EP0145808A1 - Staubabscheider mit Rekuperator, insbesondere Zyklon - Google Patents

Staubabscheider mit Rekuperator, insbesondere Zyklon Download PDF

Info

Publication number
EP0145808A1
EP0145808A1 EP83112777A EP83112777A EP0145808A1 EP 0145808 A1 EP0145808 A1 EP 0145808A1 EP 83112777 A EP83112777 A EP 83112777A EP 83112777 A EP83112777 A EP 83112777A EP 0145808 A1 EP0145808 A1 EP 0145808A1
Authority
EP
European Patent Office
Prior art keywords
gas
heat exchanger
dust
vortex
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83112777A
Other languages
English (en)
French (fr)
Other versions
EP0145808B1 (de
Inventor
Miklos Kühne
Dezsö Dr. Riba
Lászlo Peterffy
Ferenc Sikter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tuezelestechnikai Kutato- Es Fejleszto Vallalat
Original Assignee
Tuezelestechnikai Kutato- Es Fejleszto Vallalat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tuezelestechnikai Kutato- Es Fejleszto Vallalat filed Critical Tuezelestechnikai Kutato- Es Fejleszto Vallalat
Priority to DE8383112777T priority Critical patent/DE3372932D1/de
Priority to AT83112777T priority patent/ATE28802T1/de
Priority to EP83112777A priority patent/EP0145808B1/de
Publication of EP0145808A1 publication Critical patent/EP0145808A1/de
Application granted granted Critical
Publication of EP0145808B1 publication Critical patent/EP0145808B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/20Apparatus in which the axial direction of the vortex is reversed with heating or cooling, e.g. quenching, means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/027Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using cyclone separators

Definitions

  • the invention relates to a dust collector with recuperator, in particular a cyclone, which is suitable for the intensive dedusting of gases of high temperature, in particular exhaust gases, for removing the heat content and thereby for lowering the gas temperature.
  • FIG. 230 of the publication mentioned show the changes in the tangential, radial and axial velocities, as well as the total pressure and the static pressure of the gas in different sectional planes of the cyclone.
  • the tangential speed is the lowest along the wall of the cylindrical part of the cyclone and deviates only slightly from the entry speed there. In the conical part, the speed along the wall increases in proportion to the decrease in the radius and reaches the highest value in the vicinity of the dust outlet openings mbi.
  • An axial secondary flow is superposed on the potential eddy current in the plane perpendicular to the axis. The gas flows down the wall and up near the axis.
  • the cooling effect of the air acting on the outer jacket of the cyclone is generally sufficient for cooling gases of higher temperature.
  • GB-A-1 397 892 describes a dust separator based on the cyclone principle, which is used in cement plants and in which the hot cement is cooled by the intensive cooling of the conical collecting space of the cyclone.
  • a container for the cooling water is provided on the side of the conical space or on the outside thereof, in which a constant pressure is ensured.
  • the water, which is under constant pressure, is sprayed onto the surface to be cooled using nozzles.
  • the nozzles are placed at a distance from the surface that allows the formation of a continuous curtain of water from the water jets. The distance between the nozzles and the surface can be changed.
  • the aim of the invention is to create a dust separator which works with swirl and which is suitable for the radical removal of the heat content of gases of high temperature, in particular of exhaust gases, or for lowering their temperature to the desired extent.
  • Another goal is to increase the effectiveness of dust separation - partly by lowering the temperature, partly by the structural design - but at the same time not fundamentally influencing the internal resistance of the system.
  • the dust separator according to the invention with recuperator, in particular cyclone has a heat exchanger which protrudes into the dust separating space provided in the interior of the housing and is arranged in the swirling space of the downward and upward gas movement and ensures the removal of the cleaned gas.
  • the dust collector with recuperator consists of the cylindrical housing 1, of which the dust collector room 2 is surrounded, the dust collecting space 4 enclosed by the conical jacket 3, the heat exchanger 5 and the device used to remove the dust.
  • the heat exchanger 5 is actually installed instead of the traditional suction pipe, it protrudes into the dust separator chamber 2, whereby it simultaneously fulfills the function of the suction pipe.
  • the heat exchanger 5 is dimensioned and arranged in such a way that it is located in the dust separator chamber 2, which is generated and determined by the downward movement of the dust-containing gas and the upward movement of the dedusted gas and quasi as a separation profile the vortex losses belittles.
  • the heat exchanger 5 is immersed so deeply in the dust separating space 2 that its dimensions enable it to ensure that the temperature is reduced or the amount of heat removed.
  • the dimensions and mainly the immersion depth it must be taken into account that the increase in the dedusting efficiency resulting from the cooling, resulting from the increased ability to remove dust, does not decrease, or only to a small extent, by an increased resistance caused by the heat exchanger 5 becomes.
  • the heat exchanger 5 is preferably designed as a double recuperative heat exchanger and consists of the outer 6 and the inner heat exchange element 7.
  • the outer heat exchange element 6 is designed as a cylindrical double-walled jacket 8 containing the coolant.
  • the inner heat exchange element 7 is formed from the tubes 9, in such a way that to ensure an intensive heat exchange and an increase in the degree of dedusting, a space comes about which, due to the envelope body determined by the bent tubes 9 as is continuously converging and again diverging rotationally symmetrical channel is formed, the tubes 9 in the converging part and in the diverging part of the channel and in the narrowest channel cross-section can be spaced apart.
  • the tubes 9 are connected to the overhead cylindrical double-walled inlet body 11, and with their lower end to the cylindrical collector body 12.
  • the cylindrical collector I body 18 is connected to the double-walled jacket 8, so that there is a flow connection between the outer 6 and the inner heat exchange element 7.
  • the inlet connection 13 is connected to the inlet body 11 of the inner heat exchanger 7, and the outlet connection 14 is connected to the double-walled jacket 8 of the outer heat exchanger 6.
  • the dust-laden hot gas for example exhaust gas, reaches the dust separation space 2 via the tangential gas inlet 15, while the cleaned gas exits upwards via the central gas outlet 16.
  • the hot exhaust gas gives off a part of the heat content to the coolant (water, air) flowing in the outer heat exchanger 6 .
  • the largest part of the dust content of the gas is separated in the dust separation space 2 and settles on the inner surface of the conical shell 8.
  • the dedusting efficiency of the cyclone but still very hot gas flows axially from the bottom upwards, enters the space 10 and flows through the bent tubes 9 and releases part of its heat content again.
  • the cooled and dedusted gas leaves the system via the gas outlet 16.
  • the coolant flows through the inlet connection 13, the inlet body 11, the tubes 9, the cylindrical collecting body 12, the double-walled jacket 8 and the outlet connection 14 and heats up in the heat exchanger 5 which works in countercurrent in this catfish.
  • the heat exchanger can also work in direct current; in this case, the terms have to be interpreted accordingly (instead of inlet connection outlet connection etc.).
  • inner heat exchange element 7 instead of the tubes 9, pockets or other bodies configured in a similar manner, or e.g. a double-walled profile designed as a convergent-divergent nozzle can be used.
  • the outer heat exchange element 6 can also be designed differently.
  • the solution according to the invention can be used advantageously wherever the gas to be cleaned has a significant heat and dust content and simultaneous heat evaluation and dedusting are required. Waste incineration and certain industrial processes such as e.g. ore sintering or cleaning of the exhaust gases from coal-fired boilers are mentioned.

Abstract

Staubabscheider mit Rekuperator, insbesondere Zyklon, der zur Intensivierung der Staubabscheidung aus Gasen hoher Temperatur, insbesondere aus Abgasen, und zum Entzug des Wärmeinhaltes und dadurch zur Senkung der Temperatur geeignet ist. Der Staubabscheider weist einen in den im Inneren des Gehäuses vorhandenen Staubabscheideraum (2) hineinragenden, in dem Wirbelraum der nach oben und unten gerichteten Gasbewegung angeordneten, auch die Abfuhr des gereinigten Gases gewährleistenden Wärmeaustauscher (5) auf. Der Staubabscheider kann überall vorteilhaft verwendet werden, wo der Wärme- und Staubinhalt des zu reinigenden Gases bedeutend ist und gleichzeitig eine Wärmeverwertung und Entstaubung verlangt werden. Wichtige Anwendungsgebiete sind die Müllverbrennung, gewisse industrielle Verfahren, wie z.B. Erzsinterung und die Reinigung der Abgase kohlenbeheizter Kessel und dergleichen.

