EP0186756A1 - Fluidized-bed combustion with immersion heating surfaces - Google Patents

Fluidized-bed combustion with immersion heating surfaces Download PDF

Info

Publication number
EP0186756A1
EP0186756A1 EP85114126A EP85114126A EP0186756A1 EP 0186756 A1 EP0186756 A1 EP 0186756A1 EP 85114126 A EP85114126 A EP 85114126A EP 85114126 A EP85114126 A EP 85114126A EP 0186756 A1 EP0186756 A1 EP 0186756A1
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
heating surfaces
immersion heating
pins
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85114126A
Other languages
German (de)
French (fr)
Other versions
EP0186756B1 (en
Inventor
Josef Dr. Rer. Nat. Langhoff
Hermann Krischke
Hord Geldmacher
Manfred Golomb
Karl-Heinz Kamp
Peter Masuch
Rolf Chalupnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6253743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0186756(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of EP0186756A1 publication Critical patent/EP0186756A1/en
Application granted granted Critical
Publication of EP0186756B1 publication Critical patent/EP0186756B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0061Constructional features of bed cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/101Tubes having fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/106Studding of tubes

Definitions

  • the invention relates to a fluidized bed furnace for steam and / or hot water and / or hot air generation with immersion heating surfaces arranged in the fluidized bed.
  • Coal mixed with fine-grained sand, lime and ash particles, is burned in the fluidized bed furnace in the state of suspension.
  • the kettle has one or more vertebral cells.
  • the combustion air is introduced into the cell via a nozzle base and sets the material in a swirling movement.
  • Steam or hot water pipes are immersed in the fluidized bed, which absorb up to 50% of the heat introduced and thereby keep the bed temperature low. Thanks to the vortex movement, the heat transfer to these pipes is very high.
  • There is a free space above the fluidized bed which is used for afterburning. From the free space, the flue gases reach a convection part like a boiler of the usual type.
  • the combustion temperature is between 800 and 900 ° C. At this temperature, the sulfur contained in the coal combines with limestone. This creates a dry, inert waste product (mainly gypsum) that can be deposited together with the ash. This process binds 80 to 90% of the sulfur contained in the coal.
  • NO x emissions are greatly reduced due to the low combustion temperatures.
  • the environmental impact of gaseous pollutants is significantly lower with fluidized bed firing than with other types of firing.
  • the dusty substances are retained in a cyclone separator with a downstream cloth filter.
  • Another advantage of fluidized bed combustion is that coal of various qualities, including those with a high ash content, can be burned without any problems.
  • a disadvantage of fluidized bed firing is the low boiler output per unit volume. This applies to atmospheric boiler operation.
  • the current development is towards an increase in performance by so-called pressure-charged fluidized bed operation or by means of a circulating fluidized bed.
  • the pressure-charged fluidized bed is operated with a significantly higher pressure than the atmosphere.
  • bubble formation which is known with atmospheric fluidized beds, is intensified. Bubbles rise in the fluidized bed, which significantly disturb the fluidized bed. The rising bubbles can cause a. an undesirable throwing up of the solid particles from the fluidized bed beyond the zone of the afterburning into the downstream filter.
  • the circulating fluidized bed does not go the way to prevent the discharge, but promotes the discharge.
  • recycling of unburned solid particles is also ensured. I.e. the solid particles are circulated in a whirling motion.
  • the object of the invention is to reduce such erosions.
  • this is achieved in that flow-breaking baffles are arranged on the immersion heating surfaces.
  • the baffles according to the invention impair the flow on the immersion heating surfaces. I.e. the particle speed on the immersion heating surfaces is considerably reduced, while on the baffles according to the invention. Intense turbulence arises, which ensures excellent heat transfer to the chicans and, through the chicanes, to the immersion heating surfaces. Accordingly, the immersion heating surfaces are connected to the baffles in a manner known per se.
  • Pins or fins are preferably provided as baffles according to the invention.
  • the fins are distributed around the circumference of the immersion heating surfaces and extend in the longitudinal direction of the immersion heating surfaces. Applied to tube-like immersion heating surfaces, this means that the fins extend over the entire length of the tubes if possible.
  • the fins have a web height of at least 5 mm. At least 3 fins are preferably distributed around the circumference of the immersion heating surfaces.
  • the pins When using pins as the flow-breaking baffles according to the invention, the pins have a length of at least 10 mm and at least 850 pins per m 2 are arranged.
  • the pin diameter is at least 5 mm.
  • a pinned cooling tube 1 is shown schematically.
  • the cooling tube 1 is part of a heat exchanger immersed in the fluidized bed of a fluidized bed combustion plant for coal.
  • the cooling tube 1 has an outer diameter of 57 mm with a wall thickness of 6.3 mm and is provided with pins 2 on the circumference.
  • the pins 2 are arranged evenly distributed on the circumference.
  • Eight pins are arranged in one level. Two adjacent planes are - as shown in FIGS. 1 and 1b based on sections along the lines A-A and B-B - offset by 22.5 ° to each other. In each plane, the pins 2 are each offset by 45 ° to one another.
  • the diameter of the pins is 10 mm and their length is 15 mm. The arrangement of the pins shown in FIGS. 1 to 1b continues over the entire tube length immersed in the fluidized bed.
  • the distance between the individual rows of pins is selected so that a perfect weld connection is guaranteed.
  • the described arrangement of the pins on the outer surface lying in the fluidized bed inventory influences the edge flow in the fluidized state in such a way that the main mechanical stress caused by the fluidized bed inventory acts on the pins and is kept away from the tube surface.
  • fins 4 with a width of 5 mm and a height of 10 mm are arranged on the circumference of a cooling tube 3 with the same dimensions as the cooling tube 1 at an angle of 45 ° to the vertical and at a distance of 90 ° so that the circumference is from below incoming flow is deflected so that the main mechanical stress from the fluidized bed inventory acts on the fins and is kept away from the pipe surface.
  • three fins 6 are provided on a cooling tube 5 with the same dimensions as the cooling tube 1. However, the fins 6 are located on the part of the cooling tube circumference facing the flow. One fin 6 is located at the stagnation point, the other two are on the left and right side and at an angle of 60 °.
  • the flow direction of the counter the cooling pipe 5 flowing particles is denoted by 7 in FIG. The direction of flow is identical to the direction of flow in the other exemplary embodiments of the invention.
  • fins with different dimensions and / or different angles can be welded onto the tube.
  • the pins or fins welded onto the cooling pipes 1, 3 or 5 advantageously enlarge the surface involved in the heat exchange.
  • the number of immersion heating surface pipes can be reduced by a corresponding amount.
  • the immersion heating surfaces according to the invention are suitable for atmospheric, circulating or also pressure-charged fluidized bed combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

