EP0141641A2 - Procédé et composition pour l'encollage du papier - Google Patents
Procédé et composition pour l'encollage du papier Download PDFInfo
- Publication number
- EP0141641A2 EP0141641A2 EP84307468A EP84307468A EP0141641A2 EP 0141641 A2 EP0141641 A2 EP 0141641A2 EP 84307468 A EP84307468 A EP 84307468A EP 84307468 A EP84307468 A EP 84307468A EP 0141641 A2 EP0141641 A2 EP 0141641A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition according
- polyelectrolyte
- weight
- size
- reactive size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 48
- 238000004513 sizing Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 11
- 239000006185 dispersion Substances 0.000 claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229920000867 polyelectrolyte Polymers 0.000 claims abstract description 31
- 239000012141 concentrate Substances 0.000 claims abstract description 25
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000002904 solvent Substances 0.000 claims abstract description 15
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims description 20
- -1 dialkylaminoalkyl acrylates Chemical class 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 15
- WASQWSOJHCZDFK-UHFFFAOYSA-N diketene Chemical group C=C1CC(=O)O1 WASQWSOJHCZDFK-UHFFFAOYSA-N 0.000 claims description 13
- 125000002091 cationic group Chemical group 0.000 claims description 11
- 239000003995 emulsifying agent Substances 0.000 claims description 10
- 239000000178 monomer Substances 0.000 claims description 8
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 5
- 150000008064 anhydrides Chemical class 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- 125000000129 anionic group Chemical group 0.000 claims description 2
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 229920000831 ionic polymer Polymers 0.000 claims description 2
- 229920000768 polyamine Polymers 0.000 claims description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 238000002156 mixing Methods 0.000 abstract description 5
- 239000000839 emulsion Substances 0.000 description 51
- 235000008504 concentrate Nutrition 0.000 description 22
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 18
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- 239000003921 oil Substances 0.000 description 8
- 229940014800 succinic anhydride Drugs 0.000 description 8
- 239000000539 dimer Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910021653 sulphate ion Inorganic materials 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 239000011436 cob Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000000123 paper Substances 0.000 description 5
- 239000008107 starch Substances 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 4
- 238000004945 emulsification Methods 0.000 description 4
- 230000001804 emulsifying effect Effects 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- 235000018185 Betula X alpestris Nutrition 0.000 description 3
- 235000018212 Betula X uliginosa Nutrition 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229940037003 alum Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000004815 dispersion polymer Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 150000002561 ketenes Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 229940050176 methyl chloride Drugs 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- 239000013055 pulp slurry Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical class CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004533 oil dispersion Substances 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000008149 soap solution Substances 0.000 description 1
- 150000003385 sodium Chemical class 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical group OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical class CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/41—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
Definitions
- the invention relates to the sizing of cellulosic fibres and to compositions for use in this, and to their manufacture.
- sizing can be carried out by adding a sizing agent to the pulp slurry (usually termed internal sizing) or the sizing agent can be applied to the formed paper sheet.
- This invention is concerned with the internal sizing process.
- sizing agent there are two types in general use. One of these is based on rosin which is used in conjunction with alum. The rosin is added as a soap solution or as an emulsion and alum is added afterwards just prior to sheet formation to precipitate the rosin as a fine particulate which is retained by the sheet.
- the second type of size is a reactive size, such as a ketene dimer or an anhydride-based size, which reacts chemically with the cellulosic fibres.
- a reactive size such as a ketene dimer or an anhydride-based size, which reacts chemically with the cellulosic fibres.
- it is applied in combination with a polyelectrolyte which will help to retain the size in the sheet.
- the reactive size is generally added to the pulp in the form of an aqueous emulsion, generally a cationic emulsion.
- the emulsion can be prepared at the mill but this necessitates the mill having emulsifying equipment and so it would be more convenient if a concentrated emulsion could be supplied to the mill ready for dilution and use.
- reactive sizes tend to react with water so that an aqueous emulsion is liable to be rather unstable.
- Anhydride based sizes such as alkenyl succinic anhydride sizes, are so reactive that their emulsions have to be prepared at the mill just prior to use. These sizes are normally supplied to the mill with a cationic starch which generally has to be precooked before emulsification, thus making it even less convenient for the emulsion to be formed at the mill.