Description

  • Die Erfindung betrifft einen Staubabscheider mit Rekuperator, insbesondere einen Zyklon, der zur intensiven Entstaubung von Gasen hoher Temperatur, insbesondere Abgasen, zum Entzug des Wärmeinhalts und dadurch zur Senkung der Gastemperatur geeignet ist.
  • Aus der technischen Literatur und aus der Praxis ist es wohlbekannt, daß die meisten Staubabscheider auf dem Zyklonprinzip beruhen oder aus Wlrbelrohren aufgebaut sind. Die Zyklone werden so betrieben, daß das staubhaltige Gas tangential in den zylindrischen Behälter geblasen wird, in dem es mit einem Drall weiterströmt. Die Staubkörnchen scheiden sich unter der Wirkung der Fliehkraft an der Wand ab und fallen in den unteren kegeligen Trichter. Aus dem Trichter kann der Staub dann abgeleitet werden. Das gereinigte Gas verläßt das System über das in der Achse des zylindrischen Teiles angeordnete Auslaßrohr. Eine allgemeine Beschreibung der. Zyklone kann dem 27. Abschnitt des Buches "Entstaubung und Staubabscheidung" (Verfasser: Dr. István Koncz, Technischer Verlag, Budapest 1970) entnommen werden. In der Figur 230 der erwähnten Publikation sind die Ergebnisse von durchgeführten Messungen dargestellt, die die Änderungen der tangentialen, radialen und axialen Geschwindigkeiten, sowie des Gesamtdurckes und des statischen Druckes des Gases In verschiedenen Schnittebenen des Zyklons zeigen. Die tangentiale Geschwindigkeit ist entlang der Wand des zylindrlschen Teiles des Zyklons am niedrigsten und weicht dort nur geringfügig von der Eintrittsgeschwindigkeit ab. In dem kegeligen Teil nimmt die Geschwindigkeit entlang der Wand proportional zu der Abnahme des Radius zu und erreicht den höchsten Wert in der Nähe der Staubauslaßöffnung. Dem potentiellen Wirbelstrom in der auf der Achse senkrechten Ebene ist ein axialer Nebenstrom superponiert. Entlang der Wand strömt das Gas abwärts und in der Nähe der Achse aufwärts. Es kann angenommen werden, daß auch ein innerer Wirbelraum vorhanden ist, dessen Eigenschaften jedoch bisher ungeklärt sind. Durch die Saugwirkung des im Bereich der Achse nach oben strömenden Wirbels wird der Staub aus der Achse der Staubauslaßöffnung mitgenommen, dessen größter Teil jedoch infolge der Fliehkraft wieder in den äußeren Wirbelstrom geschleudert wird. Sollte das Abführrohr tief in den Zyklon hineinragen, kann sich auch ein Doppelwirbel bilden.
  • Bei den aus der Fachliteratur und der Praxis bekannten Zyklonen begnügt man sich im allgemeinen zur Kühlung von Gasen höherer Temperatur mit der Kühlwirkung der auf den Außenmantel des Zyklons einwirkenden Luft.
  • In der GB-A-1 397 892 ist ein auf dem Zyklonprinzip beruhender Staubabscheider beschrleben, der in Zementwerken verwendet wird und bei dem die Kühlung des heißen Zements durch die intensive Kühlung des kegeligen Sammelraums des Zyklons vorgenommen wird. An der Seite des kegeligen Raums bzw. an dessen Außenseite ist ein Behälter für das Kühlwasser vorgesehen, in dem ein konstanter Druck sichergestellt wird. Das unter konstantem Druck stehende Wasser wird mit Hilfe von Düsen auf die zu kühlende Fläche gespritzt. Die Düsen werden in einer Entfernung von der Oberfläche angeordnet, die die Ausbildung eines zusammenhängenden Wasservorhangs aus den Wasserstrahlen ermöglicht. Die Entfernung zwischen den Düsen und der Oberfläche kann geändert werden.
  • Der Nachteil dieser Lösung ergibt sich aus der Erfüllung einer speziellen Aufgabe, und zwar der Kühlung des abgeschiedenen Zementes. Das Kühlsystem ist an dem eine kleine Oberfläche aufweisenden kegeligen Teil des Zyklons angeordnet, da nur hier eine Kühlwirkung für den abgeschiedenen Zenment möglich ist. Mit der Luftkühlung verglichen nimmt die Kühlwirkung zweifellos zu, aber nicht einmal diese Lösung ist dazu geeignet, die Temperatur der Gase Intensiv zu senken, den größten Teil des Wärmeinhaltes zu entziehen.
  • Die Erfindung hat zum Ziel, einen mit Drall arbeitenden Staubabscheider zu schaffen, der zum radikalen Entzug des Wärmelnhaltes von Gasen hoher Temperatur, insbesondere von Abgasen, bzw. zur Senkung von deren Temperatur im gewünschten Maß geeignet ist.
  • Eine weitere Zielsetzung besteht darin, die Wirksamkeit der Staubabscheidung - teilweise durch Senkung der Temperatur, teilweise durch die strukturelle Gestaltung - Intensiv zu erhöhen, jedoch gleichzeitig den inneren Widerstand der Anlage grundsätzlich nicht zu beeinflussen.
  • Der erfindungsgemäße Staubabscheider mit Rekuperator, insbesondere Zyklon, weist einen in den im Inneren des Gehäuses vorhandenen Staubabscheideraum hineinragenden, in dem Wirbelraum der abwärts und aufwärts gerichteten Gasbewegung angeordneten, das Abführen des gereinigten Gases sicherstellenden Wärmetauscher auf.
  • Die Erfindung wird anhand eines vorteilhaften Ausführungsbeispiels mit Hilfe der Zeichnung näher erläutert. In der Zeichnung zeigt:
    • Fig. 1 die Seitenansicht des Staubabscheiders mit Re kuperator, insbesondere Zyklon, im Längsschnitt, und
    • Fig. 2 den Schnitt A-A des Staubabscheiders nach Figur 1.
  • Der Staubabscheider mit Rekuperator besteht aus dem zylindrischen Gehäuse 1, von welchem der Staubabscheideraum 2 umgeben ist, dem von dem kegelförmigen Mantel 3 umschlossenen Staubsammelraum 4, dem Wärmetauscher 5 und der zur Abfuhr des Staubes dienenden Vorrichtung. Der Wärmetauscher 5 ist eigentlich anstelle des traditionellen Absaugrohres installiert, er ragt in den Staubabscheiderraum 2 hinein, wodurch er gleichzeitig die Funktion des Absaugrohres erfüllt. Der Wärmetauscher 5 ist so dimensioniert und angeordnet, daß er in dem sich in dem Staubabscheiderraum 2 ausbildenden, durch die nach unten gerichtete Bewegung des staubhaltigen Gases und die nach oben gerichtete Bewegung des entstaubten Gases erzeugten und bestimmten Wirbeiraum liegt und quasi als ein Trennprofil die Wirbelverluste herabsetzt.
  • Der Wärmetauscher 5 taucht so tief in den Staubabscheideraum 2 ein, daß er aufgrund seiner Abmessungen die vorgeschrlebene Temperaturabsenkung bzw. den Entzug der Wärmemenge gewährleisten kann. Bei der Bestimmung der Abmessungen und hauptsächlich der Eintauchtiefe muß jedoch berücksichtigt werden, daß die durch die Kühlung eintretende, sich aus der erhöhten Fähigkeit zur Staubabscheidung ergebende Zunahme des Entstaubungswirkungsgrades nicht, oder nur in geringem Maße, durch einen von dem Wärmeaustauscher 5 hervorgerufenen erhöhten Widerstand vermindert wird.
  • Der Wärmetauscher 5 ist vorzugsweise als doppelter rekuperativer Wärmetauscher ausgebildet und besteht aus dem äußeren 6 und dem inneren Wärmeaustauschelement 7. Nach einer vorteilhaften Ausführungsform ist das äußere Wärmeaustauschelement 6 als ein das Kühlmittel enthaltender zylindrischer doppelwandiger Mantel 8 ausgebildet. Das innere Wärmeaustauschelement 7 ist aus den Rohren 9 ausgebildet, und zwar in der Weise, daß zur Sicherstellung eines intensiven Wärmeaustausches und einer Erhöhung des Entstaubungsgrades ein Raum zustandekommt, der aufgrund des von den gebogenen Rohren 9 bestimmten Hüllkörpers als stetig konvergierender und wieder divergierender rotationssynmetrischer Kanal ausgebildet ist, wobei die Rohre 9 im konvergierenden Teil und im divergierenden Teil des Kanals und im engsten Kanalquerschnitt im Abstand voneinander verlaufen können. Mit ihrem oberen Ende sind die Rohre 9 an den obenliegenden zylindrischen doppelwandigen Zulaufkörper 11, und mit ihrem unteren Ende an den zylindrischen Samme I körper 12 angeschlossen. Der zylindrische Samme I körper 18 ist mit dem doppelwandigen Mantel 8 verbunden, so daß zwischen dem äußeren 6 und dem inneren Wärmeaustauschelement 7 eine Strömungs verbindung besteht. An den Zulaufkörper 11 des inneren Wärmetauschers 7 ist der Einlaßstutzen 13, und an den doppelwandigen Mantel 8 des äußeren Wärmeaustauschers 6 der Auslaßstutzen 14 angeschlossen. Das staubbeladene heiße Gas, z.B. Abgas, gelangt über den tangentialen Gaseinlaß 15 in den Staubabscheideraum 2, währen das gereinigte Gas über den zentralen Gasauslaß 16 nach oben austritt.
  • Das über den Gaseinlaß 15 eintretende heiße und staubbeladene Gas, z.B. Abgas, umströmt mit einer hohen tangentialen Geschwindigkeit die äußere zylindrische Wand des Wärmetauschers 5 und strömt abwärts in Richtung zu dem Staubsammelraum 4. Einen Tei des Wärme inhaltes gibt das heiße Abgas an das in dem äußeren Wärmetauscher 6 strömende Kühlmittel (Wasser, I uft) ab. In dem Staubabscheideraum 2 wird der größte Teil des Staubinhaltes des Gases abgeschieden und setzt sich an der Innenfläche des kegeligen Mantels 8 ab. In Abhängigkeit von dem Entstaubungswirkungsgrad des Zyklons gereinigtes, aber noch immer recht heißes Gas strömt axial von unten nach oben, tritt in den Raum 10 ein und gibt zwischen den gebogenen Rohren 9 hindurchströmend einen Teil seines Wärmeinhaltes wieder ab. Infolge der geänderten Strömungsgeschwindigkeit und der Abkühlung des Gases findet eine weitere Staubabscheidung statt. Das abgekühlte und entstaubte Gas verläßt das System über den Gasauslaß 16.
  • Das Kühlmittel strörnt durch den Einlaßstutzen 13, den Zulaufkörper 11, die Rohre 9, den zylindrischen Sammelkörper 12, den doppelwandigen Mantel 8 und den Auslaßstutzen 14 und erwärmt sich in dem in dieser Welse im Gegenstrom arbeitenden Wärmetauscher 5.
  • Der Wärmetauscher kann auch im Gleichstrom arbeiten; in diesem Fall sind die Benennungen dementsprechend zu interpretieren (anstatt Einlaßstutzen Auslaßstutzen usw.).
  • Zur Gestaltung des inneren Wärmeaustauschelementes 7 können anstatt der Rohre 9 auch Taschen oder sonstige in ähnlicher Weise ausgestaltete Körper, oder z.B. ein als konvergente-divergente Düse gestaltetes doppelwandiges Profil, verwendet werden. Auch das äußere Wärmeaustauschelement 6 kann anders gestaltet werden.
  • Die erfindungsgemäße Lösung kann überall vorteilhaft verwendet werden, wo das zu reinigende Gas über einen bedeutenden Wärme- und Staubinhalt verfügt und eine gleichzeitige Wärmeerwertung und Entstaubung verlangt werden. Als wichtige Anwendungsgebiete sollen die Müllverbrennung und gewisse industrielle Verfahren, wie z.B. die Erzsinterung oder eine Reinigung der Abgase von kohlenbeheizten Kesseln erwähnt werden.

Claims (4)

1. Staubabscheider mit Rekuperator, insbesondere Zyklon, dadurch gekennzeichnet, daß ein in den im Inneren des Gehäuses (1) vorhandenen Staubauscheidera um (2) hineinragender, in dem Wirbelraum der nach unten und nach oben gerichteten Gasbewegung angeordneter, auch der Abfuhr des gereinigten Gases dienender Wärmetauscher (5) vorgesehen ist.
2. Staubabscheider nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmetauscher (5) ein mit einem doppelwandigen gekühlten Mantel (8) versehenes, vorzugsweise zylindrisches äußeres Wärmeaustauschelement (6) und ein aus Rohren (9) gebildetes inneres Wärmeaustauschelement (7) aufweist, wobei die Rohre einen Raum (10) mit konvergent-divergenter Hüllfläche umschließen und zwischen dem äußeren und dem inneren Wärmeaustauschelement (6,7) eine Strömungsverbindung besteht.
1. Wirbel-Staubabscheider, insbesondere Zyklon, mit einem einen der Staubabscheidung dienenden Wirbelraum (2) mit einem tangentialen Gaseinlaß (15) und einem zentralen, von oben in den Wirbelraum hineinragenden Gasauslaß (16), der von einem kühlmitteldurchströmten Wärmetauscher gebildet wird, der aus einem äußeren Wärmetauscherelement (6) zum Kühlen des in dem Wirbelraum (2) nach unten strömenden Gases und einem einen Gasabzugsraum (10) umgrenzenden inneren Wärmetauscherelement (7) zum Kühlen des in dem Gasabzugsraum (10) nach oben strömenden Gases besteht, dadurch gekennzeichnet, daß das innere Wärmetauscherelement (7) entlang einer gedachten, den Gasabzugsraum (10) umgrenzenden konvergent-divergenten Hüllfläche ausgebildet ist.
2. Wirbel-Staubabscheider nach Anspruch 1, dadurch gekennzeichnet, daß das innere Wärmetauscherelement (7) aus Rohren (9) besteht, die im konvergenten Teil und im divergenten Teil und im engsten Querschnittsteil des Gasabzugsraumes (10) im Abstand voneinander angeordnet sind.
EP83112777A 1983-12-19 1983-12-19 Staubabscheider mit Rekuperator, insbesondere Zyklon Expired EP0145808B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8383112777T DE3372932D1 (en) 1983-12-19 1983-12-19 Dust separator with a recuperator, particularly a cyclone
AT83112777T ATE28802T1 (de) 1983-12-19 1983-12-19 Staubabscheider mit rekuperator, insbesondere zyklon.
EP83112777A EP0145808B1 (de) 1983-12-19 1983-12-19 Staubabscheider mit Rekuperator, insbesondere Zyklon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP83112777A EP0145808B1 (de) 1983-12-19 1983-12-19 Staubabscheider mit Rekuperator, insbesondere Zyklon

Publications (2)

Publication Number Publication Date
EP0145808A1 true EP0145808A1 (de) 1985-06-26
EP0145808B1 EP0145808B1 (de) 1987-08-12

Family

ID=8190891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83112777A Expired EP0145808B1 (de) 1983-12-19 1983-12-19 Staubabscheider mit Rekuperator, insbesondere Zyklon

Country Status (3)

