT EXCHANGE SYSTEM AND METAL PANEL FOR A HEAT EXCHANGE SYSTEM
EP0186756A1 (en) Fluidized-bed combustion with immersion heating surfaces
EP0148495B1 (en) Multivalent radiator for space heating
EP0449124B1 (en) Annular space heat exchanger
DE2126226C3 (en) Heat exchanger
EP1108963A2 (en) Combustion gas heat exchanger
EP0045491B1 (en) Space heater for small rooms
EP0473946B1 (en) Sectional boiler
DE202015103710U1 (en) Gas-fluid counterflow heat exchanger
EP0254760A1 (en) Room heating device for small rooms
DE2239086C2 (en) Heat exchanger for water flow heater - has distance ribs between pipes, with recess to impede heat transfer
DE1613759C3 (en) Cooling device for transformers
DE3232794A1 (en) Combustion chamber floor for a fluidised bed furnace
DE1933688A1 (en) Lamellar radiators
DE273686C (en)
EP1072846A2 (en) Ceiling mounted convector
DE3327094A1 (en) Arrangement for recovering the thermal energy contained in combustion waste gases, in particular furnace waste gases
DE3313296A1 (en) Heating surface structure
DE3431343A1 (en) Immersion-heating surfaces for fluidised-bed firing
DE2217065C3 (en) Stove top
DE2807612A1 (en) HEAT EXCHANGER
DE3105230A1 (en) Space-heating furnace
DE3010773A1 (en) Heat exchanger esp. for heat recovery in chimney - has two or more exchanger units of cold side arranged along hot flue duct
DE3624394A1 (en) Heater (radiator)
DE8128210U1 (en) DEVICE FOR INCREASING THE HEAT EXPLOITATION IN A ROOM FIREPLACE OR FIRE FIRE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860805

17Q First examination report despatched

Effective date: 19861107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890308

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890308

REF Corresponds to:

Ref document number: 41226

Country of ref document: AT

Date of ref document: 19890315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3477049

Country of ref document: DE

Date of ref document: 19890413

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19891222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901222

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940622

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940623

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940628

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941231

Ref country code: CH

Effective date: 19941231

Ref country code: BE

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 84116177.1

BERE Be: lapsed

Owner name: GRIGAT ULRICH

Effective date: 19941231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 84116177.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970630

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971031

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST