EP0144867A2 - Elektronisch phasengesteuerte Gruppenantenne - Google Patents

Elektronisch phasengesteuerte Gruppenantenne Download PDF

Info

Publication number
EP0144867A2
EP0144867A2 EP84114140A EP84114140A EP0144867A2 EP 0144867 A2 EP0144867 A2 EP 0144867A2 EP 84114140 A EP84114140 A EP 84114140A EP 84114140 A EP84114140 A EP 84114140A EP 0144867 A2 EP0144867 A2 EP 0144867A2
Authority
EP
European Patent Office
Prior art keywords
columns
lines
phase
radiator elements
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84114140A
Other languages
English (en)
French (fr)
Other versions
EP0144867B1 (de
EP0144867A3 (en
Inventor
Anton Dipl.-Ing. Brunner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0144867A2 publication Critical patent/EP0144867A2/de
Publication of EP0144867A3 publication Critical patent/EP0144867A3/de
Application granted granted Critical
Publication of EP0144867B1 publication Critical patent/EP0144867B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array

Definitions

  • the invention relates to an electronically phase-controlled group antenna with radiator elements arranged in horizontal rows and in vertical columns, which are fed to generate an adjustable main beam deflection via adjustable, digital phase shifters, one phase shifter being assigned to one or more of the radiator elements.
  • Each individual radiator element of a phase-controlled group antenna is usually fed via its own phase shifter.
  • several emitters can also be controlled by one phase shifter at the same time.
  • the usual phase shifters have a digital mode of operation, ie only phase values of, for example, k. 45 ° (3 bit), k. 22.5 ° (4 bit), etc., in addition to the desired phase progression over the antenna aperture, so-called quantization errors occur, which lead to an increase in the sidelobe level in the antenna diagram.
  • phase shifters are saved, for example if two adjacent radiator elements are operated by a single phase shifter and are therefore in phase, large phase jumps occur at a further distance, for example twice the radiator element spacing.
  • These phase jumps at large distances create side lobes in the form of so-called grid lobes (Grating Lobes), which act as secondary main lobes at larger deflection angles of the main lobe.
  • the usual arrangements of the radiator elements of phase-controlled group antennas are based on a rectangular or triangular grid.
  • the described side lobe effects caused by this are not reduced.
  • a known method for reducing the quantization jumps and thus the disturbing side lobes is to insert a constant phase shift in the feed path to each radiator element.
  • the additionally inserted phase value differs from radiator element to radiator element by amounts that have no relation to the bit size.
  • This added phase shift is then subtracted again in the control path to the phase shifters.
  • this method is only possible with line-fed phase-controlled group antennas.
  • a reduction in the quantization jumps can only be achieved by more complex, finely graduated phase shifters with a higher number of bits.
  • the object of the invention is to provide a less expensive possibility for reduction for electronically phase-controlled group antennas of the type mentioned at the beginning
  • this object is achieved in that the radiator element rows are statistically shifted from one another in the horizontal direction in order to improve the horizontal diagram, so that the imaginary connecting lines between the radiator elements lying one after the other from top to bottom are no longer vertical column lines, but statistically running, irregular zigzag lines, and that in each case a phase correction is carried out on the individual lines for all radiator elements located in the respective line in such a way that the signals of the individual lines add up in the respective deflected main beam direction.
  • the radiator element columns are statistically displaced relative to one another in the vertical direction, so that the imaginary connecting lines between the radiator elements lying next to one another from left to right are no longer horizontal line lines, but rather statistical, irregular zigzag lines. Lines are.
  • a phase correction is carried out for each of the radiator elements in the respective column in such a way that the signals of the individual columns add up in the respective deflected main beam direction.
  • the systematic addition of the radiation components in the The quantization and raster lobe area is thus prevented in the vertical plane by a statistical shift of the columns relative to one another and / or in the horizontal plane by a statistical shift of the rows relative to one another.
  • a phase correction must be introduced at the individual columns or rows in such a way that the signals of the individual columns or rows add up in the respective deflected main beam direction.
  • the correction in a column or row depends on its respective offset and is practically ineffective for the raster beam direction, which is far from the main beam direction, so that the signals overlap with statistical phases in this direction and thus largely cancel each other out.
  • the phase correction on the column or row can easily be set in a computer.
  • the statistical offset of the columns or rows must be chosen so large that the overlapping lobe phases of the column or row signals for the grid lobe angle under consideration can assume all values between 0 ° and 360 ° or beyond.
  • the suppression of the quantization and raster lobe sidelobes can - as already mentioned - be carried out in both planes.
  • the statistical vertical shift of the columns makes the rows a statistical zigzag line and improves the vertical diagram.
  • the statistical horizontal. Shifting the rows turns the columns into statistical zigzag lines and improves the horizontal diagram.
  • the zigzag row or column can also be moved in the vertical or horizontal plane can be shifted statistically. This reduces the side lobes on both levels.
  • the then completely irregular radiator element grid is structurally more difficult to implement and therefore more expensive.
  • the improvement in one level can be seen as the main application, e.g. at the full number of phase shifters in the horizontal plane to reduce the quantization minor peaks, or e.g. at half the number of phase shifters, with two radiating elements lying one above the other being operated by a single phase shifter, to reduce the grid lobes in the vertical plane.
