EP0142464A1 - Verfahren und Vorrichtung zum Feststellen der Position eines Objektes mit Hinsicht auf eine Referenz - Google Patents
Verfahren und Vorrichtung zum Feststellen der Position eines Objektes mit Hinsicht auf eine Referenz Download PDFInfo
- Publication number
- EP0142464A1 EP0142464A1 EP84810435A EP84810435A EP0142464A1 EP 0142464 A1 EP0142464 A1 EP 0142464A1 EP 84810435 A EP84810435 A EP 84810435A EP 84810435 A EP84810435 A EP 84810435A EP 0142464 A1 EP0142464 A1 EP 0142464A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- waves
- lens
- surface element
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/026—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/50—Using chromatic effects to achieve wavelength-dependent depth resolution
Definitions
- the subject of the present invention is a method and a device for determining the position of a surface element of an object with respect to a reference scale, of the type in which a light beam focusing including a plurality of light waves is focused. a plurality of points corresponding to the foci of each wave, and the wavelength whose focal point is on this surface element is determined.
- Patent DE 19 62515 deals with a non-contact optical distance sensor, in which a light beam is focused in a plurality of distinct focal points.
- This sensor makes it possible to determine the position of an object located between two of these foci. We compare the respective intensity of the two light waves reflected by the object and converging in these foci. The position of the object relative to the sensor is defined when these waves have an equal intensity. We move the sensor to obtain this equality. The final position of the sensor makes it possible to locate the object.
- This sensor is in fact a hybrid sensor, since it includes a mechanical (location of the sensor position) and optical (location of the object relative to the sensor) measurement system.
- Patent GB 2 077 421 describes an optical sensor and a method for measuring the displacement of an object, where two monochromatic beams of different color, of equal intensity, with identical axes are focused, in order to obtain two distinct focal points. located equidistant from a reference plane.
- the relative intensity of the light waves of the two beams is measured, after reflection by the object.
- This relative intensity can be characterized by the difference or by the quotient of the respective intensities of the light waves.
- the evolution of the value of this relative intensity is characteristic of the object's movements.
- the object of the present invention is to remedy the faults of existing sensors.
- the invention firstly relates to a method for measuring the position of a surface element relative to a reference, according to claim 1.
- the invention further relates to a device for implementing this method, according to claim 3.
- the device of FIG. 1 comprises a polychromatic light source 1, generating a light beam.
- This source can for example be a tungsten filament lamp, a concentrated arc lamp, or the like.
- the axis 2 of this beam is directed onto a surface element 4 whose position is to be determined and capable of at least partially reflecting the light waves.
- a holographic lens 3 with circular concentric lines of a common type, focuses the various waves constituting the beam as a function of their respective wavelength ⁇ 1 , ⁇ 2 .... ⁇ n .
- the waves of the spectrum of the reflected light, diffracted by the grid 6, converge on the array of photodetectors (P l , P2 ⁇ P n ) in zones whose respective surfaces are all the larger as the corresponding focal points (F 1 , F 2 ... F n ) of the location F are distant from the surface element 4. It is therefore sufficient to measure the light intensity in each of these zones from time to time, using one or more several photodetectors, to obtain information characteristic of the light density in this area, therefore of the density of the light wave converging in this area.
- An analyzer 8 compares the respective intensities of the electrical signals (I 1 , I 2 ...
- I n I n coming from the photodetectors, representative of the respective density of the light waves directed at each of said photodetectors, to search for the wave ⁇ 2 of the spectrum of reflected light with maximum density.
- a computer 9 introduces this wavelength ⁇ 2 into a calibration function r (A) specific to the lens 3. This function associates a focusing distance with each wave focused by the lens.
- FIG. 1 represents only one light source, but it is obvious that a plurality of sources can be used, for example arranged side by side in a plane substantially orthogonal to axis 2 of the light beam, these sources can be aligned on one or more rows.
- the entire device is then designed so as to be able to compare the respective densities of several images each consisting of a set of zones aligned on one or more rows.
- FIG. 2 shows an example of a calibration curve for a holographic lens with 270 circular concentric lines, the external line of which is approximately 5 mm in diameter. The focusing distances are shown on the abscissa and the wavelengths on the ordinate. To obtain this curve, six monochromatic light beams of known wavelength were focused by means of the holographic lens to be calibrated. A mirror was then placed in the focal point of the lens, and the position of the mirror for which the density of the reflected light was maximum was measured for each beam.
- the position of the reference point is defined by the calibration curve r ( ⁇ ).
- the reference point can for example be constituted by the lens 3.
- the reference scale can in particular consist of all or part of the focal point F.
- the diffractions of the second order focus a portion of the waves of wavelength ⁇ 1 ⁇ 2 ... ⁇ n on focal points F i , F 2 ... F n constituting a secondary focal point F 'situated between the focal point F and the lens.
- the intensity of the waves focused at F ' is lower than that of the waves focused at F. It is nevertheless possible to analyze the spectrum of light reflected by a possible object placed in this place of secondary focusing. It is thus possible to define at least two focal points for each holographic lens and therefore to define at least two distinct measurement domains for the same sensor.
- a portion of light from the beam from source 1 is reflected by the holographic lens 3.
- This stray light is superimposed on the waves reflected by the surface element 4, thus constituting a non-negligible source of background noise.
- it is possible to remedy this defect by replacing the lens 3 with circular concentric lines by a lens with slightly elliptical concentric lines, inclined at most a few degrees of angle relative to in the plane normal to axis 2 of the light beam.
- This arrangement makes it possible to direct the portion of stray light reflected by the lens out of the beam of waves reflected by the surface element 4.
- a diaphragm with a circular orifice 10 between the mirror 5 and the concave diffraction grid of the spectral analysis system, at the place of minimum section of the portion of the light beam reflected by the surface element, of wavelength ⁇ 2 .
- This diaphragm eliminates from the reflected beam a portion of the waves which are focused outside the surface element, these waves each appearing on this surface element in the form of a disc whose diameter is proportional to the distance separating the respective focal points from these waves of the surface element; provided that the diameters of these discs are greater than the diameter of the diaphragm.