Nach der Erfindung wird ein Erosionsschutz von Tauchheizflächen, die in das Wirbelbett von Wirbelschichtfeuerungen eingetaucht sind, durch strömungsbrechende Schikanen an den Tauchheizflächen erreicht.According to the invention, protection against erosion of immersion heating surfaces which are immersed in the fluidized bed of fluidized bed furnaces is achieved by flow-breaking baffles on the immersion heating surfaces.

Description

Die Erfindung betrifft eine Wirbelschichtfeuerung zur Dampf-und/oder Heißwasser- und/oder Heißlufterzeugung mit in der Wirbelschicht angeordneten Tauchheizflächen.The invention relates to a fluidized bed furnace for steam and / or hot water and / or hot air generation with immersion heating surfaces arranged in the fluidized bed.

In der Uirbelschichtfeuerung wird Kohle, vermischt mit feinkörnigen Sand-, Kalk- und Aschepartikeln im Schwebezustand verbrannt. Der Kessel hat eine oder mehrere Wirbelzellen. Die Verbrennungsluft wird über einen Düsenboden in die Zelle eingeführt und versetzt hier das Material in eine wirbelnde Bewegung. In das Wirbelbett tauchen Dampf- oder Heißwasserrohre ein, die bis zu 50 % der eingebrachten Wärme aufnehmen und dadurch die Bett-Temperatur tief halten. Dank der Wirbelbewegung ist der Wärmeübergang auf diese Rohre sehr hoch. Ober dem Wirbelbett befindet sich ein Freiraum, welcher der Nachverbrennung dient. Vom Freiraum gelangen die Rauchgase in einen Konvektionsteil wie bei einem Kessel üblicher Bauart.Coal, mixed with fine-grained sand, lime and ash particles, is burned in the fluidized bed furnace in the state of suspension. The kettle has one or more vertebral cells. The combustion air is introduced into the cell via a nozzle base and sets the material in a swirling movement. Steam or hot water pipes are immersed in the fluidized bed, which absorb up to 50% of the heat introduced and thereby keep the bed temperature low. Thanks to the vortex movement, the heat transfer to these pipes is very high. There is a free space above the fluidized bed, which is used for afterburning. From the free space, the flue gases reach a convection part like a boiler of the usual type.

Die Verbrennungstemperatur liegt zwischen 800 und 900°C. Bei dieser Temperatur verbindet sich der in der Kohle enthaltene Schwefel mit Kalkstein. Dabei entsteht ein trockenes, inertes Abfallprodukt (vorwiegend Gips) das zusammen mit der Asche abgelagert werden kann. Durch diesen Vorgang werden 80 bis 90 % des in der Kohle enthaltenen Schwefels gebunden. Außerdem sind infolge der niedrigen Verbrennungstemperaturen auch die NOx-Emissionen stark verringert. Die Umweltbelastung mit gasförmigen Schadstoffen ist bei der Wirbelschichtfeuerung wesentlich niedriger als bei anderen Feuerungsarten. Die staubförmigen Stoffe werden in einem Zyklonabscheider mit nachgeschaltetem Tuchfilter zurückgehalten. Ein weiterer Vorteil der Wirbelschichtfeuerung besteht darin, daß Kohle verschiedenster Qualität, auch solche mit hohem Aschegehalt, sich problemlos verbrennen läßt.The combustion temperature is between 800 and 900 ° C. At this temperature, the sulfur contained in the coal combines with limestone. This creates a dry, inert waste product (mainly gypsum) that can be deposited together with the ash. This process binds 80 to 90% of the sulfur contained in the coal. In addition, the NO x emissions are greatly reduced due to the low combustion temperatures. The environmental impact of gaseous pollutants is significantly lower with fluidized bed firing than with other types of firing. The dusty substances are retained in a cyclone separator with a downstream cloth filter. Another advantage of fluidized bed combustion is that coal of various qualities, including those with a high ash content, can be burned without any problems.

Ein Nachteil der Wirbelschichtfeuerung ist die niedrige Kesselleistung pro Volumeneinheit. Das gilt für atmosphärischen Kesselbetrieb. Die derzeitige Entwicklung geht dahin, eine Leistungssteigerungdurch sogenannten druckaufgeladenen Wirbelschichtbetrieb oder aber mit Hilfe einer zirkulierenden Wirbelschicht herbeizuführen. Die druckaufgeladene Wirbelschicht wird im Unterschied zur atmosphärischen Wirbelschicht mit wesentlichem überdruck gegenüber der Atmosphäre gefahren. Bei der druckaufgeladenen Wirbelschicht verstärkt sich das bei atmosphärischen Wirbelschichten bekannte Problem der sogenannten Blasenbildung. Im Wirbelbett steigen Blasen auf, die das Wirbelbett erheblich stören. Die aufsteigenden Blasen verursachen u. a. ein unerwünschtes Hochschleudern der Feststoffpartikel aus dem Wirbelbett über die Zone der Nachverbrennung hinaus in die nachgeschalteten Filter.A disadvantage of fluidized bed firing is the low boiler output per unit volume. This applies to atmospheric boiler operation. The current development is towards an increase in performance by so-called pressure-charged fluidized bed operation or by means of a circulating fluidized bed. In contrast to the atmospheric fluidized bed, the pressure-charged fluidized bed is operated with a significantly higher pressure than the atmosphere. In the case of the pressure-charged fluidized bed, the problem of so-called bubble formation, which is known with atmospheric fluidized beds, is intensified. Bubbles rise in the fluidized bed, which significantly disturb the fluidized bed. The rising bubbles can cause a. an undesirable throwing up of the solid particles from the fluidized bed beyond the zone of the afterburning into the downstream filter.

In Kenntnis der Problematik eines unerwünschten Austragens von Feststoffpartikeln aus dem Wirbelbett geht die zirkulierende Wirbelschicht nicht den Weg, das Austragen zu verhindern, sondern fördert das Austragen. Es wird jedoch zugleich ein Recycling unverbrannter Feststoffpartikel gesichert. D.h. die Feststoffpartikel werden in wirbelnder Bewegung im Kreis geführt.Knowing the problem of unwanted discharge of solid particles from the fluidized bed, the circulating fluidized bed does not go the way to prevent the discharge, but promotes the discharge. However, recycling of unburned solid particles is also ensured. I.e. the solid particles are circulated in a whirling motion.