  • FIG. 1 shows a top view of the oval aperture 1 of a phase-controlled array antenna.
  • radiator elements 6 in the antenna aperture 1 are shown in four areas 2, 3, 4 and 5.
  • the radiator elements 6 are arranged in a so-called rectangular grid.
  • the radiator elements 6 are in a regular triangular grating configuration.
  • the arrangements of the radiator elements 6 shown in sections 2 and 3 are those which are common in phase-controlled group antennas.
  • the triangular arrangement according to section 3 brings about a halving of the number of phase shifters hardly any reduction in the grid lobes.
  • the systematic addition of the radiation components originating from the individual radiator elements 6 in the quantization and raster lobe area is prevented in the vertical plane by a statistical shift of the columns relative to one another, as is the case in section 4 of the radiation aperture 1.
  • the statistical vertical displacement of the columns makes the rows statistical, irregular zigzag lines 7 and improves the vertical diagram.
  • the systematic addition of the radiation components originating from the individual radiator elements 6 in the quantization and raster lobe area is prevented by a statistical shift of the lines relative to one another, as is the case in section 5 of the antenna aperture 1.
  • the statistical horizontal shift of the rows makes the columns statistical, irregular zigzag lines 8 and improves the horizontal diagram.
  • Fig. 2 shows radiator elements 6 in a rectangular grid arrangement. This means that all columns S 1 to S n are identical from left to right.
  • the phase assignment of such a rectangular grid arrangement when two radiator elements lying one above the other are actuated by a phase shifter is shown on the left in FIG. 2. It can be seen from this that the phase levels of the columns S 1 to S n occur in the rectangular grid arrangement for all columns at the same point.
  • FIG. 3 shows the radiator elements 6 of a phase-controlled group antenna in a triangular grid arrangement.
  • column which alternate, ie the columns S 1 , S 3 , S 5 ... are the same in themselves and also the columns S 2 , S 4 , ...
  • Fig. 3 Also in Fig. 3 is a phase assignment to the left of the radiator element arrangement shown. It can be seen from this that the phase steps occur at two fixed points in the triangular grid arrangement. The phase jumps for the even-numbered columns S 2 , S 4 , ... are shown with solid horizontal lines, whereas the phase jumps for the odd-numbered columns S 1 , S 3 , S 5 , ... are dashed.
  • FIG. 4 shows the radiator elements 6 of a phase-controlled group antenna in a grid arrangement in which the columns are statistically shifted from one another in the vertical direction.
  • the phase assignment for the different columns is shown to the left of the radiator element arrangement. It follows from this that the phase levels of the columns S 1 to S n do not occur at the same point for all columns as in the rectangular grid arrangement according to FIG. 2, or, as in the triangular grid arrangement according to FIG. 3, occur at two fixed positions. Rather, the phase levels are statistically distributed, so that, seen across the aperture, the step-like character of the phase front is "broken up" and there are no systematic additions of signals in the side lobe area.
  • the phase steps for column S 1 are with solid horizontal lines, for column S 2 with dashed horizontal lines, for column S 3 with narrowly dotted horizontal lines, for column S 4 with dotted horizontal lines and for column S 5 with dash-dotted horizontal lines shown.
  • FIGS. 5, 7, 9 show directional diagrams in the vertical plane, based on calculation examples to illustrate the effect of the statistical columns shift when feeding two superimposed radiator elements based on a single phase shifter.
  • the directional diagrams (FIGS. 5, 7, 9) of frequently used triangular grid arrangements are compared with the directional diagrams (FIGS. 6, 8, 10) of a grid arrangement in which the columns are statistically shifted from one another in the vertical direction.
  • the triangular lattice arrangement is also considered to be representative of the rectangular lattice arrangement, since its side lobe reducing effect is similarly small.
  • the calculated arrangements comprise approximately 20 columns with a maximum of 36 radiator elements, i.e. 18 phase shifters per column. Towards the horizontal edge, the columns become smaller, corresponding to the oval border of the aperture according to FIG. 1, and thus the radiator elements lying on one column are fewer. The principle and therefore the possibility of improvement is independent of the aperture border.
  • FIGS. 5 and 6 show two antenna directional diagrams with one another with a main beam deflection of 0 °, FIG. 5 for a triangular grid arrangement and FIG. 6 for the radiator element arrangement with statistical column shift.
  • FIGS. 7 and 8 likewise show directional diagrams with one another, but with a main beam deflection of 10 °, FIG. 7 relating to a radiator element arrangement in a regular triangular grid configuration and FIG. 8 relating to one with statistical column displacement.
  • FIGS. 9 and 10 finally show directional diagrams with one another with a main beam deflection of 20 0 , FIG. 9 referring to the triangular grid arrangement and FIG. 10 relates to the radiator element arrangement with statistical column shift.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Die systematische Addition der von den einzelnen in Spalten und Zeilen angeordneten Strahlerelementen (6) herrührenden Strahlungsanteile im Quantisierungs- und Rasterkeulen (Grating Lobe)-Bereich wird in der vertikalen Ebene durch eine statistische vertikale Verschiebung der Spalten gegeneinander und/oder in der horizontalen Ebene durch eine statistische horizontale Verschiebung der Zeilen gegeneinander verhindert. Dabei muß an den einzelnen Spalten bzw. Zeilen eine Phasenkorrektur derart eingeführt werden, daß sich die Signale der einzelnen Spalten bzw. Zeilen in der jeweiligen ausgelenkten Hauptstrahlrichtung addieren. Die Erfindung ist beispielsweise als nebenzipfelreduzierende Maßnahme bei phasengesteuerten Radarantennen geeignet.