Country Link
EP (1) EP0145808B1 (de)
AT (1) ATE28802T1 (de)
DE (1) DE3372932D1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262274A1 (de) * 1986-09-22 1988-04-06 Emile Percevaut Rekuperator von Wärme aus Rauchgasen aus verschiedenen Öfen mit Reinigung von diesen Gasen
WO1988006924A1 (en) * 1987-03-09 1988-09-22 A. Ahlstrom Corporation Method and separator for separating solid particles from a hot gas stream
EP0416238A1 (de) * 1989-09-02 1991-03-13 Balcke-Dürr AG Wirbelschichtreaktor und zugehöriges Betriebsverfahren
FR2654814A1 (fr) * 1989-11-23 1991-05-24 France Grignotage Sarl Echangeur de chaleur liquide-gaz.
CN104388706A (zh) * 2014-11-11 2015-03-04 宁夏嘉翔自控技术有限公司 一种金属镁冶炼高压扒渣装料系统的还原渣收集箱
CN108411088A (zh) * 2018-05-23 2018-08-17 宿迁市通用机械有限公司 一种环保型热处理炉
CN111334352A (zh) * 2020-02-18 2020-06-26 深圳市贝优通新能源技术开发有限公司 一种用于天然气供应系统的散热型气固分离设备
CN112387433A (zh) * 2020-09-18 2021-02-23 中石化宁波工程有限公司 一种旋风分离器
CN115029500A (zh) * 2022-07-28 2022-09-09 南京华电节能环保股份有限公司 一种具有水冷壁换热能板的转炉煤气余热回收装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB108710A (en) * 1916-08-14 1917-08-14 Arthur Henry Lymn Improvements in and relating to Regenerators or Heat Interchangers in or for use with Gas Producer Plants.
US2519084A (en) * 1945-03-13 1950-08-15 Westinghouse Electric Corp Shell and tube heat exchanger having zig-zag tubes
GB757586A (en) * 1950-11-10 1956-09-19 Chemieban Dr A Lieren G M B H Improvements in or relating to hot gas cyclone dust separators
US3327456A (en) * 1964-04-30 1967-06-27 Exxon Research Engineering Co High temperature cyclone
FR1560998A (de) * 1967-05-05 1969-03-21
FR2085164A1 (de) * 1969-12-01 1971-12-24 Gaz De France
FR2350886A1 (fr) * 1976-05-14 1977-12-09 Enso Gutzeit Oy Hydrocyclone, notamment pour la separation des suspensions de fibres

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB108710A (en) * 1916-08-14 1917-08-14 Arthur Henry Lymn Improvements in and relating to Regenerators or Heat Interchangers in or for use with Gas Producer Plants.
US2519084A (en) * 1945-03-13 1950-08-15 Westinghouse Electric Corp Shell and tube heat exchanger having zig-zag tubes
GB757586A (en) * 1950-11-10 1956-09-19 Chemieban Dr A Lieren G M B H Improvements in or relating to hot gas cyclone dust separators
US3327456A (en) * 1964-04-30 1967-06-27 Exxon Research Engineering Co High temperature cyclone
FR1560998A (de) * 1967-05-05 1969-03-21
FR2085164A1 (de) * 1969-12-01 1971-12-24 Gaz De France
FR2350886A1 (fr) * 1976-05-14 1977-12-09 Enso Gutzeit Oy Hydrocyclone, notamment pour la separation des suspensions de fibres

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DERWENT PUBLICATION LTD., Woche D21, 1. Juli 1981, London, GB; & SU - A - 762 985 (SANIT TECHN EQUIP) 15.09.1980 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262274A1 (de) * 1986-09-22 1988-04-06 Emile Percevaut Rekuperator von Wärme aus Rauchgasen aus verschiedenen Öfen mit Reinigung von diesen Gasen
WO1988006924A1 (en) * 1987-03-09 1988-09-22 A. Ahlstrom Corporation Method and separator for separating solid particles from a hot gas stream
EP0416238A1 (de) * 1989-09-02 1991-03-13 Balcke-Dürr AG Wirbelschichtreaktor und zugehöriges Betriebsverfahren
FR2654814A1 (fr) * 1989-11-23 1991-05-24 France Grignotage Sarl Echangeur de chaleur liquide-gaz.
CN104388706A (zh) * 2014-11-11 2015-03-04 宁夏嘉翔自控技术有限公司 一种金属镁冶炼高压扒渣装料系统的还原渣收集箱
CN108411088A (zh) * 2018-05-23 2018-08-17 宿迁市通用机械有限公司 一种环保型热处理炉
CN111334352A (zh) * 2020-02-18 2020-06-26 深圳市贝优通新能源技术开发有限公司 一种用于天然气供应系统的散热型气固分离设备
CN111334352B (zh) * 2020-02-18 2021-05-04 李贵邦 一种用于天然气供应系统的散热型气固分离设备
CN112387433A (zh) * 2020-09-18 2021-02-23 中石化宁波工程有限公司 一种旋风分离器
CN115029500A (zh) * 2022-07-28 2022-09-09 南京华电节能环保股份有限公司 一种具有水冷壁换热能板的转炉煤气余热回收装置
CN115029500B (zh) * 2022-07-28 2023-11-17 南京华电节能环保股份有限公司 一种具有水冷壁换热能板的转炉煤气余热回收装置

Also Published As

Publication number Publication date
ATE28802T1 (de) 1987-08-15
EP0145808B1 (de) 1987-08-12
DE3372932D1 (en) 1987-09-17

Similar Documents

Publication Publication Date Title
EP0041106B1 (de) Entstauberzyklon, insbesondere mit doppelter Abscheidung
DE3207103C2 (de) Zyklon zur Reinigung von Gas mit innerhalb des Zyklons angeordnetem Filter
EP0145808B1 (de) Staubabscheider mit Rekuperator, insbesondere Zyklon
CH642278A5 (de) Zyklonabscheider zum abscheiden von schwer- und staubteilen aus fasermaterial.
EP0090335B1 (de) Zyklonabscheider
EP1286779B1 (de) Elektrostatischer staubabscheider
DE3048239C2 (de) Zyklon-Staubabscheider für staubbeladene Abluft- oder Abgasströme
DE911013C (de) Nassbetribener Mehrfach-Fliehkraft-Staubabscheider und Verfahren zum Betrieb eines solchen
CH648770A5 (de) Verfahren und einrichtung zum abscheiden von partikeln aus einem gas mittels fliehkraft.
EP0059315B1 (de) Vorrichtung zum Trennen von Schwebstoffen, wie Asche od. dgl. aus Rauchgasen
DE10349365A1 (de) Vergaserheizkessel für feste Brennstoffe, insbesondere für Strohballen, mit optmierten Abgaswerten
DE2049901C3 (de) Entstaubungsanlage für Konverterabgase u. dgl
DE475436C (de) Entstaubungsvorrichtung fuer Rauchgase u. dgl.
DE2538213A1 (de) Radialstromwaescher
DE2826808C2 (de) Zyklon-Staubabscheider
AT204534B (de) Abscheideanlage
DE2753302C2 (de) Vorrichtung zum Entstauben von Gasen
DE2753963C3 (de) Zyklon-Staubabscheider
DE2160747C2 (de) Zyklonabscheider
DE909288C (de) Fliehkraftstaubabscheider
DE720168C (de) Schornstein mit Flugascheabscheidevorrichtung
DE3024837C2 (de) Teilchenabscheider mit vertikaler Achse
AT239769B (de) Anordnung für die Verbesserung der Durchführung eines Verfahrens zur Erzeugung trombenartiger Drehströmungen, insbesondere im speziellen Fall seiner Anwendung auf Wirbelabscheider
DE745679C (de) Vorrichtung zum Abscheiden von Flugasche und Flugstaub in Rauchgasen
DE2348163C3 (de) Naßentstauber für Gase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841217

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI

17Q First examination report despatched

Effective date: 19860319

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REF Corresponds to:

Ref document number: 28802

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3372932

Country of ref document: DE

Date of ref document: 19870917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881231

Ref country code: CH

Effective date: 19881231

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19891213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903