- the diaphragm also partially stops the waves reflected by the lens 3; it allows to better highlight the wave A 2 focused on the surface element.
- a removable conventional optical system consisting of at least one refractive lens, is placed between the lens 3 and its focal point F. It makes it possible to adapt a single lens 3 to many different applications, by moving the location F relative to the lens 3 as desired.
- a refractive lens with high chromatic aberration in place of the holographic lens 3, for focusing the light waves of the beam 2 into a plurality of focus F 1 P 2 ... F n .
- the focal point of such a refractive lens is significantly shorter than that of a halographic lens; as such, the two types of lenses are complementary.
- a holographic lens with parallel lines is used, called a cylindrical holographic lens.
- This type of lens differs from lenses with circular lines by the shape of its focal point consisting of a plurality of focal points F 1 , F 2 , ... F n in the form of straight line segments parallel to the lines of the lens.
- This embodiment can be used to measure the distance separating two non-coplanar adjacent surface elements a and b.
- the system for analyzing the spectrum of the reflected light highlights two light waves ⁇ a and ⁇ b focused on the surface element a, respectively on the surface element b.
- the distance sought is the difference of the respective distances from each surface element to the lens. These distances are determined beforehand using the calibration curve specific to the lens with parallel lines.
- This embodiment also makes it possible to find the lateral position in the focal point of the line of separation of the surface elements a and b by comparing the relative intensity of the waves ⁇ a and ⁇ b reflected by each of said elements. of surface.
- FIG. 3 describes a seventh embodiment of the invention using a miltimode 26 optical fiber, the diameter of the core of which is between approximately 10 and 100 ⁇ m connecting a measurement head 20 and an optoelectric system 21.
- This system 21 is intended to generate a polychranatic light beam and to analyze the light reflected by a surface element 31 whose position is sought.
- a polychromatic light source 22 makes it possible to direct a diverging beam towards a first refractive lens 23 intended to make this beam parallel.
- a second refractive lens 24 focuses said beam on the first end 25 of the optical fiber 26 fixed by a connector 27.
- a second connector 29 makes the second end 28 of the optical fiber 26 integral with the measuring head 20.
- the end 28 acts as a point light source and directs the waves ⁇ 1 to ⁇ n constituting the beam from the source 22 on a holographic lens 30.
- This lens converts the light waves as a function of their wavelength respective, to form a focal point F.
- the waves reflected by the surface element 31 on the lens 30 are focused by the latter on the end 28 of the optical fiber 26.
- the end 25 acts as a point source of light waves reflected by the surface element 31 on the lens 30, to direct these on the lens 24 whose role is to form a parallel beam of said reflected waves.
- a semi-transparent mirror 32 placed between the lenses 23 and 24, directs the parallel beam of the reflected waves towards a converging refractive lens 33 which directs these waves on a diffraction grid 34 similar to the grid 6 of FIG. 1.
- the waves diffracted by the grid 34 are directed onto a network of photodetectors 35, analogous to the network 7 of FIG. 1.
- the electrical signals coming from the photodetectors are processed by a logic assembly 36 associating the functions of the comparator 8 and of the computer 9 of FIG. 1 .
- a diaphragm such as the diaphragm 10 of FIG. 1 is not useful because the inlet 28 of the optical fiber 26 has an effect similar to this diaphragm as regards the at least partial elimination of the waves focused outside the surface element and as regards the stopping of the waves reflected by the lens 30
- the sensor according to the invention obviously makes it possible to carry out dynamic measurements by studying the modifications of the spectrum of the reflected light as a function of time. Analysis of this spectrum at regular intervals measure the displacements of a surface element.
- This last variant of use can in particular find an application in the servo-control in position, in speed, or in acceleration, of a robot arm, or in the control of machining machines.
- the device according to the invention can advantageously be used in all cases where a contactless distance measurement is desirable.
- the light spectrum analysis system described above is given by way of example. Those skilled in the art can easily adopt any other existing spectral analysis system. It will, for example, be possible to use an analysis system comprising a diffraction grid animated by oscillatory movements to successively direct each diffracted wave on a single photodetector. When the photodetector measures a maximum light intensity, the corresponding position of the grid will be representative of the position of the surface element in the focal point of the lens, therefore of the distance separating the surface element from the sensor. In another embodiment of the spectrum analysis system of the reflected light, the diffraction grid could be fixed and the photodetector mobile.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH4950/83 | 1983-09-12 | ||