Description

  • Die Erfindung bezieht sich auf eine elektronisch phasengesteuerte Gruppenantenne mit in horizontalen Zeilen und in vertikalen Spalten angeordneten Strahlerelementen, die zur Erzeugung einer einstellbaren Hauptstrahl- auslenkung über einstellbar ausgebildete, digitale Phasenschieber gespeist werden, wobei jeweils ein Phasenschieber einem oder mehreren der Strahlerelemente zugeordnet ist.
  • Jedes einzelne Strahlerelement einer phasengesteuerten Gruppenantenne wird in der Regel über einen eigenen Phasenschieber gespeist. Zum Zwecke der Kostenreduzierung können jedoch auch mehrere Strahler zugleich von einem Phasenschieber angesteuert werden. Da die üblichen Phasenschieber eine digitale Wirkungsweise aufweisen, d.h. nur Phasenwerte von beispielsweise k . 45° (3 bit), k. 22,5° (4 bit) usw. einstellen können, entstehen neben der gewünschten Phasenprogression über der Antennenapertur sogenannte Quantisierungsfehler, die zu einer Erhöhung des Nebenzipfelpegels im Antennendiagramm führen. Für den Fall der Einsparung von Phasenschiebern, z.B. wenn zwei benachbarte Strahlerelemente von einem einzigen Phasenschieber bedient werden und damit gleichphasig sind, entstehen große Phasensprünge in einem weiteren Abstand, z.B. dem doppelten Strahlerelementabstand. Diese Phasensprünge bei großen Abständen erzeugen Nebenzipfel in Form von sogenannten Rasterkeulen (Grating Lobes), die sich bei größeren Auslenkwinkeln der Hauptkeule als sekundäre Hauptkeulen auswirken.
  • Die üblichen Anordnungen der Strahlerelemente phasengesteuerter Gruppenantennen beruhen auf einem Rechteck- oder Dreieckgitter. Die dadurch verursachten geschilderten Nebenzipfeleffekte werden dabei nicht vermindert. Eine bekannte Methode zur Reduzierung der Quantisierungssprünge und damit der störenden Nebenzipfel besteht in der Einfügung einer konstanten Phasenverschiebung im Zuführungsweg zu jedem Strahlerelement. Der zusätzlich eingefügte Phasenwert unterscheidet sich von Strahlerelement zu Strahlerelement um Beträge, die zu der Bitgröße in keinem Verhältnis stehen. Diese addierte Phasenverschiebung wird dann im Steuerweg zu den Phasenschiebern wieder subtrahiert. Diese Methode ist jedoch nur bei leitungsgespeisten phasengesteuerten Gruppenantennen möglich. Bei optisch gespeisten phasengesteuerten Gruppenantennen kann eine Reduzierung der Quentisierungssprünge nur durch aufwendigere, feiner gestufte Phasenschieber mit höherer Bit-Zahl erzielt werden. Die Bedienung zweier oder noch mehr Strahler durch einen Phasenschieber und damit eine Kostenreduzierung ist dabei nur für sehr kleine Auslenkwinkel möglich, d.h. für die meisten praktischen Fälle nicht anwendbar. In diesem Zusammenhang wird auf das Buch von M. Skolnik "Introduction to Radar Systems", Mac Graw-Hill International Book Comp., 1981, Seiten 321 und 322, hingewiesen.
  • Aufgabe der Erfindung ist es,für elektronisch phasengesteuerte Gruppenantennen der eingangs genannten Art eine weniger aufwendige Möglichkeit zur Verringerung
  • oder gar Vermeidung der erwähnten Quantisierungsfehler anzugeben, so daß sich als Folge davon ein erheblich besseres Nebenzipfelverhalten der Antenne ergibt.
  • Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß zur Verbesserung des Horizontaldiagramms die Strahlerelement-Zeilen in Horizontalrichtung statistisch gegeneinander verschoben sind, so daß die gedachten Verbindungslinien zwischen den jeweils der Reihe nach von oben nach unten untereinander liegenden Strahlerelementen nicht mehr vertikale Spaltenlinien, sondern statistisch verlaufende, unregelmäßige Zick-Zack-Linien sind, und daß an den einzelnen Zeilen jeweils eine Phasenkorrektur für alle sich in der jeweiligen Zeile befindenden Strahlerelemente derart vorgenommen ist, daß sich die Signale der einzelnen Zeilen in der jeweiligen ausgelenkten Hauptstrahlrichtung addieren. Zur Verbesserung des Vertikaldiagramms werden gemäß der Erfindung die Strahlerelement-Spalten in Vertikalrichtung statistisch gegeneinander verschoben, so daß die gedachten Verbindungslinien zwischen den jeweils der Reihe nach von links nach rechts nebeneinander liegenden Strahlerelementen nicht mehr horizontale Zeilenlinien, sondern statistisch verlaufende, unregelmäßige Zick-Zack-Linien sind. Außerdem wird hierbei an den einzelnen Spalten jeweils eine Phasenkorrektur für alle sich in der jeweiligen Spalte befindenden Strahlerelemente derart vorgenommen, daß sich die Signale der einzelnen Spalten in der jeweiligen ausgelenkten Hauptstrahlrichtung addieren.