Bei atmosphärischen Wirbelschichten ist es aus der DE-OS 3101942 bekannt, die angesprochenen Gasblasen durch jalousieartige Einbauten zumindest teilweise zu vermeiden. Die Einbauten bestehen aus Lamellen, die waagerecht stehen oder nach unten zum tiefsten Punkt der Feuerungswand geneigt sind. Mit den jalousieartigen Einbauten wird die Wirbelschichtströmung gelenkt. Nicht verhindert wird mit diesen Einbauten eine wie auch bei anderen Wirbelschichtanlagen auftretende Erosion der Tauchheizflächen. Diese Erosion resultiert aus der Reibung der Feststoffpartikel an den in die Wirbelschicht eingetauchten Heizflächen.In the case of atmospheric fluidized beds, it is known from DE-OS 3101942 to at least partially avoid the gas bubbles mentioned by means of blind-like internals. The internals consist of fins that are horizontal or inclined down to the lowest point on the firing wall. The fluidized bed flow is controlled with the blind-like internals. These installations do not prevent erosion of the immersion heating surfaces as occurs in other fluidized bed systems. This erosion results from the friction of the solid particles on the heating surfaces immersed in the fluidized bed.

Der Erfindung liegt die Aufgabe zugrunde, derartige Erosionen zu verringern.The object of the invention is to reduce such erosions.

Nach der Erfirdung wird das dadurch erreicht, daß an den Tauchheizflächen strömungsbrechende Schikanen angeordnet sind, Im Unterschied zu den strömungsleitenden jalousieartigen bekannten Einbauten, die die Strömung fördern, beeinträchtigen die erfindungsgemäßen Schikanen die Strömung an den Tauchheizflächen. D.h. die Partikelgeschwindigkeit an den Tauchheizflächen wird erheblich verringert, während an den erfindungsgemäßen Schikanen eine. intensive Verwirbelung entsteht, die einen vorzüglichen Wärmeübergang auf die Schickanen und über die Schikanen auf die Tauchheizflächen sicherstellt. Dementsprechend sind die Tauchheizflächen in an sich bekannter Weise mit den Schikanen verbunden.According to the invention, this is achieved in that flow-breaking baffles are arranged on the immersion heating surfaces. In contrast to the flow-guiding Venetian blind-like internals which promote the flow, the baffles according to the invention impair the flow on the immersion heating surfaces. I.e. the particle speed on the immersion heating surfaces is considerably reduced, while on the baffles according to the invention. Intense turbulence arises, which ensures excellent heat transfer to the chicans and, through the chicanes, to the immersion heating surfaces. Accordingly, the immersion heating surfaces are connected to the baffles in a manner known per se.

Als erfindungsgemäße Schikanen sind vorzugsweise Stifte oder Flossen vorgesehen . Die Flossen sind am Umfang der Tauchheizflächen verteilt angeordnet und erstrecken sich in Längsrichtung der Tauchheizflächen. Auf rohrartige Tauchheizflächen angewendet heißt das, die Flossen erstrecken sich nach Möglichkeit über die Gesamtlänge der Rohre.Pins or fins are preferably provided as baffles according to the invention. The fins are distributed around the circumference of the immersion heating surfaces and extend in the longitudinal direction of the immersion heating surfaces. Applied to tube-like immersion heating surfaces, this means that the fins extend over the entire length of the tubes if possible.

Die Flossen besitzen mindestens eine Steghöhe von 5 mm. Vorzugsweise sind mindestens 3 Flossen am Umfang der Tauchheizflächen verteilt angeordnet.The fins have a web height of at least 5 mm. At least 3 fins are preferably distributed around the circumference of the immersion heating surfaces.

Bei Verwendung von Stiften als erfindungsgemäße, strömungsbrechende Schikanen weisen die Stifte eine Länge von mindestens 10 mm auf und sind mindestens 850 Stifte pro m2 angeordnet. Der Stiftdurchmesser beträgt mindestens 5 mm.When using pins as the flow-breaking baffles according to the invention, the pins have a length of at least 10 mm and at least 850 pins per m 2 are arranged. The pin diameter is at least 5 mm.

In der Zeichnung sind verschiedene Ausführungsbeispiele der Erfindung dargestellt:

  • Fig. 1 bis 3 zeigen die Rohre als Tauchheizflächen mit Stiften.
  • Fig. 2 und 3 zeigen Kühlrohre als Tauchheizflächen mit Flossenrohren.
Various exemplary embodiments of the invention are shown in the drawing:
  • 1 to 3 show the tubes as immersion heating surfaces with pins.
  • 2 and 3 show cooling tubes as immersion heating surfaces with fin tubes.

In Fig. 1 ist ein bestiftes Kühlrohr 1 schematisch dargestellt. Das Kühlrohr 1 ist Teil eines in das Wirbelbett einer Wirbelschichtverbrennungsanlage für Kohle eingetauchten Wärmetauschers. Das Kühlrohr 1 besitzt einen äußeren Durchmesser von 57 mm bei 6,3 mm Wandstärke und ist am Umfang mit Stiften 2 versehen. Die Stifte 2 sind am Umfang gleichmäßig verteilt angeordnet. Jeweils sind 8 Stifte in einer Ebene angeordnet. Zwei benachbarte Ebenen sind - wie die Fig. 1 und 1b anhand von Schnitten entlang der Linien A-A und B-B zeigen - um 22,5° versetzt zueinander angeordnet. In jeder Ebene sind die Stifte 2 jeweils um 45° versetzt zueinander angeordnet. Der Durchmesser der Stifte beträgt im Ausführungsbeispiel 10 mm, ihre Länge 15 mm. Die aus Fig. 1 bis 1b ersichtliche Anordnung der Stifte setzt sich über die gesamte in das Wirbelbett eingetauchte Rohrlänge fort.In Fig. 1, a pinned cooling tube 1 is shown schematically. The cooling tube 1 is part of a heat exchanger immersed in the fluidized bed of a fluidized bed combustion plant for coal. The cooling tube 1 has an outer diameter of 57 mm with a wall thickness of 6.3 mm and is provided with pins 2 on the circumference. The pins 2 are arranged evenly distributed on the circumference. Eight pins are arranged in one level. Two adjacent planes are - as shown in FIGS. 1 and 1b based on sections along the lines A-A and B-B - offset by 22.5 ° to each other. In each plane, the pins 2 are each offset by 45 ° to one another. In the exemplary embodiment, the diameter of the pins is 10 mm and their length is 15 mm. The arrangement of the pins shown in FIGS. 1 to 1b continues over the entire tube length immersed in the fluidized bed.

Der Abstand der einzelnen Stiftreihen ist so gewählt, daß eine einwandfreie Schweißverbindung gewährleistet ist.The distance between the individual rows of pins is selected so that a perfect weld connection is guaranteed.

Durch die beschriebene Anordnung der Stifte auf der äußeren im Wirbelbett-inventar liegenden Oberfläche wird die Randströmung im fluidisierten Zustand so beeinflußt, daß die mechanische Hauptbeanspruchung durch das Wirbelbettinventar an den Stiften wirkt und von der Rohroberfläche abgehalten wird.The described arrangement of the pins on the outer surface lying in the fluidized bed inventory influences the edge flow in the fluidized state in such a way that the main mechanical stress caused by the fluidized bed inventory acts on the pins and is kept away from the tube surface.

Nach Fig. 2 sind an einem Kühlrohr 3 mit gleichen Abmessungen wie das Kühlrohr 1 unter einem Winkel von 45° zur Vertikalen und Abstand von 90° zueinander versetzt Flossen 4 mit 5 mm Breite und 10 mm Höhe so am Umfang angeordnet, daß die von unten kommende Strömung so abgelenkt wird, daß die mechanische Hauptbeanspruchung durch das Wirbelbettinventar an den Flossen angreift und von der Rohroberfläche abgehalten wird. Nach Fig. 3 sind an einem Kühlrohr 5 mit gleichen Abmessungen wie das Kühlrohr 1 drei Flossen 6 vorgesehen. Die Flossen 6 befinden sich jedoch an dem der Strömung zugekehrten Teil des Kühlrohrumfanges. Dabei liegt die eine Flosse 6 im Staupunkt, die beiden anderen sind jeweils links und rechts dvaon und in einem Winkel von 60° angebracht. Die Strömungsrichtung der gegen das Kühlrohr 5 strömenden Partikel ist in Fig 3 mit 7 bezeichnet. Die Strömungsrichtung ist identisch mit der Strömungsrichtung in den anderen Ausführungsbeispielen der Erfindung.According to FIG. 2, fins 4 with a width of 5 mm and a height of 10 mm are arranged on the circumference of a cooling tube 3 with the same dimensions as the cooling tube 1 at an angle of 45 ° to the vertical and at a distance of 90 ° so that the circumference is from below incoming flow is deflected so that the main mechanical stress from the fluidized bed inventory acts on the fins and is kept away from the pipe surface. According to FIG. 3, three fins 6 are provided on a cooling tube 5 with the same dimensions as the cooling tube 1. However, the fins 6 are located on the part of the cooling tube circumference facing the flow. One fin 6 is located at the stagnation point, the other two are on the left and right side and at an angle of 60 °. The flow direction of the counter the cooling pipe 5 flowing particles is denoted by 7 in FIG. The direction of flow is identical to the direction of flow in the other exemplary embodiments of the invention.