- Ketene dimer sizes often are supplied to the mill in the form of an emulsion but these emulsions have only limited shelf-life and the maximum concentration of ketene dimer in the emulsion is rather low, generally below 6%, so that very large volumes of emulsion have to be supplied to the paper manufacture.
- Emulsification of liquid ketene dimers can be achieved using conventional emulsification equipment but some of the preferred ketene dimers are solids at ambient temperature. As described in U.S. Patent Specification 3,046,186, emulsification of these necessitates initially either melting the solid (so that upon cooling the emulsion is converted to a dispersion) or dissolving the solid in a solvent, generally benzene.
- a typical important ketene dimer is distearyl ketene dimer and this only has relatively low solubility in organic solvents with the result that the solution of it that is emulsified must be rather dilute.
- this dimer precipitates from a 40% by weight solution in benzene (weight ratio benzene:dimer of 1:0.67) and so any solution in benzene must be much more dilute than this. Also this dimer is less soluble in other organic solvents than it is in benzene.
- the emulsions are generally prepared by emulsifying the dimer into an aqueous solution of cationic dispersing agent although that patent does mention that in certain instances the emulsifying agent may be predispersed in the ketene dimer. It is stated that the emulsions may be prepared at any convenient solids content but are used at 1 to 5% solids by weight.
- Example 1 the initial composition that was prepared and that contained both size and polyelectrolyte was very dilute.
- the initial concentration is about 9% by weight size based on the total composition.
- a concentrate composition according to the invention comprises a substantially anhydrous dispersion of a polyelectrolyte in an organic liquid comprising a solution of a reactive size in a hydrophobic solvent.
- the concentrate composition generally has a reactive size concentration above 20% and preferably at least 28.6%.
- the concentration of reactive size is often in the range 30 to 60%.
- the amount may be higher, for instance up to 80% or 85%. All these amounts are by weight of the total composition.
- the weight ratio, on a dry basis, of polyelectrolyte:reactive size is generally from 1:1 to 1:10, preferably 1:1.5 or 2 up to 1:4 or 1:5.
- the weight of reactive size is at least 0.67 parts per part by weight organic solvent (i.e. 40% solution).
- the weight ratio organic solvent: reactive size is generally from 1:10 to 1:0.67 preferably 1:1 to 1:3.
- the amount of polyelectrolyte is generally between 4 parts and 40 parts, giving sizing compositions having a reactive size content of from 38.4 to 28.6%.
- a composition having 83.3% reactive size can be formed from, for instance, 100 parts reactive size, 10 parts solvent and 10 parts polyelectrolyte.
- compositions have, per part solvent, about 1 to 3 parts (preferably about 2 parts) reactive size and about 0.5 to 2 parts (preferably about 1 part) polyelectrolyte.
- the concentrate composition must be substantially anhydrous in order that the composition is stable, and in practice this means that if water is present its amount will be not more than 10% and preferably not more than 5% by weight of the composition.
- the water content is not more than 1% or, at the most, 2% by weight of the composition.
- the amount of water is generally insufficient to form a solution of the polyelectrolyte and preferably is not significantly more than, and most preferably is the same as or less than, the equilibrium moisture content of the polyelectrolyte (i.e. the water content of the electrolyte if it is exposed in the form of dry powder to the ambient atmosphere).
- the organic liquid in which the polyelectrolyte is dispersed is a solution of the reactive size in a hydrophobic solvent.
- Suitable solvents are water immiscible organic hydrocarbon liquids such as benzene, xylene, toluene, mineral oils, kerosene, and vegetable oils.
- the composition is preferably also substantially free of any highly polar liquids with which the reactive size might tend to react.
- the liquid phase of the composition consists essentially only of hydrophobic solvent and dissolved size.
- any type of reactive size may be used in the invention but the size preferably is a ketene dimer reactive size or an anhydride reactive size.
- Suitable ketene dimer reactive sizes that may be used include the dimers derived from readily available commercial fatty acids such as palmitic, stearic, oleic or myristic acids or mixtures thereof. Naturally the ketene dimer must be soluble in the organic liquid chosen for the polymer-in-oil dispersion. Suitable materials are well known and are described in, for example, U.S. Patent Specification No. 3,046,186. The ketene dimer may be solid or liquid, but generally the most concentrated products are obtainable when the dimer is liquid.