  • Die systematische Addition der von den einzelnen Strahlerelementen herrührenden Strahlungsanteile im Quantisierungs- und Rasterkeulen-Bereich wird somit in der vertikalen Ebene durch eine statistische Verschiebung der Spalten gegeneinander und/oder in der horizontalen Ebene durch eine statistische Verschiebung der Zeilen gegeneinander verhindert. Dabei muß an den einzelnen Spalten bzw. Zeilen eine Phasenkorrektur derart eingeführt werden, daß sich die Signale der einzelnen Spalten bzw. Zeilen in der jeweiligen ausgelenkten Hauptstrahlrichtung addieren. Die Korrektur in einer Spalte bzw. Zeile ist abhängig von ihrem jeweiligen Versatz und wird für die weit von der Hauptstrahlrichtung entfernte Rasterkeulen-Richtung praktisch unwirksam, so daß sich die Signale in dieser Richtung mit statistischen Phasen überlagern und sich damit weitgehend auslöschen. Die Phasenkorrektur an der Spalte bzw. Zeile kann einfach in einem Rechner eingestellt werden. Der statistische Versatz der Spalten bzw. Zeilen muß so groß gewählt sein, daß die sich überlagernden Rasterkeulen-Phasen der Spalten- bzw. Zeilensignale für den betrachtenden Rasterkeulen-winkel alle Werte zwischen 0° und 360° oder darüber hinaus annehmen können.
  • Die Unterdrückung der Quantisierungs- und Rasterkeulen-Nebenzipfel kann - wie bereits erwähnt - in beiden Ebenen durchgeführt werden. Die statistische vertikale Verschiebung der Spalten macht die Zeilen zu einer statistischen Zick-Zack-Linie und verbessert das Vertikaldiagramm. Die statistische horizontale. Verschiebung der Zeilen macht die Spalten zu statistischen Zick-Zack-Linien und verbessert das Horizontaldiagramm. Prinzipiell kann auch nach einer Spalten- bzw. Zeilenverschiebung die zick-zack-förmige Zeile bzw. Spalte zusätzlich in der vertikalen bzw. horizontalen Ebene statistisch verschoben werden. Dadurch werden die Nebenzipfel in beiden Ebenen reduziert. Allerdings ist das dann ganz unregelmäßige Strahlerelementeraster konstruktiv schwieriger realisierbar und damit kostenaufwendiger.
  • Als Hauptanwendungsfall läßt sich die Verbesserung in einer Ebene ansehen, z.B. bei der vollen Phasenschieberzahl in der horizontalen Ebene zur Reduzierung der Quantisierungsnebenzipfel, oder z.B. bei der halben Phasenschieberanzahl, wobei jeweils zwei übereinander liegende Strahlerelemente von einem einzigen Phasenschieber bedient werden, zur Reduzierung der Rasterkeulen in der vertikalen Ebene.
  • Die Erfindung wird im folgenden anhand von 10 Figuren erläutert. Es zeigen
    • Fig. 1 verschiedene Strahlerelemente-Anordnungen in der Apertur einer phasengesteuerten Gruppenantenne,
    • Fig. 2 bis 4 Strahlerelemente in einer Rechteckanordnung mit identischen Spalten, in einer Dreiecksanordnung mit zweierlei Spalten und in einer beliebigen Anordnung mit statistisch verschobenen Spalten, wobei jeweils links davon die Phasenbelegung dargestellt ist,
    • Fig. 5 bis 10 Richtdiagrammbeispiele einer regelmäßigen Dreiecks-Anordnung bei einer Hauptstrahlauslenkung von 0° (Fig. 5), von 10° (Fig. 7) und 20° (Fig. 9) im Vergleich mit einer Strahlerelemente-Anordnung, deren Spalten zueinander statistisch verschoben sind, bei entsprechenden Hauptstrahlauslenkungen (Fig. 6, 8, 10).