Auch bei dem Ausführungsbeispiel nach Fig. 3 stellt sich eine Ablenkung der Partikelströmung von der Rohroberfläche ein, wodurch die Rohroberfläche vor Erosion geschützt wird.In the embodiment according to FIG. 3, too, there is a deflection of the particle flow from the pipe surface, whereby the pipe surface is protected against erosion.

In Abwandlung der gezeigten Ausführungsbeispiele können Flossen mit anderen Abmessungen und/oder anderen Winkeln auf das Rohr aufgeschweißt werden.In a modification of the exemplary embodiments shown, fins with different dimensions and / or different angles can be welded onto the tube.

Vorteilhafterweise vergrößern die auf die Kühlrohre 1, 3 oder 5 aufgeschweißten Stifte oder Flossen die am Wärmeaustausch beteiligte Oberfläche.Um einen entsprechenden Betrag kann die Anzahl der Tauchheizflächenrohre reduziert werden.The pins or fins welded onto the cooling pipes 1, 3 or 5 advantageously enlarge the surface involved in the heat exchange. The number of immersion heating surface pipes can be reduced by a corresponding amount.

Die erfindungsgemäßen Tauchheizflächen sind für atmosphärische, zirkulierende oder auch druckaufgeladene Wirbelschichtfeuerung geeignet.The immersion heating surfaces according to the invention are suitable for atmospheric, circulating or also pressure-charged fluidized bed combustion.

Claims (5)

1. Wirbelschichtfeuerungen zur Dampf- und/oder Heißwasser- und/ oder Heißlufterzeugung mit in der Wirbelschicht angeordneten Tauchheizflächen, dadurch gekennzeichnet, daß an den Tauchheizflächen strömungsbrechende Schikanen angeordnet sind.1. Fluidized bed furnaces for steam and / or hot water and / or hot air generation with immersion heating surfaces arranged in the fluidized bed, characterized in that baffles are arranged on the immersion heating surfaces. 2. Vorrichtung nach Anspruch 1, gekennzeichnet durch Stifte (2) oder Flossen (4, 6)2. Device according to claim 1, characterized by pins (2) or fins (4, 6) 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Flossen (4, 6) mindestens eine Steghöhe von 5 mm aufweisen und mindestens 3 Flossen am Umfang der Tauchheizflächen verteilt angeordnet sind.3. Apparatus according to claim 2, characterized in that the fins (4, 6) have at least a web height of 5 mm and at least 3 fins are arranged distributed over the circumference of the immersion heating surfaces. 4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Stifte (2) mindestens eine Länge von 10 mm aufweisen und mindestens 10 Stifte/m angeordnet sind.4. The device according to claim 2, characterized in that the pins (2) have at least a length of 10 mm and at least 10 pins / m are arranged. 5. Vorrichtung nach Anspruch 4, gekennzeichnet durch Stiftdicken von mindestens 5 mm5. The device according to claim 4, characterized by pin thicknesses of at least 5 mm
EP85114126A 1984-12-22 1985-11-06 Fluidized-bed combustion with immersion heating surfaces Expired EP0186756B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3447186 1984-12-22
DE3447186A DE3447186A1 (en) 1984-12-22 1984-12-22 Fluidized bed firing with submerged heating surfaces

Publications (2)

Publication Number Publication Date
EP0186756A1 true EP0186756A1 (en) 1986-07-09
EP0186756B1 EP0186756B1 (en) 1989-04-05

Family

ID=6253743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85114126A Expired EP0186756B1 (en) 1984-12-22 1985-11-06 Fluidized-bed combustion with immersion heating surfaces

Country Status (9)