- Suitable anhydride reactive sizes that may be used include alkenyl succinic anhydride sizes. Suitable materials are described in U.S. Patent No. 3,102,064.
- the polyelectrolyte will generally be water soluble and an advantage of the invention is that it can have a any desired molecular weight and in particular can have a molecular weight that is higher than is conveniently possible with existing compositions.
- the intrinsic viscosity can typically be between 1 and 20, generally 3 to 9.
- the polyelectrolytes may be cationic, anionic or non-ionic, the cationic polyelectrolytes generally being preferred.
- Preferred cationic electrolytes include homopolymers or copolymers of diallyl dialkyl (generally dimethyl) ammonium chloride and homopolymers and copolymers of dialkylaminoalkyl acrylates and methacrylates (preferably dimethylaminoethyl acrylates and methacrylates) present as acid addition salts or quaternary ammonium salts, generally quaternised with methyl chloride or dimethyl sulphate.
- Copolymers of such monomers may be formed with acrylamide or methacrylamide and will typically contain at least 10%, and usually at least 30%, by weight of the cationic monomer.
- Other cationic acrylamides and methacrylamides can be used.
- Other cationic polymers that can be used are polyamines and polyimines such as polyamine-epi-halohydrin polymers and dicyandiamide condensates and polyethylene imines.
- Suitable non-ionic polymers include polyacrylamide.
- Suitable anionic polymers include polymers formed from monomers including carboxylic or sulphonic acid groups. These groups may be present as free acid or, more usually, as a water soluble ammonium or alkali metal (generally sodium) salt.
- Suitable acids are acrylic acid, methacrylic acid and 2-acrylamido-2-methyl-propane sulphonic acid.
- the anionic polymers may be homopolymers of such acids, or mixtures thereof, or copolymers with, for instance, acrylamide.
- a suitable polymer is polyacrylamide containing up to 25% or more acrylic acid groups.
- the concentrate composition is best made by adding the reactive size to a substantially anhydrous dispersion of a polyelectrolyte in the hydrophobic liquid and thereby forming a solution of the size in the hydrophobic liquid.
- the dispersion of the polyelectrolyte in the hydrophobic liquid may be made by dispersing powdered polyelectrolyte mechanically into the liquid or by forming a dispersion in the hydrophobic liquid of aqueous polymer and then dehydrating this dispersion, generally by azeotroping.
- This dispersion may be made by dispersing aqueous polymer solution into the hydrophobic liquid or by, for instance, reversed phase emulsion or suspension polymerisation.
- an aqueous solution of the monomer or monomers from which the polyelectrolyte is to be formed may be dispersed in an oil phase and then polymerised by emulsion or suspension polymerisation mechanism to form aqueous polymer droplets dispersed in the oil phase, and the composition is then dried.
- Any aqueous dispersion is preferably formed initially in the presence of a polymeric dispersion stabiliser (for instance as described in British Patent Specification No. 1,482,515) and possibly also a water-in-oil emulsifying surfactant and the oil that will facilitate subsequent drying of the product by azeotroping.
- a user composition is made from the concentrate composition, generally by the user, by adding the concentrate composition to water and thereby forming an oil-in-water emulsion of the size solution dispersed in water in which the polyelectrolyte is dissolved. Formation of the oil-in-water emulsion is promoted by application of mechanical high shear and/or by the presence of an oil-in-water emulsifying agent, such as an ethoxylated nonyl phenyl.
- the oil-in-water emulsifying agent may be included in the concentrate or in the water in which the emulsion is formed.
- the water in which the emulsion is formed may be the water of the cellulosic pulp suspension that is to be treated but preferably the concentrate is first converted into an aqueous emulsion to give a reactive size concentration of from 0.01 to 5%, preferably 0.05 to 1%, based on the weight of the aqueous solution.
- This emulsion may then be added to the aqueous cellulosic pulp, and paper may be made from it, in the usual way.
- the amount of reactive size in the aqueous pulp is generally from about 0.01 to about 1% by weight based on the dry weight of the pulp.
- the active size/oil droplets are retained by the polymer on the fibres and the size reacts with the fibres.
- the size released from an emulsion in this way produces results at least as good as those obtained with the conventional ketene dimer emulsions.
- a substantially anhydrous dispersion of a copolymer of methyl chloride quaternised dimethylaminoethyl methacrylate (DMAEMA) and acrylamide was prepared by a reverse phase dispersion polymerisation process.