  • Fig. 1 zeigt in einer Draufsicht die ovale Apertur 1 einer phasengesteuerten Gruppenantenne. In vier Bereichen 2, 3, 4 und 5 sind vier mögliche Anordnungen von Strahlerelementen 6 in der Antennenapertur 1 dargestellt. Im Abschnitt 2 der Apertur 1 sind die Strahlerelemente 6 in einem sogenannten Rechteckgitter angeordnet. Im Abschnitt 3 der Antennenapertur 1 befinden sich die Strahlerelemente 6 in einer regelmäßigen Dreiecks-Gitterkonfiguration. Die in den Abschnitten 2 und 3 dargestellten Anordnungen der Strahlerelemente 6 sind diejenigen, die bei phasengesteuerten Gruppenantennen üblich sind. Die Dreiecksanordnung entsprechend dem Abschnitt 3 bringt bei Halbierung der Phasenschieberzahl kaum eine Reduzierung der Rasterkeulen. Die systematische Addition der von den einzelnen Strahlerelementen 6 herrührenden Strahlungsanteile im Quantisierungs- und Rasterkeulenbereich wird in der vertikalen Ebene durch eine statistische Verschiebung der Spalten gegeneinander verhindert, so wie dies im Abschnitt 4 der Strahlungsapertur 1 der Fall ist. Die statistische vertikale Verschiebung der Spalten macht die Zeilen zu statistisch verlaufenden, unregelmäßigen Zick-Zack-Linien 7 und verbessert das Vertikaldiagramm. In der Horizontalebene wird die systematische Addition der von den einzelnen Strahlerelementen 6 herrührenden Strahlungsanteile im Quantisierungs- und Rasterkeulen-Bereich durch eine statistische Verschiebung der Zeilen gegeneinander verhindert, so wie dies im Abschnitt 5 der Antennenapertur 1 der Fall ist. Die statistische horizontale Verschiebung der Zeilen macht die Spalten zu statistisch verlaufenden, unregelmäßigen Zick-Zack-Linien 8 und verbessert das Horizontaldiagramm. An den einzelnen Spalten bzw. Zeilen muß eine Phasenkorrektur derart eingeführt werden, daß sich die Signale der einzelnen Spalten (Abschnitt 4) bzw. Zeilen (Abschnitt 5) in der jeweiligen ausgelenkten Hauptstrahlrichtung addieren. Die Korrektur in einer Spalte bzw. Zeile ist abhängig von ihrem jeweiligen Versatz und ist für die weit von der Hauptstrahlrichtung entfernte Rasterkeulen-Richtung praktisch unwirksam, so daß sich die Signale in dieser Richtung mit statistischen Phasen überlagern und sich damit weitgehend auslöschen. Der statistische Versatz der Spalten (Abschnitt 4) bzw. Zeilen (Abschnitt 5) muß dabei so groß sein, daß die sich überlagernden Rasterkeulen-Phasen der Spalten- bzw. Zeilensignale für den betrachteten Rasterkeulen-Winkel alle Werte zwischen 0 und 3600 oder darüber hinaus annehmen können.
  • Fig. 2 zeigt Strahlerelemente 6 in einer Rechteckgitteranordnung. Dies bedeutet, daß alle Spalten S1 bis Sn von links nach rechts identisch sind. Die Phasenbelegung einer solchen Rechteckgitteranordnung bei Ansteuerung von zwei übereinander liegenden Strahlerelementen durch einen Phasenschieber ist in Fig. 2 links dargestellt. Daraus ist zu entnehmen, daß die Phasenstufen der Spalten S1 bis Sn bei der Rechteckgitteranordnung für alle Spalten an derselben Stelle auftreten.
  • Fig. 3 zeigt die Strahlerelemente 6 einer phasengesteuerten Gruppenantenne in einer Dreiecksgitteranordnung. Es sind somit zweierlei Spaltenarten vorhanden, die sich jeweils abwechseln, d.h. die Spalten S1, S3, S5 ... sind in sich gleich und ebenso in sich die Spalten S2, S4, .... Auch in Fig. 3 ist links von der Strahlerelementeanordnung eine Phasenbelegung dargestellt. Daraus geht hervor, daß die Phasenstufen bei der Dreiecksgitteranordnung an zwei festen Stellen auftreten. Die Phasensprünge für die geradzahligen Spalten S2, S4, ... sind mit durchgezogenen Horizontallinien dargestellt, wogegen die Phasensprünge für die ungeradzahligen Spalten S1, S3, S5, ... gestrichelt sind.
  • Fig. 4 zeigt die Strahlerelemente 6 einer phasengesteuerten Gruppenantenne in einer Gitteranordnung, in welcher die Spalten zueinander in vertikaler Richtung statistisch verschoben sind. Auch hier ist links von der Strahlerelesenteanordnung die Phasenbelegung für die verschiedenen Spalten dargestellt. Es geht daraus hervor, daß die Phasenstufen der Spalten S1 bis Sn nicht wie bei der Rechteckgitteranordnung nach Fig. 2 für alle Spalten an derselben Stelle.oder.wie bei der Dreiecksgitteranordnung nach Fig. 3 an zwei festen Stellen auftreten. Vielmehr sind die Phasenstufen statistisch verteilt, so daß, über die Apertur gesehen, der stufenförmige Charakter der Phasenfront "aufgebrochen" ist und sich keine systematischen Additionen von Signalen im Nebenzipfelbereich er- geben. Die Phasenstufen für die Spalte S1 sind mit durchgezogenen Horizontallinien, für die Spalte S2 mit gestrichelten Horizontallinien, für die Spalte S3 mit eng gepunkteten Horizontallinien, für die Spalte S4 mit weiter auseinander gepunkteten Horizontallinien und für die Spalte S5 mit strichpunktierten Horizontallinien dargestellt.