CH4950/83A CH663466A5 (fr) | 1983-09-12 | 1983-09-12 | Procede et dispositif pour determiner la position d'un objet par rapport a une reference. |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0142464A1 true EP0142464A1 (de) | 1985-05-22 |
Family
ID=4285347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84810435A Withdrawn EP0142464A1 (de) | 1983-09-12 | 1984-09-10 | Verfahren und Vorrichtung zum Feststellen der Position eines Objektes mit Hinsicht auf eine Referenz |
Country Status (4)
Country | Link |
---|---|
US (1) | US4585349A (de) |
EP (1) | EP0142464A1 (de) |
JP (1) | JPS6073405A (de) |
CH (1) | CH663466A5 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2188144A (en) * | 1986-03-20 | 1987-09-23 | Smiths Industries Plc | Optical transducers |
WO1988010406A1 (en) * | 1987-06-26 | 1988-12-29 | Battelle-Institut E.V. | Device for measuring distances between an optical element with high chromatic aberration and an object |
DE3938714A1 (de) * | 1989-11-23 | 1991-05-29 | Bernd Dr Breuckmann | Verfahren zur optischen erfassung von formen von objekten |
WO1996041123A1 (en) * | 1995-06-07 | 1996-12-19 | Keravision, Inc. | Distance measuring confocal microscope |
FR2738343A1 (fr) * | 1995-08-30 | 1997-03-07 | Cohen Sabban Joseph | Dispositif de microstratigraphie optique |
WO1998044375A2 (de) * | 1997-03-29 | 1998-10-08 | Carl Zeiss Jena Gmbh | Konfokale mikroskopische anordnung |
WO2008058281A2 (en) * | 2006-11-09 | 2008-05-15 | Amo Wavefront Sciences, Llc | Method and apparatus for obtaining the distance from an optical measurement instrument to and object under test |
WO2010097523A1 (fr) | 2009-02-25 | 2010-09-02 | Altatech Semiconductor | Dispositif et procédé d'inspection de plaquettes semi-conductrices |
EP3567339A1 (de) * | 2018-05-10 | 2019-11-13 | Nanovea, Inc. | 3d-oberflächenabtastende weisslicht-axialchromatismus vorrichtung und verfahren |
Families Citing this family (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4742222A (en) * | 1984-07-23 | 1988-05-03 | Tavkozlesi Kutato Intezet | Selective optical detector apparatus utilizing longitudinal chromatic aberration |
GB8625471D0 (en) * | 1986-10-24 | 1986-11-26 | Bicc Plc | Displacement detection |
US4871252A (en) * | 1986-10-30 | 1989-10-03 | The Regents Of The University Of California | Method and apparatus for object positioning |
US4868401A (en) * | 1988-10-03 | 1989-09-19 | Erickson Ronnie D | Method and means for measuring distance of a moving object from a fixed point of reference |
DE3841742A1 (de) * | 1988-12-10 | 1990-06-13 | Hueser Teuchert Dorothee | Koordinatenmesstaster mit absolutinterferometrischem beruehrungslosem messprinzip |
GB8923994D0 (en) * | 1989-10-25 | 1989-12-13 | Smiths Industries Plc | Optical transducers |
DE4025577C2 (de) * | 1990-08-11 | 1999-09-09 | Fraunhofer Ges Forschung | Vorrichtung zum berührungslosen Messen des Abstands von einem Objekt |
JPH0611323A (ja) * | 1992-06-26 | 1994-01-21 | Minolta Camera Co Ltd | 形状測定装置 |
JP3206843B2 (ja) * | 1992-12-18 | 2001-09-10 | 株式会社小松製作所 | 3次元画像計測装置 |
US5608529A (en) * | 1994-01-31 | 1997-03-04 | Nikon Corporation | Optical three-dimensional shape measuring apparatus |
JPH1194543A (ja) * | 1997-07-09 | 1999-04-09 | Yeda Res & Dev Co Ltd | カラーコード形光学式プロフイル測定用の三角測量方法及びシステム |
IL121267A0 (en) * | 1997-07-09 | 1998-01-04 | Yeda Res & Dev | Method and device for determining the profile of an object |
DE19732376C1 (de) * | 1997-07-25 | 1999-02-18 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zur Abstandsmessung nach dem Triangulationsprinzip |
US6341036B1 (en) * | 1998-02-26 | 2002-01-22 | The General Hospital Corporation | Confocal microscopy with multi-spectral encoding |
FR2779517B1 (fr) * | 1998-06-05 | 2000-08-18 | Architecture Traitement D Imag | Procede et dispositif d'acquisition opto-electrique de formes par illumination axiale |
IL125659A (en) * | 1998-08-05 | 2002-09-12 | Cadent Ltd | Method and device for three-dimensional simulation of a structure |
DE60016170D1 (de) * | 1999-01-08 | 2004-12-30 | Ibsen Photonics As Farum | Spektrometer |
US6724489B2 (en) | 2000-09-22 | 2004-04-20 | Daniel Freifeld | Three dimensional scanning camera |
JP4241038B2 (ja) * | 2000-10-30 | 2009-03-18 | ザ ジェネラル ホスピタル コーポレーション | 組織分析のための光学的な方法及びシステム |
US9295391B1 (en) | 2000-11-10 | 2016-03-29 | The General Hospital Corporation | Spectrally encoded miniature endoscopic imaging probe |
EP2333523B1 (de) * | 2001-04-30 | 2020-04-08 | The General Hospital Corporation | Verfahren und vorrichtung zur verbesserung der bildklarheit und empfindlichkeit bei der optischen kohärenz-tomographie unter verwendung von dynamischer rückkopplung zur kontrolle der fokussierungseigenschaften und der kohärenzsteuerung |
CA2473587C (en) * | 2001-05-01 | 2014-07-15 | The General Hospital Corporation | Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties |
DE10125885B4 (de) * | 2001-05-28 | 2004-09-16 | Siemens Ag | Sensorvorrichtung zur schnellen optischen Abstandsmessung nach dem konfokalen optischen Abbildungsprinzip |
US6917421B1 (en) * | 2001-10-12 | 2005-07-12 | Kla-Tencor Technologies Corp. | Systems and methods for multi-dimensional inspection and/or metrology of a specimen |
US6980299B1 (en) | 2001-10-16 | 2005-12-27 | General Hospital Corporation | Systems and methods for imaging a sample |