- the acrylamide was supplied as a 57% aqueous solution and the quaternised monomer was a 65% aqueous solution.
- These solutions were dispersed in a blend of Solvent Pale Oil 150 and perchloroethylene in the presence of a polymeric stabiliser and a very small amount of emulsifier.
- Polymerisation was initiated and allowed to complete in conventional manner and the resultant product was distilled under reduced pressure to remove the water and the perchloroethylene.
- the Intrinsic Viscosity of this polymer (and of the polymers in each of Dispersions A to E below) was in the range 4 to 6.
- the ratio DMAEMA:acrylamide was 80:20 by weight and the resultant polymer dispersion, labelled Dispersion A, contained 47.5% by weight of active polymer.
- a 1% solution of the polymer in water had a RVT Brookfield Viscosity of 6,400 cps at room temperature using spindle No. 3 rotating at 10 rpm.
- Dispersion B The resultant dispersion was labelled Dispersion B.
- Dispersion C a dispersion obtained broadly as described for Dispersion A and was a 50% active polymer dispersion in mineral oil.
- Dispersion D the ratio DMAEMA:acrylamide was 30:70 by weight and the resultant dispersion, labelled Dispersion D, contained 50% by weight active polymer.
- the polymer in the dispersion was of low molecular weight, having an intrinsic viscosity of 3.16.
- a substantially anhydrous dispersion of a polyamine-epichlorhydrin condensate was prepared by emulsifying the polymer produced in an aqueous phase polymerisation process into a mixture of solvent pale oil 60 and SBP 11 with a very small amount of emulsifiers prior to distilling off the water under reduced pressure.
- the resultant polymer dispersion, labelled Dispersion E contained 37.6% by weight of active polymer.
- a series of concentrate compositions according to the invention were made by dissolving a reactive size in each of Dispersions A to E.
- Example 1 the size was hexadecenyl dimer and the concentrate contained 1.05g Dispersion A and 4g of hexadecenyl ketene dimer, and 1g of an oil-in-water emulsifier to give a 64.5% active sizing composition.
- the water content of the concentrate was less than 1%.
- the product is concentrate A.
- Example 2 the concentrate was made by mixing 2 ml of Dispersion B with 2 ml octadecenyl ketene dimer, to make concentrate B.
- Example 3 one part by weight Dispersion C was mixed with one part by weight alkenyl succinic anhydride reactive size to form concentrate C.
- Example 4 alkenyl succinic anhydride was dissolved into a mixture of Dispersion D and a mineral oil such that concentrate D contained 2g Dispersion D, 5g alkenyl succinic anhydride, 2.25g mineral oil and 0.75g of an oil-in-water emulsifier to give a 50% active sizing concentrate D, having a water content of less than 1%.
- Example 5 alkenyl succinic anhydride was dissolved into Dispersion E in the presence of emulsifiers to form concentrate E containing 5g alkenyl succinic anhydride, 5.31g Dispersion E and 1.28g of the oil-in-water emulsifiers to give a 43.1% active size concentrate.
- Each of concentrates A to E was used to prepare a corresponding aqueous emulsion, having a 1% by weight active size content, by stirring the appropriate amount of dispersion into water. Each of these 1% active emulsions was further diluted to 0.1% by weight active size content and these 0.1% emulsions were labelled Emulsions A to E (having been prepared from, respectively, concentrates A to E).
- Test A the hand sheets were 100 g.sm and the stock contained 20% calcium carbonate and was a 0.5% constituted stock.
- the emulsion was either Emulsion A or, as a comparison, with Emulsion F which was a conventional emulsion prepared from a commercially available 6% emulsion of ketene dimer in water stabilised with cationic starch.
- Test B hand sheets were prepared from a furnish of 50% bleached sulphate, 40% bleached birch and 10% calcium carbonate, beaten to a freeness of 52° S.R.
- the stock was sized with Emulsion B or, as a comparison, with Emulsion G obtained by mixing 2 ml of the 50% dispersion of polymer in oil used in the preparation of Dispersion B into 196 mls deionised water followed by rapid stirring with a Silverson mixer at maximum speed and injection into the resultant solution of 2 mls octadecenyl ketene, Silverson mixing being continued for a further 25 seconds.
- the resultant 1% emulsion was diluted to 0.1% to form Emulsion G.