  • Die Fig. 5 bis 10 zeigen Richtdiagramme in der vertikalen Ebene, die auf Berechnungsbeispielen zur Darstellung der Auswirkung der statistischen Spaltenverschiebung bei Speisung jeweils zweier übereinander liegender Strahlerelemente über einen einzigen Phasenschieber basieren. Verglichen werden die Richtdiagramme (Fig. 5, 7, 9) häufig verwendeter Dreiecksgitteranordnungen mit den Richtdiagrammen (Fig. 6, 8, 10) einer Gitteranordnung, in der die Spalten in Vertikalrichtung statistisch gegeneinander verschoben sind. Die Dreiecksgitteranordnung wird hierbei auch als repräsentativ für die Rechtecksgitteranordnung betrachtet, da deren nebenzipfelreduzierende Wirkung ähnlich gering ist.
  • Die gerechneten Anordnungen umfassen etwa 20 Spalten mit maximal 36 Strahlerelementen, d.h. 18 Phasenschieber pro Spalte. Zum horizontalen Rand hin werden die Spalten, entsprechend der ovalen Umrandung der Apertur nach Fig. 1 niedriger und damit die auf einer Spalte liegenden Strahlerelemente weniger. Das Prinzip und damit die Verbesserungsmöglichkeit ist jedoch unabhängig von der Aperturumrandung.
  • Fig. 5 und 6 zeigen untereinander zwei Antennen-Richtdiagramme bei einer Hauptstrahlauslenkung von.0°, wobei Fig. 5 für eine Dreiecksgitteranordnung und Fig. 6 für die Strahlerelementeanordnung mit statistischer Spaltenverschiebung gilt. Fig. 7 und 8 zeigen ebenfalls untereinander Richtdiagramme, allerdings bei einer Hauptstrahlauslenkung von 10°, wobei Fig. 7 eine Strahlerelementeanordnung in einer regelmäßigen Dreiecksgitterkonfiguration und Fig. 8 eine solche mit statistischer Spaltenverschiebung betrifft. Fig. 9 und 10 zeigen schließlich untereinander Richtdiagramme bei einer Hauptstrahlauslenkung von 200, wobei sich Fig. 9 auf die Dreiecksgitteranordnung und Fig. 10 auf die Strahlerelementeanordnung mit statistischer Spaltenverschiebung bezieht. Die Figuren 5 bis 10 zeigen, daß bei der regelmäßigen Dreiecksgitteranordnung im hauptstrahlrichtungsfernen Bereich bei einer Hauptstrahlauslenkung, für welche die großen Phasensprünge zwischen dem gleichphasigen Strahlerelementepaar und ihren Nachbarn notwendig sind, große Rasterkeulen entstehen, die bei größeren Auslenkwinkeln die Höhe der Hauptkeule erreichen. Durch die statistische Verschiebung werden diese großen Nebenzipfel des hauptstrahlrichtungsfernen Bereichs um etwa 15 dB reduziert. Die Nebenzipfel im hauptstrahlrichtungsnahen Bereich werden zum Teil geringfügig reduziert und bleiben im Bereich um - 30 dB. Die nebenzipfelreduzierende Wirkung steigt mit der Spaltenzahl.
  • Die Wirkung läßt sich somit folgendermaßen zusammenfassen. Aus den angeführten Ergebnissen geht hervor, daß die hohen Nebenzipfel bei Auslenkwinkeln, die von der wirtschaftlichen Maßnahme einer Phasenschieberhalbierung, d.h. ein Phasenschieber bedient jeweils zwei übereinander liegende Strahlerelemente, verursacht werden, durch die statistische Spaltenverschiebung beispielsweise innerhalb eines Auslenkbereiches von ± 30° vermieden werden können. Dieser Auslenkbereich in der vertikalen Ebene ist für die meisten Anwendungen ausreichend, da eine Abtastung unterhalb des Horizonts und im Zenitbereich ohnehin nicht sinnvoll ist. In der horizontalen Ebene, für welche die Forderung nach niedrigen Nebenzipfeln aus ECCM (Electronic Counter Conter Measure = Elektronische Gegengegenmaßnahme)-Gründen eine noch größere Bedeutung hat, sollte eine Ansteuerung zweier nebeneinander liegender Strahler durch nur einen Phasenschieber nicht vorgenommen werden. Durch statistische Verschiebung der voll mit Phasenschiebern belegten Zeilen kann jedoch auch der durch die Quantisierungsstufen von Strahlerelement zu Strahlerelement verursachte Nebenzipfelpegel reduziert werden.