CA2473465C (en) * | 2002-01-11 | 2011-04-05 | The General Hospital Corporation | Apparatus for low coherence ranging |
US7355716B2 (en) * | 2002-01-24 | 2008-04-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US8614768B2 (en) * | 2002-03-18 | 2013-12-24 | Raytheon Company | Miniaturized imaging device including GRIN lens optically coupled to SSID |
US20110201924A1 (en) * | 2002-04-30 | 2011-08-18 | The General Hospital Corporation | Method and Apparatus for Improving Image Clarity and Sensitivity in Optical Tomography Using Dynamic Feedback to Control Focal Properties and Coherence Gating |
DE10242373B4 (de) * | 2002-09-12 | 2009-07-16 | Siemens Ag | Konfokaler Abstandssensor |
DE10242374A1 (de) * | 2002-09-12 | 2004-04-01 | Siemens Ag | Konfokaler Abstandssensor |
WO2004088361A2 (en) * | 2003-03-31 | 2004-10-14 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
EP1596716B1 (de) * | 2003-01-24 | 2014-04-30 | The General Hospital Corporation | System und verfahren zur gewebeidentifizierung mittels interferometrie mit niedriger kohärenz |
US8054468B2 (en) * | 2003-01-24 | 2011-11-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
AU2004252482B2 (en) * | 2003-06-06 | 2011-05-26 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
US20050083534A1 (en) * | 2003-08-28 | 2005-04-21 | Riza Nabeel A. | Agile high sensitivity optical sensor |
EP2270447A1 (de) * | 2003-10-27 | 2011-01-05 | The General Hospital Corporation | Verfahren und Vorrichtung zur Durchführung optischer Abbildung mit Frequenzdomäneninterferometrie |
EP1687587B1 (de) * | 2003-11-28 | 2020-01-08 | The General Hospital Corporation | Verfahren und vorrichtung für dreidimensionale spektralcodierte bildgebung |
DE102004007213A1 (de) * | 2004-02-13 | 2005-09-08 | Siemens Ag | Konfokaler Abstandssensor |
EP1754016B1 (de) * | 2004-05-29 | 2016-05-18 | The General Hospital Corporation | Prozess, system und softwareanordnung für eine kompensation der chromatischen dispersion unter verwendung reflektierender schichten in der bildgebenden optischen kohärenztopographie (oct) |
CN1997871B (zh) * | 2004-06-08 | 2011-06-08 | 微-埃普西龙测量技术有限两合公司 | 孔内侧表面的检测装置和方法 |
JP4995720B2 (ja) | 2004-07-02 | 2012-08-08 | ザ ジェネラル ホスピタル コーポレイション | ダブルクラッドファイバを有する内視鏡撮像プローブ |
JP5053845B2 (ja) * | 2004-08-06 | 2012-10-24 | ザ ジェネラル ホスピタル コーポレイション | 光学コヒーレンス断層撮影法を使用して試料中の少なくとも1つの位置を決定するための方法、システムおよびソフトウェア装置 |
ES2379468T3 (es) | 2004-08-24 | 2012-04-26 | The General Hospital Corporation | Procedimiento, sistema y configuración de software para determinar el módulo de elasticidad |
KR20070058523A (ko) | 2004-08-24 | 2007-06-08 | 더 제너럴 하스피탈 코포레이션 | 혈관절편 영상화 방법 및 장치 |
EP1787105A2 (de) * | 2004-09-10 | 2007-05-23 | The General Hospital Corporation | System und verfahren zur optischen kohärenzabbildung |
US7366376B2 (en) * | 2004-09-29 | 2008-04-29 | The General Hospital Corporation | System and method for optical coherence imaging |
DE102004049541A1 (de) * | 2004-10-12 | 2006-04-20 | Precitec Optronik Gmbh | Meßsystem zur Vermessung von Oberflächen sowie Kalibrierverfahren hierfür |
WO2006050320A2 (en) * | 2004-10-29 | 2006-05-11 | The General Hospital Corporation | Polarization-sensitive optical coherence tomography |
EP1807722B1 (de) * | 2004-11-02 | 2022-08-10 | The General Hospital Corporation | Faseroptische drehvorrichtung, optisches system zur abbildung einer probe |
US7477401B2 (en) * | 2004-11-24 | 2009-01-13 | Tamar Technology, Inc. | Trench measurement system employing a chromatic confocal height sensor and a microscope |
WO2006058049A1 (en) * | 2004-11-24 | 2006-06-01 | The General Hospital Corporation | Common-path interferometer for endoscopic oct |
EP1816949A1 (de) | 2004-11-29 | 2007-08-15 | The General Hospital Corporation | Anordnungen, vorrichtungen, endoskope, katheter und verfahren für die optische bilddarstellung durch gleichzeitige beleuchtung und nachweis von mehreren punkten auf einer probe |
JP2008538612A (ja) * | 2005-04-22 | 2008-10-30 | ザ ジェネラル ホスピタル コーポレイション | スペクトルドメイン偏光感受型光コヒーレンストモグラフィを提供することの可能な構成、システム、及び方法 |
KR101410867B1 (ko) | 2005-04-28 | 2014-06-23 | 더 제너럴 하스피탈 코포레이션 | 광간섭 정렬 기술로 해부학적 구조와 연계된 정보를평가하는 시스템, 공정 및 소프트웨어 배열 |
DE102005022125A1 (de) * | 2005-05-12 | 2006-11-16 | Carl Zeiss Microlmaging Gmbh | Lichtrastermikroskop mit Autofokusmechanismus |
JP2008541096A (ja) * | 2005-05-13 | 2008-11-20 | ザ ジェネラル ホスピタル コーポレイション | 化学的試料および生体試料の高感度検出用スペクトル領域光コヒーレンス反射計測を実行可能な装置、システム、および方法 |
TWI268339B (en) * | 2005-05-25 | 2006-12-11 | Ind Tech Res Inst | Displacement measuring device and method, an internal diameter measuring device by use of the variance of the wavelength to measure the displacement and the internal diameter |
JP2008542758A (ja) * | 2005-05-31 | 2008-11-27 | ザ ジェネラル ホスピタル コーポレイション | スペクトルコード化ヘテロダイン干渉法を画像化に使用可能なシステム、方法、及び装置 |
WO2006130802A2 (en) | 2005-06-01 | 2006-12-07 | The General Hospital Corporation | Apparatus, method and system for performing phase-resolved optical frequency domain imaging |
WO2007019574A2 (en) * | 2005-08-09 | 2007-02-15 | The General Hospital Corporation | Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography |
WO2007041382A1 (en) | 2005-09-29 | 2007-04-12 | General Hospital Corporation | Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures |
US7889348B2 (en) * | 2005-10-14 | 2011-02-15 | The General Hospital Corporation | Arrangements and methods for facilitating photoluminescence imaging |