- Test C 70 gsm hand sheets were prepared from a stock of 50 parts bleached sulphate, 40 parts bleached birch and 10 parts calcium carbonate and these were sized either with Emulsion C or with comparison Emulsion H. This was prepared as follows. A 12% aqueous dispersion of a cationic starch was cooked at 95°C for 20 minutes with constant stirring. The cooked starch was cooled and diluted to 9% activity. 2 parts by weight of alkenyl succinic anhydride was added to 3 parts by weight of cationic starch with agitation. High shear mixing using a Silverson mixer was continued to achieve a fine particle size emulsion. This emulsion was diluted with water to 0.75% active size, which was further diluted to 0.1%.
- Test D 70 gms hand sheets were prepared from a stock of 50 parts bleached sulphate, 40 parts bleached birch and 10 parts calcium carbonate beaten to 50° S.R. and after manufacturer the sheets were placed on glazing plates and pressed at 3.5 kg/cm 2 for 5 minutes prior to drying on rings at 110°C for 2 hours. Emulsion D was used for sizing each of these sheets.
- Test E 70 gms hand sheets were prepared from a bleached sulphate stock in conventional manner and dried and pressed as in Test D, the sheets being sized using Emulsion E.
- the dosage and the Cobb value are shown in the following Table.
- the dosage is recorded as percent active size based on dry weight of paper.
- the Cobb figure is the 1 minute Cobb value.
- Test C shows that the results can be similar to those obtainable with a conventional commercially available 2-pack system H while Test B shows that the results can be surprisingly better than the results obtained by sequential formation of a single emulsion, G.
- Test A shows that the results can be better than obtainable with a conventional emulsion system.
- satisfactory results are obtained when the polymer is polyacrylamide containing 10% molar acrylic acid groups (as sodium salt) and the stock contains alum and has a pH of 5.5.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paper (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Making Paper Articles (AREA)
- Credit Cards Or The Like (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84307468T ATE29540T1 (de) | 1983-11-07 | 1984-10-30 | Verfahren und zusammensetzung zur papierleimung. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB838329655A GB8329655D0 (en) | 1983-11-07 | 1983-11-07 | Sizing paper |
GB8329655 | 1983-11-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0141641A2 true EP0141641A2 (fr) | 1985-05-15 |
EP0141641A3 EP0141641A3 (en) | 1985-06-12 |
EP0141641B1 EP0141641B1 (fr) | 1987-09-09 |
Family
ID=10551354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84307468A Expired EP0141641B1 (fr) | 1983-11-07 | 1984-10-30 | Procédé et composition pour l'encollage du papier |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0141641B1 (fr) |
JP (1) | JPS60119298A (fr) |
AT (1) | ATE29540T1 (fr) |
AU (1) | AU580014B2 (fr) |
CA (1) | CA1242054A (fr) |
DE (1) | DE3466025D1 (fr) |
FI (1) | FI81636C (fr) |
GB (1) | GB8329655D0 (fr) |
NO (1) | NO170769C (fr) |
ZA (1) | ZA848625B (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0200504A1 (fr) * | 1985-05-03 | 1986-11-05 | Ciba Specialty Chemicals Water Treatments Limited | Compositions pour l'encollage du papier |
EP0235893A1 (fr) * | 1986-01-29 | 1987-09-09 | Ciba Specialty Chemicals Water Treatments Limited | Production de papier et carton |
US4913775A (en) * | 1986-01-29 | 1990-04-03 | Allied Colloids Ltd. | Production of paper and paper board |
US5176748A (en) * | 1988-07-05 | 1993-01-05 | Bercen, Inc. | Alkenyl succinic anhydride emulsion |
US7892398B2 (en) * | 2005-12-21 | 2011-02-22 | Akzo Nobel N.V. | Sizing of paper |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0678462B2 (ja) * | 1984-06-04 | 1994-10-05 | 日本ピー・エム・シー株式会社 | ケテンダイマー系水性分散液 |
US5725731A (en) † | 1995-05-08 | 1998-03-10 | Hercules Incorporated | 2-oxetanone sizing agents comprising saturated and unsaturated tails, paper made with the 2-oxetanone sizing agents, and use of the paper in high speed converting and reprographic operations |