Claims (3)

1. Elektronisch phasengesteuerte Gruppenantenne mit in horizontalen Zeilen und in vertikalen Spalten angeordneten Strahlerelementen, die zur Erzeugung einer einstellbaren Hauptstrahlauslenkung über einstellbar ausgebildete, digitale Phasenschieber gespeist werden, wobei jeweils ein Phasenschieber einem oder mehreren der Strahlerelemente zugeordnet ist, dadurch gekennzeichnet , daß zur Verbesserung des Horizontaldiagramms die Strahlerelement-Zeilen in Horizontalrichtung statistisch gegeneinander verschoben sind, so daß die gedachten Verbindungslinien zwischen den jeweils der Reihe nach von oben nach unten untereinander liegenden Strahlerelementen (6) nicht mehr vertikale Spaltenlinien, sondern statistisch verlaufende, unregelmäßige Zick-Zack-Linien (8) sind, und daß an den einzelnen Zeilen jeweils eine Phasenkorrektur für alle sich in der jeweiligen Zeile befindenden Strahlerelemente derart vorgenommen ist, daß sich die Signale der einzelnen Zeilen in der jeweiligen ausgelenkten Hauptstrählrichtung addieren.
2. Elektronisch phasengesteuerte Gruppenantenne mit in horizontalen Zeilen und in vertikalen Spalten angeordneten Strahlerelementen, die zur Erzeugung einer einstellbaren Hauptstrahlauslenkung über einstellbar ausgebildete, digitale Phasenschieber gespeist werden, wobei jeweils ein Phasenschieber einem oder mehreren der Strahlerelemente zugeordnet ist, d a - durch, gekennzeichnet, daß zur Verbesserung des Vertikaldiagramms die Strahlerelement-Spalten in Vertikalrichtung statistisch gegeneinander verschoben sind, so daß die gedachten Verbindungslinien zwischen den jeweils der Reihe nach von links nach rechts nebeneinander liegenden Strahlerelementen (6) nicht mehr horizonatle Zeilenlinien, sondern statistisch verlaufende, unregelmäßige Zick-Zack-Linien sind (7), und daß an den einzelnen Spalten jeweils eine Phasenkorrektur für alle sich in der jeweiligen Spalte befindenden Strahlerelemente derart vorgenommen ist, daß sich die Signale der einzelnen Spalten in der jeweiligen ausgelenkten Hauptstrahlrichtung addieren.
3. Gruppenantenne nach den Ansprüchen 1 und 2, gekennzeichnet durch die Kombination der in den Ansprüchen 1 und 2 angegebenen Maßnahmen.
EP84114140A 1983-11-25 1984-11-22 Elektronisch phasengesteuerte Gruppenantenne Expired - Lifetime EP0144867B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3342698 1983-11-25
DE19833342698 DE3342698A1 (de) 1983-11-25 1983-11-25 Elektronisch phasengesteuerte gruppenantenne

Publications (3)

Publication Number Publication Date
EP0144867A2 true EP0144867A2 (de) 1985-06-19
EP0144867A3 EP0144867A3 (en) 1986-12-10
EP0144867B1 EP0144867B1 (de) 1991-12-11

Family

ID=6215281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84114140A Expired - Lifetime EP0144867B1 (de) 1983-11-25 1984-11-22 Elektronisch phasengesteuerte Gruppenantenne

Country Status (2)

Country Link
EP (1) EP0144867B1 (de)
DE (2) DE3342698A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237373A1 (de) * 2009-04-02 2010-10-06 ViaSat, Inc. Subarray-Polarisierungssteuerung unter Verwendung gedrehter, doppeltpolarisierter Strahlerelemente
DE102015223482A1 (de) 2015-11-26 2017-06-01 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Millimeterwellen-Antennenmodul
DE102015226026A1 (de) 2015-12-18 2017-06-22 Ihp Gmbh - Innovations For High Performance Microelectronics/Leibniz-Institut Für Innovative Mikroelektronik Antennenfeld
WO2018112675A1 (es) 2016-12-22 2018-06-28 Universidad De Chile Dispositivo de radiovisión

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3839945C2 (de) * 1988-11-26 1997-04-10 Daimler Benz Aerospace Ag Phasengesteuerte Gruppenantenne
US5812089A (en) * 1996-12-23 1998-09-22 Motorola, Inc. Apparatus and method for beamforming in a triangular grid pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524188A (en) * 1967-08-24 1970-08-11 Rca Corp Antenna arrays with elements aperiodically arranged to reduce grating lobes
US3877033A (en) * 1973-08-15 1975-04-08 Hillel Unz Nonuniformly optimally spaced array with uniform amplitudes
GB2013408A (en) * 1978-01-27 1979-08-08 Hazeltine Corp Phased array antennae

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524188A (en) * 1967-08-24 1970-08-11 Rca Corp Antenna arrays with elements aperiodically arranged to reduce grating lobes
US3877033A (en) * 1973-08-15 1975-04-08 Hillel Unz Nonuniformly optimally spaced array with uniform amplitudes
GB2013408A (en) * 1978-01-27 1979-08-08 Hazeltine Corp Phased array antennae

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CONFERENCE PROCEEDINGS OF THE 9th MICROWAVE CONFERENCE, Brighton, GB, 17.-20. September 1979, Seiten 169-173, Microwave Exhibitions and Publ. Ltd., Sevenoaks, GB; R. ZEITZ: "Sidelobe suppression of a phased array antenna system by optimizing the phase errors of the antenna" *
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Band AP-28, Nr. 6, November 1980, Seiten 846-856, IEEE, New York, US; J.T. MAYHAN: "Thinned array configurations for use with satellite-based adaptive antennas" *
Johnson et al, Antenna Engineering Handbook, McGraw-Hill Books, Kap. 32, Seiten 21-22 *
NACHRICHTENTECHNISCHE ZEITSCHRIFT N.T.Z., Band 28, Nr. 9, 1975, Seiten 316-318; D. LOVIS: "Fully filled phase array antennas with statistically arranged subarrays" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237373A1 (de) * 2009-04-02 2010-10-06 ViaSat, Inc. Subarray-Polarisierungssteuerung unter Verwendung gedrehter, doppeltpolarisierter Strahlerelemente
US8085209B2 (en) 2009-04-02 2011-12-27 Viasat, Inc. Sub-array polarization control using rotated dual polarized radiating elements
DE102015223482A1 (de) 2015-11-26 2017-06-01 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Millimeterwellen-Antennenmodul
DE102015223482B4 (de) * 2015-11-26 2021-02-25 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Millimeterwellen-Antennenmodul
DE102015226026A1 (de) 2015-12-18 2017-06-22 Ihp Gmbh - Innovations For High Performance Microelectronics/Leibniz-Institut Für Innovative Mikroelektronik Antennenfeld
WO2018112675A1 (es) 2016-12-22 2018-06-28 Universidad De Chile Dispositivo de radiovisión
US10996309B2 (en) 2016-12-22 2021-05-04 Universidad De Chile Radiovision device

Also Published As

Publication number Publication date
DE3485340D1 (de) 1992-01-23
EP0144867B1 (de) 1991-12-11
DE3342698A1 (de) 1985-06-05
EP0144867A3 (en) 1986-12-10

Similar Documents

Publication Publication Date Title
EP1082781B1 (de) Antennenarray mit mehreren vertikal übereinander angeordneten primärstrahler-modulen
DE19823749C2 (de) Dualpolarisierte Mehrbereichsantenne
DE10256960B3 (de) Zweidimensionales Antennen-Array
DE3149200A1 (de) Kreispolarisierte mikrostreifenleiterantenne
DE102005061636A1 (de) Dual polarisierte Antenne
EP1530816B1 (de) Kalibriervorrichtung für ein umschaltbares antennen-array sowie ein zugehöriges betriebsverfahren
EP1525642B1 (de) Zweidimensionales antennen-array
DE102010041438A1 (de) Antennensystem für Radarsensoren
DE69833070T2 (de) Gruppenantennen mit grosser Bandbreite
EP0144867B1 (de) Elektronisch phasengesteuerte Gruppenantenne
DE3602515A1 (de) Vierstrahliges antennensystem mit raumduplizierten sende- und empfangsantennen
DE60019412T2 (de) Antenne mit vertikaler polarisation
DE3839945C2 (de) Phasengesteuerte Gruppenantenne
EP0178638B1 (de) Leitungsgespeiste phasengesteuerte Antenne
DE1791195A1 (de) Richtantenne
DE10336072B4 (de) Antennenanordnung
DE1285025B (de) Dipolantenne
DE102015226026A1 (de) Antennenfeld
WO2008151451A1 (de) Breitbandantenne mit parasitärelementen
DE2139257C3 (de) Rundstrahl-Sendeantenne mit von einer Mittenträgeranordnung ausgehenden Strahlerelementen
AT502159B1 (de) Mikrostreifen-patchantenne und einpunkteinspeisung in diese antenne
DE10052748A1 (de) Planarantenne mit verbesserter Richtcharakteristik
DE1183976B (de) Antennenanordnung, bestehend aus uebereinandergesetzten Rundstrahlgruppen
DE2603055B2 (de) Erregersystem für Reflektorantennen
DE1932028B2 (de) Radargeraet mit richtantenne aus phaseneinstellbaren einzelstrahlern zur aussendung mehrerer verschieden frequenter radarsignale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841205

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19900910

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3485340

Country of ref document: DE

Date of ref document: 19920123

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921016

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921130

Year of fee payment: 9

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931130

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031103

Year of fee payment: 20