US8328731B2 (en) * | 2006-01-06 | 2012-12-11 | Phonak Ag | Method and system for reconstructing the three-dimensional shape of the surface of at least a portion of an ear canal and/or of a concha |
US7796270B2 (en) * | 2006-01-10 | 2010-09-14 | The General Hospital Corporation | Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques |
US8145018B2 (en) | 2006-01-19 | 2012-03-27 | The General Hospital Corporation | Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements |
EP2289396A3 (de) | 2006-01-19 | 2011-04-06 | The General Hospital Corporation | Verfahren und Systeme zur optischen Bildgebung von epithelialen Luminalorganen durch Strahlenabtastung dieser |
US20070223006A1 (en) * | 2006-01-19 | 2007-09-27 | The General Hospital Corporation | Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements |
US20070171430A1 (en) * | 2006-01-20 | 2007-07-26 | The General Hospital Corporation | Systems and methods for providing mirror tunnel micropscopy |
US20070171433A1 (en) * | 2006-01-20 | 2007-07-26 | The General Hospital Corporation | Systems and processes for providing endogenous molecular imaging with mid-infrared light |
US10426548B2 (en) | 2006-02-01 | 2019-10-01 | The General Hosppital Corporation | Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures |
WO2007149601A2 (en) * | 2006-02-01 | 2007-12-27 | The General Hospital Corporation | Apparatus for controlling at least one of at least two sections of at least one fiber |
EP1986545A2 (de) | 2006-02-01 | 2008-11-05 | The General Hospital Corporation | Vorrichtung zur anwendung mehrerer elektromagnetischer strahlungen auf einer probe |
JP5519152B2 (ja) * | 2006-02-08 | 2014-06-11 | ザ ジェネラル ホスピタル コーポレイション | 光学顕微鏡法を用いて解剖学的サンプルに関わる情報を取得するための装置 |
WO2007101026A2 (en) * | 2006-02-24 | 2007-09-07 | The General Hospital Corporation | Methods and systems for performing angle-resolved fourier-domain optical coherence tomography |
JP2009533076A (ja) * | 2006-03-01 | 2009-09-17 | ザ ジェネラル ホスピタル コーポレイション | 光吸収体をマクロファージに標的化することによるアテローム班の細胞特異的レーザー治療を提供するシステム及び方法 |
US20070239033A1 (en) * | 2006-03-17 | 2007-10-11 | The General Hospital Corporation | Arrangement, method and computer-accessible medium for identifying characteristics of at least a portion of a blood vessel contained within a tissue using spectral domain low coherence interferometry |
JP5135324B2 (ja) * | 2006-04-05 | 2013-02-06 | ザ ジェネラル ホスピタル コーポレイション | サンプルの偏光感応性光周波数領域画像形成のための方法、構成およびシステム |
EP2517616A3 (de) | 2006-05-10 | 2013-03-06 | The General Hospital Corporation | Prozesse, Anordnungen und Systeme zur Bereitstellung der Frequenzbereichsabbildung einer Probe |
US7782464B2 (en) * | 2006-05-12 | 2010-08-24 | The General Hospital Corporation | Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images |
US20100165335A1 (en) * | 2006-08-01 | 2010-07-01 | The General Hospital Corporation | Systems and methods for receiving and/or analyzing information associated with electro-magnetic radiation |
JP2010501877A (ja) * | 2006-08-25 | 2010-01-21 | ザ ジェネラル ホスピタル コーポレイション | ボリュメトリック・フィルタリング法を使用して光コヒーレンス・トモグラフィ画像形成の機能を向上させる装置及び方法 |
FI119259B (fi) * | 2006-10-18 | 2008-09-15 | Valtion Teknillinen | Pinnan ja paksuuden määrittäminen |
US8838213B2 (en) | 2006-10-19 | 2014-09-16 | The General Hospital Corporation | Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s) |
US7949019B2 (en) | 2007-01-19 | 2011-05-24 | The General Hospital | Wavelength tuning source based on a rotatable reflector |
EP2102583A2 (de) * | 2007-01-19 | 2009-09-23 | The General Hospital Corporation | Vorrichtung und verfahren zur steuerung der entfernungsmessungstiefe bei der bildgebung im optischen frequenzbereich |
US20080206804A1 (en) * | 2007-01-19 | 2008-08-28 | The General Hospital Corporation | Arrangements and methods for multidimensional multiplexed luminescence imaging and diagnosis |
US20080234586A1 (en) * | 2007-03-19 | 2008-09-25 | The General Hospital Corporation | System and method for providing noninvasive diagnosis of compartment syndrome using exemplary laser speckle imaging procedure |
WO2008118781A2 (en) | 2007-03-23 | 2008-10-02 | The General Hospital Corporation | Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures |
US7791712B2 (en) * | 2007-03-27 | 2010-09-07 | Mitutoyo Corporation | Chromatic confocal sensor fiber interface |
US7626705B2 (en) | 2007-03-30 | 2009-12-01 | Mitutoyo Corporation | Chromatic sensor lens configuration |
WO2008121844A1 (en) | 2007-03-30 | 2008-10-09 | The General Hospital Corporation | System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque |
WO2008131082A1 (en) * | 2007-04-17 | 2008-10-30 | The General Hospital Corporation | Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques |
WO2008137637A2 (en) * | 2007-05-04 | 2008-11-13 | The General Hospital Corporation | Methods, arrangements and systems for obtaining information associated with a sample using brillouin microscopy |
US7835074B2 (en) | 2007-06-05 | 2010-11-16 | Sterling Lc | Mini-scope for multi-directional imaging |
US7812971B2 (en) * | 2007-06-28 | 2010-10-12 | Quality Vision International, Inc. | Multi color autofocus apparatus and method |
WO2009018456A2 (en) * | 2007-07-31 | 2009-02-05 | The General Hospital Corporation | Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging |
JP5536650B2 (ja) * | 2007-08-31 | 2014-07-02 | ザ ジェネラル ホスピタル コーポレイション | 自己干渉蛍光顕微鏡検査のためのシステムと方法、及び、それに関連するコンピュータがアクセス可能な媒体 |
US7933021B2 (en) * | 2007-10-30 | 2011-04-26 | The General Hospital Corporation | System and method for cladding mode detection |
US7990522B2 (en) * | 2007-11-14 | 2011-08-02 | Mitutoyo Corporation | Dynamic compensation of chromatic point sensor intensity profile data selection |
US20090225324A1 (en) * | 2008-01-17 | 2009-09-10 | The General Hospital Corporation | Apparatus for providing endoscopic high-speed optical coherence tomography |
US9332942B2 (en) * | 2008-01-28 | 2016-05-10 | The General Hospital Corporation | Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging |
US11123047B2 (en) | 2008-01-28 | 2021-09-21 | The General Hospital Corporation | Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood |
US7898656B2 (en) * | 2008-04-30 | 2011-03-01 | The General Hospital Corporation | Apparatus and method for cross axis parallel spectroscopy |
WO2009137701A2 (en) | 2008-05-07 | 2009-11-12 | The General Hospital Corporation | System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy |
GB0809037D0 (en) * | 2008-05-19 | 2008-06-25 | Renishaw Plc | Video Probe |
WO2009155432A2 (en) * | 2008-06-18 | 2009-12-23 | Sterling Lc | Miniaturized imaging device multiple grin lenses optically coupled to multiple ssids |
JP5596027B2 (ja) | 2008-06-18 | 2014-09-24 | レイセオン カンパニー | カテーテル |
JP5795531B2 (ja) | 2008-06-20 | 2015-10-14 | ザ ジェネラル ホスピタル コーポレイション | フューズドファイバオプティックカプラ構造、及びその使用方法 |
EP2309923B1 (de) | 2008-07-14 | 2020-11-25 | The General Hospital Corporation | Vorrichtung und verfahren für eine farbendoskopie |
US8486735B2 (en) * | 2008-07-30 | 2013-07-16 | Raytheon Company | Method and device for incremental wavelength variation to analyze tissue |
US8445876B2 (en) * | 2008-10-24 | 2013-05-21 | Gigaphoton Inc. | Extreme ultraviolet light source apparatus |
US9060704B2 (en) | 2008-11-04 | 2015-06-23 | Sarcos Lc | Method and device for wavelength shifted imaging |
US7873488B2 (en) * | 2008-12-08 | 2011-01-18 | Mitutoyo Corporation | On-site calibration method and object for chromatic point sensors |
EP3330696B1 (de) * | 2008-12-10 | 2023-07-12 | The General Hospital Corporation | Systeme, vorrichtung und verfahren zur erweiterung der bildgebungstiefenbereichs bei der optischen kohärenztomopgrafie mittels optischer unterabtastung |
WO2010090837A2 (en) | 2009-01-20 | 2010-08-12 | The General Hospital Corporation | Endoscopic biopsy apparatus, system and method |
WO2010085775A2 (en) | 2009-01-26 | 2010-07-29 | The General Hospital Corporation | System, method and computer-accessible medium for providing wide-field superresolution microscopy |
WO2010091190A2 (en) | 2009-02-04 | 2010-08-12 | The General Hospital Corporation | Apparatus and method for utilization of a high-speed optical wavelength tuning source |
US9351642B2 (en) | 2009-03-12 | 2016-05-31 | The General Hospital Corporation | Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s) |
US7876456B2 (en) * | 2009-05-11 | 2011-01-25 | Mitutoyo Corporation | Intensity compensation for interchangeable chromatic point sensor components |
CN102469943A (zh) * | 2009-07-14 | 2012-05-23 | 通用医疗公司 | 用于测量脉管内流动和压力的设备、系统和方法 |
US9019349B2 (en) * | 2009-07-31 | 2015-04-28 | Naturalpoint, Inc. | Automated collective camera calibration for motion capture |
US8717428B2 (en) | 2009-10-01 | 2014-05-06 | Raytheon Company | Light diffusion apparatus |
WO2011041720A2 (en) | 2009-10-01 | 2011-04-07 | Jacobsen Stephen C | Method and apparatus for manipulating movement of a micro-catheter |
WO2011041728A2 (en) | 2009-10-01 | 2011-04-07 | Jacobsen Stephen C | Needle delivered imaging device |
US8828028B2 (en) | 2009-11-03 | 2014-09-09 | Raytheon Company | Suture device and method for closing a planar opening |
DK2542154T3 (da) | 2010-03-05 | 2020-11-23 | Massachusetts Gen Hospital | Apparat til tilvejebringelse af elektromagnetisk stråling til en prøve |
US8134691B2 (en) * | 2010-03-18 | 2012-03-13 | Mitutoyo Corporation | Lens configuration for a thermally compensated chromatic confocal point sensor |
US9069130B2 (en) | 2010-05-03 | 2015-06-30 | The General Hospital Corporation | Apparatus, method and system for generating optical radiation from biological gain media |
EP2575597B1 (de) | 2010-05-25 | 2022-05-04 | The General Hospital Corporation | Vorrichtung zur bereitstellung einer optischen bildgebung für strukturen und zusammensetzungen |
US9795301B2 (en) | 2010-05-25 | 2017-10-24 | The General Hospital Corporation | Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images |
JP6066901B2 (ja) | 2010-06-03 | 2017-01-25 | ザ ジェネラル ホスピタル コーポレイション | 1つまたは複数の管腔器官内または管腔器官にある構造を撮像するための装置およびデバイスのための方法 |
WO2012058381A2 (en) | 2010-10-27 | 2012-05-03 | The General Hospital Corporation | Apparatus, systems and methods for measuring blood pressure within at least one vessel |
US8212997B1 (en) | 2011-02-23 | 2012-07-03 | Mitutoyo Corporation | Chromatic confocal point sensor optical pen with extended measuring range |
JP5790178B2 (ja) | 2011-03-14 | 2015-10-07 | オムロン株式会社 | 共焦点計測装置 |
US8900126B2 (en) | 2011-03-23 | 2014-12-02 | United Sciences, Llc | Optical scanning device |
WO2012149175A1 (en) | 2011-04-29 | 2012-11-01 | The General Hospital Corporation | Means for determining depth-resolved physical and/or optical properties of scattering media |
WO2013013049A1 (en) | 2011-07-19 | 2013-01-24 | The General Hospital Corporation | Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography |
EP2748587B1 (de) | 2011-08-25 | 2021-01-13 | The General Hospital Corporation | Verfahren und anordnungen zur bereitstellung mikrooptischer kohärenztomographieverfahren |
JP5870576B2 (ja) * | 2011-09-22 | 2016-03-01 | オムロン株式会社 | 光学計測装置 |
EP2769491A4 (de) | 2011-10-18 | 2015-07-22 | Gen Hospital Corp | Vorrichtung und verfahren zur herstellung und/oder bereitstellung rezirkulierender optischer verzögerung(en) |
US8900125B2 (en) | 2012-03-12 | 2014-12-02 | United Sciences, Llc | Otoscanning with 3D modeling |
US9629528B2 (en) | 2012-03-30 | 2017-04-25 | The General Hospital Corporation | Imaging system, method and distal attachment for multidirectional field of view endoscopy |
EP2852315A4 (de) | 2012-05-21 | 2016-06-08 | Gen Hospital Corp | Einrichtung, vorrichtung und verfahren für kapselmikroskopie |
JP6227652B2 (ja) | 2012-08-22 | 2017-11-08 | ザ ジェネラル ホスピタル コーポレイション | ソフトリソグラフィを用いてミニチュア内視鏡を製作するためのシステム、方法、およびコンピュータ・アクセス可能媒体 |
GB2508368B (en) * | 2012-11-29 | 2018-08-08 | Lein Applied Diagnostics Ltd | Optical measurement apparatus and method of manufacturing the same |
JP6044315B2 (ja) * | 2012-12-12 | 2016-12-14 | オムロン株式会社 | 変位計測方法および変位計測装置 |
DE102013001458A1 (de) * | 2013-01-23 | 2014-07-24 | Jenoptik Optical Systems Gmbh | System zur Lagebestimmung eines Prüfobjektes und zugehöriges Verfahren |
US9968261B2 (en) | 2013-01-28 | 2018-05-15 | The General Hospital Corporation | Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging |
WO2014120791A1 (en) | 2013-01-29 | 2014-08-07 | The General Hospital Corporation | Apparatus, systems and methods for providing information regarding the aortic valve |
US11179028B2 (en) | 2013-02-01 | 2021-11-23 | The General Hospital Corporation | Objective lens arrangement for confocal endomicroscopy |
JP5966982B2 (ja) * | 2013-03-15 | 2016-08-10 | オムロン株式会社 | 共焦点計測装置 |
US10478072B2 (en) | 2013-03-15 | 2019-11-19 | The General Hospital Corporation | Methods and system for characterizing an object |
US9784681B2 (en) | 2013-05-13 | 2017-10-10 | The General Hospital Corporation | System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence |
WO2015010133A1 (en) | 2013-07-19 | 2015-01-22 | The General Hospital Corporation | Determining eye motion by imaging retina. with feedback |
EP3021734B1 (de) | 2013-07-19 | 2020-04-08 | The General Hospital Corporation | Abbildungsvorrichtung unter verwendung einer endoskopie mit multidirektionalem sichtfeld |
EP3910282B1 (de) | 2013-07-26 | 2024-01-17 | The General Hospital Corporation | Verfahren zur erzeugung von laserstrahlung mit einer optische dispersion nutzenden laseranordnung für anwendungen in der fourier-raum optischen kohärenztomographie |
WO2015105870A1 (en) | 2014-01-08 | 2015-07-16 | The General Hospital Corporation | Method and apparatus for microscopic imaging |
US10736494B2 (en) | 2014-01-31 | 2020-08-11 | The General Hospital Corporation | System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device |
US10228556B2 (en) | 2014-04-04 | 2019-03-12 | The General Hospital Corporation | Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s) |
DE112015003040T5 (de) | 2014-06-27 | 2017-03-23 | Keyence Corporation | Fotoelektrisches Multi-Wellenlängen-Messgerät, konfokales Messgerät, Interferenz-Messgerät und Farbmessgerät |
US10912462B2 (en) | 2014-07-25 | 2021-02-09 | The General Hospital Corporation | Apparatus, devices and methods for in vivo imaging and diagnosis |
US10591279B2 (en) | 2014-12-09 | 2020-03-17 | Asentys Sas | Integrated optical device for contactless measurement of altitudes and thicknesses |
KR20180099673A (ko) | 2015-12-25 | 2018-09-05 | 가부시키가이샤 키엔스 | 공초점 변위계 |
CN108474645B (zh) * | 2015-12-25 | 2021-02-23 | 株式会社基恩士 | 共焦位移计 |
TWI595253B (zh) * | 2016-08-16 | 2017-08-11 | 原相科技股份有限公司 | 可用來判斷參考物件或光源相對位置的光學偵測裝置 |
CN107765258B (zh) * | 2016-08-22 | 2021-02-05 | 原相科技股份有限公司 | 可用来判断参考物件或光源相对位置的光学侦测装置 |
US10120196B2 (en) * | 2016-09-30 | 2018-11-06 | National Taiwan University Of Science And Technology | Optical device |
AT520302B1 (de) * | 2017-09-19 | 2019-03-15 | Ing Guenther Neunteufel | Verfahren zur Ermittlung der örtlichen Verschiebung eines Objektes |
JP6986235B2 (ja) | 2018-12-20 | 2021-12-22 | オムロン株式会社 | 共焦点センサ |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1506196A (fr) * | 1965-12-30 | 1967-12-15 | Bbc Brown Boveri & Cie | Dispositif pour la mesure sans contact des contours |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3185021A (en) * | 1961-03-27 | 1965-05-25 | Thompson Ramo Wooldridge Inc | Focal isolation monochromator employing accentuation of longitudinal chromatic aberration |
US3567320A (en) * | 1968-12-23 | 1971-03-02 | Optomechanisms Inc | Non-contact optical measuring probe |
DE1933719A1 (de) * | 1969-07-03 | 1971-01-07 | Leitz Ernst Gmbh | Einrichtung zur Lagebestimmung von Werkstuecken |
US3794426A (en) * | 1972-12-08 | 1974-02-26 | Bendix Corp | Holographic spectrometer |
GB2077421B (en) * | 1980-05-31 | 1983-10-12 | Rolls Royce | Displacement sensing |
-
1983
- 1983-09-12 CH CH4950/83A patent/CH663466A5/fr not_active IP Right Cessation
-
1984
- 1984-09-07 JP JP59186613A patent/JPS6073405A/ja active Pending
- 1984-09-10 EP EP84810435A patent/EP0142464A1/de not_active Withdrawn
- 1984-09-12 US US06/650,300 patent/US4585349A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1506196A (fr) * | 1965-12-30 | 1967-12-15 | Bbc Brown Boveri & Cie | Dispositif pour la mesure sans contact des contours |
Non-Patent Citations (1)
Title |
---|
IBM TECHNICAL DISCLOSURE BULLETIN, vol. 16, no. 2, juillet 1973, pages 433-434, New York; USA; J.R. MALIN: "Optical micrometer" * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2188144A (en) * | 1986-03-20 | 1987-09-23 | Smiths Industries Plc | Optical transducers |
FR2596170A1 (fr) * | 1986-03-20 | 1987-09-25 | Smiths Industries Plc | Transducteur optique |
GB2188144B (en) * | 1986-03-20 | 1989-11-15 | Smiths Industries Plc | Optical transducers |
WO1988010406A1 (en) * | 1987-06-26 | 1988-12-29 | Battelle-Institut E.V. | Device for measuring distances between an optical element with high chromatic aberration and an object |
US5165063A (en) * | 1987-06-26 | 1992-11-17 | Battelle-Institut E.V. | Device for measuring distances using an optical element of large chromatic aberration |
DE3938714A1 (de) * | 1989-11-23 | 1991-05-29 | Bernd Dr Breuckmann | Verfahren zur optischen erfassung von formen von objekten |
US5785651A (en) * | 1995-06-07 | 1998-07-28 | Keravision, Inc. | Distance measuring confocal microscope |
WO1996041123A1 (en) * | 1995-06-07 | 1996-12-19 | Keravision, Inc. | Distance measuring confocal microscope |
FR2738343A1 (fr) * | 1995-08-30 | 1997-03-07 | Cohen Sabban Joseph | Dispositif de microstratigraphie optique |
WO1998044375A2 (de) * | 1997-03-29 | 1998-10-08 | Carl Zeiss Jena Gmbh | Konfokale mikroskopische anordnung |
WO1998044375A3 (de) * | 1997-03-29 | 1999-03-04 | Zeiss Carl Jena Gmbh | Konfokale mikroskopische anordnung |
US6674572B1 (en) | 1997-03-29 | 2004-01-06 | Carl Zeiss Jena Gmbh | Confocal microscopic device |
WO2008058281A2 (en) * | 2006-11-09 | 2008-05-15 | Amo Wavefront Sciences, Llc | Method and apparatus for obtaining the distance from an optical measurement instrument to and object under test |
WO2008058281A3 (en) * | 2006-11-09 | 2008-07-10 | Wavefront Sciences Inc | Method and apparatus for obtaining the distance from an optical measurement instrument to and object under test |
US7887184B2 (en) | 2006-11-09 | 2011-02-15 | AMO Wavefront Sciences LLC. | Method and apparatus for obtaining the distance from an optical measurement instrument to an object under test |
WO2010097523A1 (fr) | 2009-02-25 | 2010-09-02 | Altatech Semiconductor | Dispositif et procédé d'inspection de plaquettes semi-conductrices |
EP3211367A1 (de) | 2009-02-25 | 2017-08-30 | Unity Semiconductor | Konfokale chromatische mikroskopvorrichtung |
EP3567339A1 (de) * | 2018-05-10 | 2019-11-13 | Nanovea, Inc. | 3d-oberflächenabtastende weisslicht-axialchromatismus vorrichtung und verfahren |
Also Published As
Publication number | Publication date |
---|---|
CH663466A5 (fr) | 1987-12-15 |
US4585349A (en) | 1986-04-29 |
JPS6073405A (ja) | 1985-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0142464A1 (de) | Verfahren und Vorrichtung zum Feststellen der Position eines Objektes mit Hinsicht auf eine Referenz | |
FR2738343A1 (fr) | Dispositif de microstratigraphie optique | |
EP1774299B1 (de) | Oberflächenanalyse eines länglichen objekts | |
WO2017108400A1 (fr) | Dispositif et procede de mesure de hauteur en presence de couches minces | |
EP0692700A1 (de) | Verfahren und Vorrichtung zum Messen des Abstandes und der Position einer Oberfläche | |
FR3013128A1 (fr) | Dispositif et methode de mise au point tridimensionnelle pour microscope | |
FR2647913A1 (fr) | Dispositif optique a reseau et element separateur pour le controle, par detection de phase, d'un quelconque systeme optique, en particulier d'une lentille ophtalmique | |
EP1084379B1 (de) | Optoelektronische Formerfassung durch chromatische Kodierung mit Beleuchtungsebenen | |
EP0333812A1 (de) | Vorrichtung zur kontinuierlichen bestimmung des oberflächenbeschaffenheitsindex eines laufenden gekreppten blattes | |
US8456631B2 (en) | Apparatus and method of producing a light beam for an optical measurement instrument | |
JP2002005823A (ja) | 薄膜測定装置 | |
EP2667151A1 (de) | Chromatischer Höhenmesswandler | |
FR2707018A1 (de) | ||
EP0522951B1 (de) | Vorrichtung zur berührungslosen Messung des im wesentlichen zylindrischen Durchmessers eines Objektes, zum Beispiel einer optischen Faser | |
WO2003001268A1 (fr) | Systeme autofocus, procede et dispositif de controle optique de pieces incorporant ce systeme | |
EP0669525A2 (de) | Interferometrisches System zur Feststellung und Ortung von reflektierenden Fehlern lichtleitender Strukturen | |
FR2542878A1 (fr) | Dispositif de balayage | |
JPS6271804A (ja) | 膜厚測定装置 | |
WO2010076540A1 (fr) | Dispositif a fibre optique d'analyse interferometrique de l'etat de surface d'un objet | |
FR2684202A1 (fr) | Procede et dispositif holographiques perfectionnes en lumiere incoherente. | |
FR2807830A1 (fr) | Dispositif d'acquisition d'une forme tridimensionnelle par voie optoelectronique | |
EP3575774B1 (de) | Verfahren zur beobachtung von teilchen, insbesondere teilchen im submikrometerbereich | |
WO2023222988A1 (fr) | Sonde interférométrique à faible encombrement | |
WO2007138032A1 (fr) | Dispositif et procede de mesure de caracterisation par reflectometrie | |
FR3144659A1 (fr) | Dispositif et procédé d’analyse par spectroscopie Brillouin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19850917 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GROSS, DANIEL Inventor name: DAEHNE, CLAUS |