US6162328A (en) * | 1997-09-30 | 2000-12-19 | Hercules Incorporated | Method for surface sizing paper with cellulose reactive and cellulose non-reactive sizes, and paper prepared thereby |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1370650A (en) * | 1920-04-09 | 1921-03-08 | Hoskins William | Art of making water-resistant paper |
US1958202A (en) * | 1931-12-19 | 1934-05-08 | Raybestos Manhattan Inc | Method of making sizing material |
US3046186A (en) * | 1957-06-12 | 1962-07-24 | American Cyanamid Co | Cationic sizing emulsions and paper sized therewith |
GB1397933A (en) * | 1971-12-21 | 1975-06-18 | Allied Colloids Ltd | Vinyl addition polymers |
US4021399A (en) * | 1976-03-12 | 1977-05-03 | Nalco Chemical Company | Method for the concentration of water-in-oil emulsions of water soluble vinyl addition polymers |
GB1482515A (en) * | 1974-07-24 | 1977-08-10 | Allied Colloids Ltd | Polymers |
GB1569591A (en) * | 1977-04-06 | 1980-06-18 | Tenneco Chem | Paper sizing agents |
US4214948A (en) * | 1974-07-31 | 1980-07-29 | National Starch And Chemical Corporation | Method of sizing paper |
GB2079768A (en) * | 1980-07-15 | 1982-01-27 | Inst Francais Du Petrole | Stable suspensions of water-soluble polymers in hydrocarbon liquids |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1397333A (en) * | 1972-04-18 | 1975-06-11 | Stag Plastics Ltd | Box dividers |
-
1983
- 1983-11-07 GB GB838329655A patent/GB8329655D0/en active Pending
-
1984
- 1984-10-30 AT AT84307468T patent/ATE29540T1/de not_active IP Right Cessation
- 1984-10-30 EP EP84307468A patent/EP0141641B1/fr not_active Expired
- 1984-10-30 DE DE8484307468T patent/DE3466025D1/de not_active Expired
- 1984-11-05 AU AU34996/84A patent/AU580014B2/en not_active Ceased
- 1984-11-05 ZA ZA848625A patent/ZA848625B/xx unknown
- 1984-11-06 NO NO844415A patent/NO170769C/no unknown
- 1984-11-06 CA CA000467105A patent/CA1242054A/fr not_active Expired
- 1984-11-07 FI FI844373A patent/FI81636C/fi not_active IP Right Cessation
- 1984-11-07 JP JP59235936A patent/JPS60119298A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1370650A (en) * | 1920-04-09 | 1921-03-08 | Hoskins William | Art of making water-resistant paper |
US1958202A (en) * | 1931-12-19 | 1934-05-08 | Raybestos Manhattan Inc | Method of making sizing material |
US3046186A (en) * | 1957-06-12 | 1962-07-24 | American Cyanamid Co | Cationic sizing emulsions and paper sized therewith |
GB1397933A (en) * | 1971-12-21 | 1975-06-18 | Allied Colloids Ltd | Vinyl addition polymers |
GB1482515A (en) * | 1974-07-24 | 1977-08-10 | Allied Colloids Ltd | Polymers |
US4214948A (en) * | 1974-07-31 | 1980-07-29 | National Starch And Chemical Corporation | Method of sizing paper |
US4021399A (en) * | 1976-03-12 | 1977-05-03 | Nalco Chemical Company | Method for the concentration of water-in-oil emulsions of water soluble vinyl addition polymers |
GB1569591A (en) * | 1977-04-06 | 1980-06-18 | Tenneco Chem | Paper sizing agents |
GB2079768A (en) * | 1980-07-15 | 1982-01-27 | Inst Francais Du Petrole | Stable suspensions of water-soluble polymers in hydrocarbon liquids |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0200504A1 (fr) * | 1985-05-03 | 1986-11-05 | Ciba Specialty Chemicals Water Treatments Limited | Compositions pour l'encollage du papier |
EP0235893A1 (fr) * | 1986-01-29 | 1987-09-09 | Ciba Specialty Chemicals Water Treatments Limited | Production de papier et carton |
US4753710A (en) * | 1986-01-29 | 1988-06-28 | Allied Colloids Limited | Production of paper and paperboard |
US4913775A (en) * | 1986-01-29 | 1990-04-03 | Allied Colloids Ltd. | Production of paper and paper board |
US5176748A (en) * | 1988-07-05 | 1993-01-05 | Bercen, Inc. | Alkenyl succinic anhydride emulsion |
US7892398B2 (en) * | 2005-12-21 | 2011-02-22 | Akzo Nobel N.V. | Sizing of paper |
Also Published As
Publication number | Publication date |