Country Link
US (1) US4715809A (en)
EP (1) EP0186756B1 (en)
JP (1) JPS61159002A (en)
AU (1) AU580118B2 (en)
BR (1) BR8506385A (en)
CA (1) CA1265390A (en)
DE (2) DE3447186A1 (en)
PL (1) PL256476A1 (en)
ZA (1) ZA859803B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263651A2 (en) * 1986-10-08 1988-04-13 Dorr-Oliver Incorporated Apparatus to reduce or eliminate fluid bed tube erosion
AU639685B2 (en) * 1989-02-13 1993-08-05 Foster Wheeler Energia Oy Waterwalls in a fluidized bed reactor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI84202C (en) * 1989-02-08 1991-10-25 Ahlstroem Oy Reactor chamber in a fluidized bed reactor
DE19809859A1 (en) * 1998-03-07 1999-09-09 Mann & Hummel Filter Device for cooling gases
US7096931B2 (en) * 2001-06-08 2006-08-29 Exxonmobil Research And Engineering Company Increased heat exchange in two or three phase slurry
JP5073895B2 (en) 2001-09-25 2012-11-14 オリンパス株式会社 Endoscopic treatment tool
DE102008061743B4 (en) 2008-12-12 2014-12-04 Outotec Oyj Process for the preparation of a hydraulically acting product
US10589371B2 (en) 2013-05-23 2020-03-17 Crc-Evans Pipeline International, Inc. Rotating welding system and methods
WO2016033568A1 (en) 2014-08-29 2016-03-03 Crc-Evans Pipeline International Inc. Method and system for welding
US9821415B2 (en) * 2014-03-28 2017-11-21 Crc-Evans Pipeline International, Inc. Internal pipeline cooler
US10480862B2 (en) 2013-05-23 2019-11-19 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US10040141B2 (en) 2013-05-23 2018-08-07 Crc-Evans Pipeline International, Inc. Laser controlled internal welding machine for a pipeline
US11767934B2 (en) 2013-05-23 2023-09-26 Crc-Evans Pipeline International, Inc. Internally welded pipes
US10695876B2 (en) 2013-05-23 2020-06-30 Crc-Evans Pipeline International, Inc. Self-powered welding systems and methods
US11458571B2 (en) 2016-07-01 2022-10-04 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
US20230126484A1 (en) * 2021-10-21 2023-04-27 General Electric Company Thermal device
CN116221690A (en) * 2023-04-28 2023-06-06 沈阳世杰电器有限公司 User side thermoelectric decoupling system based on time-of-use electricity price difference

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310037A (en) * 1965-10-23 1967-03-21 Babcock & Wilcox Co Vapor generating apparatus
US3375089A (en) * 1964-06-23 1968-03-26 Steinmueller Gmbh L & C Steel studs
DE2003062A1 (en) * 1969-01-24 1970-07-30 Asahi Glass Co Ltd Fluidized bed reactor
DE2724336B1 (en) * 1977-05-28 1978-07-27 Didier Werke Ag Rohrheizflaechenwand with pins
US4124068A (en) * 1977-05-16 1978-11-07 Uop Inc. Heat exchange tube for fluidized bed reactor
US4226584A (en) * 1979-04-02 1980-10-07 O'connor Engineering Laboratories, Inc. Rotary combustor wall
DE3347083A1 (en) * 1983-12-24 1985-07-04 Vereinigte Kesselwerke AG, 4000 Düsseldorf Immersion heating surfaces for a fluidised-bed furnace
US4554967A (en) * 1983-11-10 1985-11-26 Foster Wheeler Energy Corporation Erosion resistant waterwall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL234992A (en) * 1958-01-10
GB1494996A (en) * 1973-12-17 1977-12-14 Babcock & Wilcox Ltd Fluidised bed combustion system
DE3163732D1 (en) * 1980-06-14 1984-06-28 Bergwerksverband Gmbh Process and device for introducing bulk material into fluidized-bed reactors
DE3221567A1 (en) * 1982-06-08 1983-12-08 Bergwerksverband Gmbh, 4300 Essen Fluidized bed furnace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375089A (en) * 1964-06-23 1968-03-26 Steinmueller Gmbh L & C Steel studs
US3310037A (en) * 1965-10-23 1967-03-21 Babcock & Wilcox Co Vapor generating apparatus
DE2003062A1 (en) * 1969-01-24 1970-07-30 Asahi Glass Co Ltd Fluidized bed reactor
US4124068A (en) * 1977-05-16 1978-11-07 Uop Inc. Heat exchange tube for fluidized bed reactor
DE2724336B1 (en) * 1977-05-28 1978-07-27 Didier Werke Ag Rohrheizflaechenwand with pins
US4226584A (en) * 1979-04-02 1980-10-07 O'connor Engineering Laboratories, Inc. Rotary combustor wall
US4554967A (en) * 1983-11-10 1985-11-26 Foster Wheeler Energy Corporation Erosion resistant waterwall
DE3347083A1 (en) * 1983-12-24 1985-07-04 Vereinigte Kesselwerke AG, 4000 Düsseldorf Immersion heating surfaces for a fluidised-bed furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263651A2 (en) * 1986-10-08 1988-04-13 Dorr-Oliver Incorporated Apparatus to reduce or eliminate fluid bed tube erosion
EP0263651A3 (en) * 1986-10-08 1988-08-10 Dorr-Oliver Incorporated Apparatus to reduce or eliminate fluid bed tube erosion
AU597426B2 (en) * 1986-10-08 1990-05-31 Dorr-Oliver Incorporated Apparatus to reduce or eliminate fluid bed tube erosion
AU639685B2 (en) * 1989-02-13 1993-08-05 Foster Wheeler Energia Oy Waterwalls in a fluidized bed reactor

Also Published As

Publication number Publication date
JPS61159002A (en) 1986-07-18
ZA859803B (en) 1986-11-26
EP0186756B1 (en) 1989-04-05
AU5076085A (en) 1986-06-26
PL256476A1 (en) 1986-09-23
BR8506385A (en) 1986-09-02
DE3447186A1 (en) 1986-07-03
US4715809A (en) 1987-12-29
CA1265390A (en) 1990-02-06
AU580118B2 (en) 1989-01-05
DE3569283D1 (en) 1989-05-11

Similar Documents

Publication Publication Date Title
EP0186756B1 (en) Fluidized-bed combustion with immersion heating surfaces
DE2539546C3 (en) Process for incinerating carbonaceous materials
AT401418B (en) METHOD AND DEVICE FOR CONTROLLING THE FUNCTION OF A FLUIDIZED BED REACTOR WITH A CIRCULATING FLUIDED LAYER
DE68913857T2 (en) Fast fluidized bed reactor.
DE19647429B4 (en) Fluidized bed reactor
DE3315135A1 (en) STEAM GENERATOR WITH FLUID BED FIRING
DE68925033T2 (en) FLUID BED FABRIC WITH A COMPOSITE CIRCUIT.
EP0903536A1 (en) Steam generator with integrated dust separator
EP0407730B1 (en) Furnace, in particular fluidised bed furnace
DE3706371A1 (en) DEVICE FOR INJECTING A GASEOUS MEDIUM FOR A FLUIDIZED LAYER PROCESS
DE3541887C2 (en)
EP0042095B1 (en) Process and device for introducing bulk material into fluidized-bed reactors
EP0202215A2 (en) Method and apparatus for the combustion of solid, liquid, gaseous or paste-like fuels in a fluidized-bed furnace
DD253945A5 (en) RECIRCULATING SWITCHING-LAYER REACTOR AND METHOD FOR SEPARATING SOLID SUBSTANCES FROM EXHAUST GASES
DE3133298C2 (en)
EP0179996A1 (en) Fluidized-bed furnace
DE3623177A1 (en) Combustion chamber for atmospheric steady-state fluidised bed firing
EP0157901B1 (en) Fluidized-bed furnace
DE3115843C2 (en) Fluidized bed combustion
EP3262346B1 (en) Multipassage boiler
DE3410945A1 (en) METHOD FOR REDUCING NO (ARROW DOWN) X (ARROW DOWN) FORMATION IN COMBUSTION PLANTS, IN PARTICULAR MELT CHAMBER FIREPLACES, AND COMBUSTION SYSTEM FOR IMPLEMENTING THE PROCESS
DE2952091A1 (en) Pulverised coal feed for fluidised-bed furnace - distributes coal and air through hollow beams above bed
EP0293594A1 (en) Fluidized-bed reactor
DE2850536A1 (en) STEAM GENERATOR WITH FLUIDIZED BURN COMBUSTION CHAMBER
DE3322971C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19860607

17Q First examination report despatched

Effective date: 19870202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3569283

Country of ref document: DE

Date of ref document: 19890511

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VEREINIGTE KESSELWERKE AG

Effective date: 19891222

NLR1 Nl: opposition has been filed with the epo

Opponent name: VEREINIGTE KESSELWERKE AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901109

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901224

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19901007

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921127

Year of fee payment: 8