---|---|
AU3499684A (en) | 1985-05-16 |
CA1242054A (fr) | 1988-09-20 |
DE3466025D1 (en) | 1987-10-15 |
NO844415L (no) | 1985-05-08 |
EP0141641A3 (en) | 1985-06-12 |
ZA848625B (en) | 1985-12-24 |
FI844373L (fi) | 1985-05-08 |
EP0141641B1 (fr) | 1987-09-09 |
NO170769C (no) | 1992-12-02 |
AU580014B2 (en) | 1988-12-22 |
FI81636B (fi) | 1990-07-31 |
FI81636C (fi) | 1990-11-12 |
ATE29540T1 (de) | 1987-09-15 |
FI844373A0 (fi) | 1984-11-07 |
GB8329655D0 (en) | 1983-12-07 |
JPS60119298A (ja) | 1985-06-26 |
NO170769B (no) | 1992-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4657946A (en) | Paper sizing method and emulsion | |
US4599379A (en) | Process for the production of polymers and aqueous solutions thereof | |
JP2948358B2 (ja) | 製紙工程に添加される有機重合体微小球 | |
DE69410361T2 (de) | Zusammensetzungen und Verfahren zur Verbesserung zur Trennung von Feststoffen aus Dispersionen von Teilchen in Flüssigkeit | |
EP0151994B1 (fr) | Méthode de préparation d'un agent d'encollage et méthode d'encollage de papier | |
JP2000504787A (ja) | ロジンサイズ剤のための乳化剤系 | |
JP2010526945A (ja) | 紙及び板紙用のasaサイジングエマルジョン | |
US3902958A (en) | Method of making improved paper and paper products | |
EP0141641B1 (fr) | Procédé et composition pour l'encollage du papier | |
JP2002542408A (ja) | サイジング組成物 | |
EP0499448A1 (fr) | Production de papier | |
US4859720A (en) | Process and compositions for sizing paper | |
CA2085845C (fr) | Acide alkenylsuccinique emulsionne utilise comme agent de collage | |
EP0200504B1 (fr) | Compositions pour l'encollage du papier | |
US4882087A (en) | Aqueous dispersed solution of substituted succinic anhydride and process for producing the same | |
DE69125241T2 (de) | Verwendung von dispergierungsmitteln in der herstellung wässriger emulsionen von kolophoniumverbindungen, sowie diese wässrige emulsionen der kolophoniumverbindungen | |
JP4329149B2 (ja) | 紙のサイジング方法 | |
GB2159183A (en) | Paper sizing composition | |
JP3102958B2 (ja) | 製紙用サイズ剤 | |
JP3221189B2 (ja) | ロジン系エマルション組成物、その製造方法、サイズ剤、サイジング方法及びサイズされた紙 | |
JPS60246893A (ja) | サイズ剤の調製方法 | |
RU2172799C2 (ru) | Проклеивающая композиция, композиция коацерватной дисперсии, способ ее приготовления, способ изготовления проклеенной бумаги, проклеенная бумага с использованием композиций | |
JP3221188B2 (ja) | ロジン系エマルション組成物、その製造方法、サイズ剤、サイジング方法及びサイズされた紙 | |
JP3221062B2 (ja) | ロジン系エマルション組成物、その製造方法、サイジング方法、サイズ剤及びサイズ紙 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19851128 |
|
17Q | First examination report despatched |
Effective date: 19860916 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 29540 Country of ref document: AT Date of ref document: 19870915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3466025 Country of ref document: DE Date of ref document: 19871015 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 84307468.3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19951010 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19951011 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19951017 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19951023 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19951024 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19951026 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19951113 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19951213 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19961030 Ref country code: AT Effective date: 19961030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19961031 Ref country code: LI Effective date: 19961031 Ref country code: CH Effective date: 19961031 Ref country code: BE Effective date: 19961031 |
|
BERE | Be: lapsed |
Owner name: ALLIED COLLOIDS LTD Effective date: 19961031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970501 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19961030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970701 |
|
EUG | Se: european patent has lapsed |
Ref document number: 84307468.3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |