EP0140199B1 - Device for compensating cross-polarized components in an antenna with curved reflector and off-set primary feed - Google Patents

Device for compensating cross-polarized components in an antenna with curved reflector and off-set primary feed Download PDF

Info

Publication number
EP0140199B1
EP0140199B1 EP84111834A EP84111834A EP0140199B1 EP 0140199 B1 EP0140199 B1 EP 0140199B1 EP 84111834 A EP84111834 A EP 84111834A EP 84111834 A EP84111834 A EP 84111834A EP 0140199 B1 EP0140199 B1 EP 0140199B1
Authority
EP
European Patent Office
Prior art keywords
wave
correction signal
coupler
waveguide feed
curved reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84111834A
Other languages
German (de)
French (fr)
Other versions
EP0140199A2 (en
EP0140199A3 (en
Inventor
Uwe Dipl.-Ing. Leupelt
Anton Dipl.-Ing. Giefing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT84111834T priority Critical patent/ATE55848T1/en
Publication of EP0140199A2 publication Critical patent/EP0140199A2/en
Publication of EP0140199A3 publication Critical patent/EP0140199A3/en
Application granted granted Critical
Publication of EP0140199B1 publication Critical patent/EP0140199B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/132Horn reflector antennas; Off-set feeding

Definitions

  • the invention relates to a device for compensating for disturbing cross polarization components caused by the deflection on a curved reflector in an antenna provided for linear polarization, on the curved reflector of which is radiated laterally by a primary radiator designed as a horn or waveguide radiator, in the waveguide feed of which waves one are excited in comparison to the fundamental wave of a higher wave type, which have the same amplitudes in the opposite phase position as the waves of the wave type which would produce the same disruptive cross-polarization components as those caused by the curved reflector.
  • a combination of a curved reflector and an off-set horn emitter is often used.
  • a reflector is usually a section of a surface of revolution that is generated by a conic curve.
  • a focal point of the reflector usually coincides with the phase center of the horn.
  • Such arrangements are either used as separate antennas for directional radio, e.g. in the form of horn parabolic antennas and shell antennas, or also for feeding large reflector antennas in satellite radio, for example as a horn parabolic or with a beam waveguide.
  • Typical of the radiation behavior of these laterally fed reflectors in linear polarization is a relatively high proportion of cross polarization in the diagram plane of the far field diagram that is assigned to the transverse plane perpendicular to the symmetry plane of the reflector.
  • the aperture field created after the reflection at the reflector is polarized in parallel and has no cross-polarized components. If the radiator axis is inclined against the reflector axis when the power is supplied from the side, the aperture field is distorted in such a way that cross-polarized field components now occur.
  • the far field distribution belonging to such an aperture field shows a cross-polarized diagram with a zero in the axial direction or in the plane of symmetry and with relatively high maxima of the cross-polarization (typically about -18 dB) in the orthogonal plane.
  • the configuration of the undesired cross-polarized components in the cross-sectional plane of the free field after the reflector can also be described by a spectrum of higher wave types, which are excited by the reflector in addition to the existing basic wave type (analogy to the excitation of higher wave types in waveguides due to impurities). If such a distorted field, which has arisen from an originally cross-polarization-free wave by deflection at the reflector, occurs on the aperture of a waveguide radiator arranged at the location of the focal point, then correspondingly higher wave types can also be excited in waveguides. They can spread out in waveguides until the cross section becomes too small. From then on, these wave types are reflected. However, the cross section can often not be made so small, e.g. Modes with limit frequencies similar to those of the interference modes are used for direction finding purposes.
  • the principle of compensating the frequency and polarization-dependent cross-polarization components in a laterally fed reflector antenna is known and consists in the excitation of a corresponding antiphase wave type of the same amplitude by means of measures in the feed waveguide or in the primary radiator itself.
  • the field generated by the primary radiator becomes that of the Deflection reflector optimally adapted in the sense of compensation.
  • the prerequisite here is that the primary radiator used already delivers correspondingly low cross-polarization contributions.
  • a method for field design in a horn antenna is known.
  • a microwave signal is fed to an input line of a power divider during operation, which divides this signal into a stub line and a hybrid arrangement.
  • the hybrid arrangement feeds signals of opposite polarity to two longitudinal rods via two coaxial lines in order to create a TEM along the rods.
  • the TEM wave excites a TMri wave.
  • a TE ri wave is excited in the branch line, which passes through the horn.
  • the amplitude and phase relationships of the TE ,, and TM ,, waves at the aperture can be controlled in order to obtain the desired field distribution.
  • this known method for field design does not serve to compensate for frequency and polarization-dependent cross-polarization components in an antenna with a curved reflector and a laterally radiating primary radiator, but rather to generate special radiation diagrams of a horn antenna.
  • the object of the invention is to achieve broadband compensation of the frequency and polarization-dependent cross-polarization components in a laterally fed reflector antenna with relatively simple means.
  • this object is achieved in that in the waveguide feed of the primary radiator, a mode coupler constructed in the manner of a DF shaft coupler is installed, which has an external signal input to which a correction signal is applied, which excites the compensating wave of the higher wave type in the waveguide feed that the correction signal applied to the outer signal input of the mode coupler is taken from the output of an external correction signal path, in the course of which a broadband effect, ie Frequency-matched passive phase and amplitude adjusters are arranged, which are dimensioned such that the necessary correction signal characteristic is set over the desired frequency band, and that the correction signal path is connected on its input side via a coupler to the part of the waveguide supply that only guides the fundamental wave in such a way that a Part of the fundamental wave signal is coupled into the correction signal path.
  • a mode coupler constructed in the manner of a DF shaft coupler is installed, which has an external signal input to which a correction signal is applied, which excites the compensating wave of the higher wave type in the waveguide feed that the
  • a special mode coupler which has an external signal input is thus used to excite the compensating higher wave in the feed waveguide.
  • this allows the construction of an external correction signal path, in the course of which broadband effective, i.e. frequency-matched passive phase and amplitude setting elements are installed.
  • broadband effective i.e. frequency-matched passive phase and amplitude setting elements are installed.
  • a predetermined phase and amplitude characteristic is simulated over a wide frequency range, it only having to be permanently set or adjusted once.
  • This signal path is coupled to the fundamental wave signal via the coupler.
  • the method can be used in the round as well as in the rectangular / square waveguide cross-section, with a separate compensation circuit having to be set up for each polarization direction.
  • the correction signal is advantageously set by means of the correction network such that, in addition to the cross-polarization component generated by the reflector in each case, dispersions of the phase positions in the waveguide feed and in the free space and also the properties of the mode coupler are taken into account.
  • the antenna consists of a curved reflector 9 onto which a horn radiator 8 arranged with its feed center in the reflector focal point radiates laterally.
  • the horn 8 is fed via a feed waveguide 7.
  • a certain proportion of the incoming fundamental wave signal is derived via a signal coupler 3 from a part 1 of the feed waveguide that only guides the fundamental wave and is fed via a line 2 to a correction network 4.
  • the circuit contained in the network 4 consists of various damping circuits 11 and phase elements 10 which serve to adjust the amplitude and are dimensioned such that they set the necessary signal characteristics over the desired frequency band.
  • the correction signal taken from the network 4 is then input to an external input 5 of a mode coupler 6 and is coupled there again as a higher wave type into the feed waveguide 7 and emitted together with the fundamental wave from the horn antenna 8 to the reflector 9.
  • the additional signal supplied to the outer input 5 of the mode coupler 6 is such that it compensates for the cross-polarization component generated by the reflector 9, i.e. the correction network 4 must also, for example, dispersions of the phases in the waveguide 7, in free space (near field) and the properties of the mode coupler 6 consider. Examples of corresponding combinations of waveguide shaft types that can be generated in different emitters for compensation are listed in the following table.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

1. Device for compensating interfering cross-polarization components, caused by deflection at a curved reflector (9), in an antenna provided for linear polarization, the curved reflector of which receives offset radiation from a primary radiator (8), designed as a horn or waveguide radiator, in the waveguide feed (7) of which waves of a wave type higher in comparison with the fundamental wave are induced, which waves have the same amplitudes in phase opposition as the waves of that wave type which would induce the same interfering cross-polarization components as are actually caused by the curved reflector, characterized in that a mode coupler (6), constructed somewhat like a direction-finding wave coupler, is installed in the waveguide feed (7) of the primary radiator (8) and has an outer signal input (5), to which a corrector signal is applied which induces the respectively compensating wave of the higher wave type in the waveguide feed, in that the correction signal applied to the outer signal input (5) of the mode coupler (6) is taken from the output of an external correction signal path, along which there are arranged as a correcting network (4) passive phase and amplitude adjusters (10, 11) which have broadband effect, i.e. are frequency-adapted, and are dimensioned such that the necessary correction signal characteristic is adjusted over the desired frequency band, and in that the correction signal path is connected on its input side (2) via a coupler (3) to the part (1) of the waveguide feed only carrying the fundamental wave in such a way that a part of the fundamental wave signal is coupled into the correction signal path.

Description

Die Erfindung bezieht sich auf eine Einrichtung zur Kompensation von störenden, aufgrund der Umlenkung an einem gekrümmten Reflektor verursachten Kreuzpolarisationskomponenten bei einer für Linearpolarisation vorgesehenen Antenne, auf deren gekrümmten Reflektor von einem als Horn- oder Hohlleiterstrahler ausgebildeten Primärstrahler seitlich eingestrahlt wird, in dessen Hohlleiterzuführung Wellen eines im Vergleich zur Grundwelle höheren Wellentyps angeregt sind, die in entgegengesetzter Phasenlage gleiche Amplituden haben wie die Wellen desjenigen Wellentyps, der die gleichen störenden Kreuzpolarisationskomponenten hervorrufen würde, wie sie der gekrümmte Reflektor tatsächlich verursacht.The invention relates to a device for compensating for disturbing cross polarization components caused by the deflection on a curved reflector in an antenna provided for linear polarization, on the curved reflector of which is radiated laterally by a primary radiator designed as a horn or waveguide radiator, in the waveguide feed of which waves one are excited in comparison to the fundamental wave of a higher wave type, which have the same amplitudes in the opposite phase position as the waves of the wave type which would produce the same disruptive cross-polarization components as those caused by the curved reflector.

Für Antennen im Mikrowellenbereich wird vielfach eine Kombination aus einen gekrümmten Reflektor und einem seitlich (off-set) einstrahlenden Hornstrahler verwendet. Ein derartiger Reflektor ist meist ein Ausschnitt aus einer Rotationsfläche, die durch eine Kegelschnittkurve erzeugt wird. Ein Brennpunkt des Reflektors fällt in der Regel mit dem Phasenzentrum des Hornstrahlers zusammen. Solche Anordnungen werden entweder als eigene Antennen für Richtfunk, z.B. in Form von Hornparabolantennen und Muschelantennen, oder auch zur Speisung großer Reflektorantennen im Satellitenfunk, beispielsweise als Hornparabol oder bei einem Strahlwellenleiter, eingesetzt.For antennas in the microwave range, a combination of a curved reflector and an off-set horn emitter is often used. Such a reflector is usually a section of a surface of revolution that is generated by a conic curve. A focal point of the reflector usually coincides with the phase center of the horn. Such arrangements are either used as separate antennas for directional radio, e.g. in the form of horn parabolic antennas and shell antennas, or also for feeding large reflector antennas in satellite radio, for example as a horn parabolic or with a beam waveguide.

Typisch für das Strahlungsverhalten dieser seitlich gespeisten Reflektoren ist bei Linearpolarisation ein relativ hoher Anteil der Kreuzpolarisation in derjenigen Diagrammebene des Fernfelddiagramms, die der zur Symmetrieebene des Reflektors senkrechten Transversalebene zugeordnet ist.Typical of the radiation behavior of these laterally fed reflectors in linear polarization is a relatively high proportion of cross polarization in the diagram plane of the far field diagram that is assigned to the transverse plane perpendicular to the symmetry plane of the reflector.

Die Enstehung dieser kreuzpolarisierten Anteile des Feldes läßt sich rein geometrisch folgendermaßen verdeutlichen.The formation of these cross-polarized parts of the field can be illustrated purely geometrically as follows.

Wird ein z.B. rotationssymmetrischer Parabolreflektor mit einem linear polarisierten Primärstrahler ausgeleuchtet, der ein kreuzpolarisationsfreies und drehsymmetrisches Feld erzeugt (Huygens-Quelle), so ist das nach der Reflexion am Reflektor entstehende Aperturfeld parallel polarisiert und weist keine kreuzpolarisierten Komponenten auf. Wird bei seitlicher Speisung die Strahlerachse gegen- die Reflektorachse geneigt, so tritt eine Verzerrung des Aperturfeldes dergestalt auf, daß jetzt kreuzpolarisierte Feldanteile entstehen. Die zu einem derartigen Aperturfeld gehörende Fernfeldverteilung zeigt ein kreuzpolarisiertes Diagramm mit einer Nullstelle in Achsrichtung bzw. in der Symmetrieebene und mit relativ hohen Maxima der Kreuzpolarisation (typisch etwa -18 dB) in der dazu orthogonalen Ebene.If e.g. If the rotationally symmetrical parabolic reflector is illuminated with a linearly polarized primary emitter, which generates a cross-polarization-free and rotationally symmetrical field (Huygens source), the aperture field created after the reflection at the reflector is polarized in parallel and has no cross-polarized components. If the radiator axis is inclined against the reflector axis when the power is supplied from the side, the aperture field is distorted in such a way that cross-polarized field components now occur. The far field distribution belonging to such an aperture field shows a cross-polarized diagram with a zero in the axial direction or in the plane of symmetry and with relatively high maxima of the cross-polarization (typically about -18 dB) in the orthogonal plane.

Die Konfiguration der unerwünschten kreuzpolarisierten Komponenten in der Querschnittsebene des freien Feldes nach dem Reflektor läßt sich auch durch ein Spektrum höherer Wellentypen beschreiben, die zusätzlich zum vorhandenen Grundwellentyp vom Reflektor angeregt werden (Analogie zur Anregung höherer Wellentypen in Hohlleitern durch Störstellen). Wenn ein derart verzerrtes Feld, das aus einer ursprünglich kreuzpolarisationsfreien Welle durch Umlenkung am Reflektor entstanden ist, auf die Apertur eines am Ort des Brennpunktes angeordneten Hohlleiterstrahlers auftritt, so können entsprechende höhere Wellentypen auch in Hohlleiter angeregt werden. Sie können sich in Hohlleiter solange ausbreiten, bis der Querschnitt zu klein wird. Von da an werden diese Wellentypen reflektiert. Der Querschnitt kann aber häufig nicht so klein gemacht werden, da z.B. für Peilzwecke Moden mit ähnlichen Grenzfrequenzen wie die der Störmoden verwendet werden.The configuration of the undesired cross-polarized components in the cross-sectional plane of the free field after the reflector can also be described by a spectrum of higher wave types, which are excited by the reflector in addition to the existing basic wave type (analogy to the excitation of higher wave types in waveguides due to impurities). If such a distorted field, which has arisen from an originally cross-polarization-free wave by deflection at the reflector, occurs on the aperture of a waveguide radiator arranged at the location of the focal point, then correspondingly higher wave types can also be excited in waveguides. They can spread out in waveguides until the cross section becomes too small. From then on, these wave types are reflected. However, the cross section can often not be made so small, e.g. Modes with limit frequencies similar to those of the interference modes are used for direction finding purposes.

Das Prinzip, eine Kompensation der frequenz- und polarisationsabhängigen Kreuzpolarisationskomponenten bei einer seitlich gespeisten Reflektorantenne zu erreichen, ist bekannt und besteht in der Anregung eines entsprechenden gegenphasigen Wellentyps gleicher Amplitude durch Maßnahmen im Zuführungshohlleiter oder im Primärstrahler selbst. Dabei wird das vom Primärstrahler erzeugte Feld demjenigen des Umlenkreflektors im Sinne der Kompensation möglichst optimal angepaßt. Vorausgesetzt ist dabei, daß der verwendete Primärstrahler bereits entsprechend niedrige eigene Kreuzpolarisationsbeiträge liefert.The principle of compensating the frequency and polarization-dependent cross-polarization components in a laterally fed reflector antenna is known and consists in the excitation of a corresponding antiphase wave type of the same amplitude by means of measures in the feed waveguide or in the primary radiator itself. The field generated by the primary radiator becomes that of the Deflection reflector optimally adapted in the sense of compensation. The prerequisite here is that the primary radiator used already delivers correspondingly low cross-polarization contributions.

Experimentelle Untersuchungen über Verfahren, die nach diesem Prinzip in einem stark eingeschränkten Frequenzbereich arbeiten, sind bereits veröffentlicht worden. In diesem Zusammenhang wird auf den Aufsatz von A. W. Rudge und N. A. Adatia: "Offset-Parabolic-Reflector Antennas", in Proceedings IEEE, Vol. 66, No. 12, Dez. 1978, Seiten 1592-1618 und auf den Aufsatz von E. Gillitzer und W. Löw: "Schrägparabolantenne mit kompensierter Kreuzpolarisation" in den NTG-Fachberichten Band 78 über die Tagung "Antennen", 16.-19.3.1982 hingewiesen. Der wesentliche Nachteil aller dieser bekannten Lösungen liegt jedoch darin, daß die Anregung der kompensierenden höheren Wellen stets durch Stifte oder ähnliche Störstellen, z.B. Schlitze in der Wand mit außen angesetzten Blindhohlleitern, innerhalb des Zuführungshohlleiters oder in der Apertur des Primärstrahlers erfolgt. Mit diesen bekannten Anordnungen ist eine breitbandige Anregung der gegenphasigen Kompensationswelle nicht möglich.Experimental studies on methods that operate according to this principle in a very restricted frequency range have already been published. In this context, the article by A. W. Rudge and N. A. Adatia: "Offset-Parabolic-Reflector Antennas", in Proceedings IEEE, Vol. 66, No. 12, Dec. 1978, pages 1592-1618 and to the article by E. Gillitzer and W. Löw: "Inclined parabolic antenna with compensated cross polarization" in the NTG technical reports volume 78 on the conference "antennas", 16.-19.3.1982 . The main disadvantage of all these known solutions, however, is that the excitation of the compensating higher waves is always caused by pins or similar defects, e.g. Slits are made in the wall with externally attached blind waveguides, within the feed waveguide or in the aperture of the primary radiator. With these known arrangements, broadband excitation of the antiphase compensation wave is not possible.

Auch bei der aus GB-A-1 525 514 bekannten Lösung, bei der die Anregung der Kompensierenden höheren Wellen durch Maßnahmen im Hornstrahler selbst und zwar vorzugsweise durch Unstetigkeiten, die asymmetrisch hinsichtlich der Hornstrahlerachse sind, hervorgerufen wird, besteht der Nachteil, daß eine breitbandige Anregung der gegenphasigen Kompensationswelle nicht möglich ist.Also in the solution known from GB-A-1 525 514, in which the excitation of the compensating higher waves is brought about by measures in the horn radiator itself and preferably by discontinuities which are asymmetrical with respect to the horn radiator axis, there is the disadvantage that a broadband Excitation of the antiphase compensation wave is not possible.

Aus DE-A-1 953 083, Fig. 3, ist eine Methode zur Feldgestaltung in einer Hornantenne bekannt. Dort wird im Betrieb ein Mikrowellensignal einer Eingangsleitung eines Leistungsteilers zugeführt, der dieses Signal auf eine Stichleitung und eine Hybridanordnung aufteilt. Die Hybridanordnung führt über zwei Koaxialleitungen zwei Längsstäben Signale entgegengesetzter Polarität zu, um längs der Stäbe eine TEM-Welle anzuregen. In dem Hornabschnitt, der am Ende beiden Stäbe beginnt, regt die TEM-Welle eine TMri-Welle an. Zugleich wird eine TEri-Welle in der Stichleitung angeregt, die das Horn durchläuft. Mit Hilfe des einstellbaren Leistungsteilers und eines einstellbaren Phasenschiebers lassen sich die Amplituden- und Phasenverhältnisse der TE,,- und der TM,,-Wellen an der Apertur steuern, um die gewünschte Feldverteilung zu erhalten. Diese bekannte Methode zur Feldgestaltung dient allerdings nicht der Kompensation von frequenz- und polarisationsabhängigen Kreuzpolarisationskomponenten bei einer Antenne mit einem gekrümmten Reflektor und einem seitlich einstrahlenden Primärstrahler, sondern der Erzeugung besonderer Strahlungsdiagramme einer Hornantenne.From DE-A-1 953 083, Fig. 3, a method for field design in a horn antenna is known. There, a microwave signal is fed to an input line of a power divider during operation, which divides this signal into a stub line and a hybrid arrangement. The hybrid arrangement feeds signals of opposite polarity to two longitudinal rods via two coaxial lines in order to create a TEM along the rods. To stimulate wave. In the horn section that begins at the end of both rods, the TEM wave excites a TMri wave. At the same time, a TE ri wave is excited in the branch line, which passes through the horn. With the help of the adjustable power divider and an adjustable phase shifter, the amplitude and phase relationships of the TE ,, and TM ,, waves at the aperture can be controlled in order to obtain the desired field distribution. However, this known method for field design does not serve to compensate for frequency and polarization-dependent cross-polarization components in an antenna with a curved reflector and a laterally radiating primary radiator, but rather to generate special radiation diagrams of a horn antenna.

Aufgabe der Erfindung ist es, eine breitbandige Kompensation der frequenz- und polarisationsabhängigen Kreuzpolarisationskomponenten bei einer seitlich gespeisten Reflektorantenne mit verhältnismäßig einfachen Mitteln zu erreichen.The object of the invention is to achieve broadband compensation of the frequency and polarization-dependent cross-polarization components in a laterally fed reflector antenna with relatively simple means.

Gemäß der Erfindung wird diese aufgabe dadurch gelöst, daß in die Hohlleiterzuführung des Primärstrahlers ein nach Art eines Peilwellenkopplers aufgebauter Modenkoppler eingebaut ist, der einen äußeren Signaleingang aufweist, an welchen ein Korrektursignal angelegt wird, welches in der Hohlleiterzuführung die jeweils kompensierende Welle vom höheren Wellentyp anregt, daß das an den äußeren Signaleingang des Modenkopplers angelegte Korrektursignal dem Ausgang eines externen Korrektursignalwegs entnommen wird, in dessen Verlauf als Korrekturnetzwerk breitbandig wirksame, d.h. frequenzangepaßte passive Phasen- und Amplitudeneinstellglieder angeordnet sind, die so bemessen sind, daß über das gewünschte Frequenzband die notwendige Korrektursignalcharakteristik eingestellt wird, und daß der Korrektursignalweg an seiner Eingangsseite über einen Koppler mit dem nur die Grundwelle führenden Teil der Hohlleiterzuführung derart verbunden ist, daß ein Teil des Grundwellensignals in den Korrektursignalweg eingekoppelt wird.According to the invention, this object is achieved in that in the waveguide feed of the primary radiator, a mode coupler constructed in the manner of a DF shaft coupler is installed, which has an external signal input to which a correction signal is applied, which excites the compensating wave of the higher wave type in the waveguide feed that the correction signal applied to the outer signal input of the mode coupler is taken from the output of an external correction signal path, in the course of which a broadband effect, ie Frequency-matched passive phase and amplitude adjusters are arranged, which are dimensioned such that the necessary correction signal characteristic is set over the desired frequency band, and that the correction signal path is connected on its input side via a coupler to the part of the waveguide supply that only guides the fundamental wave in such a way that a Part of the fundamental wave signal is coupled into the correction signal path.

Bei der Einrichtung nach der Erfindung wird somit zur Anregung der kompensierenden höheren Welle im Zuführungshohlleiter ein spezieller Modenkoppler verwendet, der einen äußeren Signaleingang besitzt. Dieser erlaubt im Gegensatz zu den bekannten Lösungen den Aufbau eines externen Korrektursignalwegs, in dessen Verlauf breitbandig wirksame, d.h. frequenzangepaßte passive Phasen- und Amplitudeneinstellglieder eingebaut sind. Mit deren Hilfe wird eine vorgegebene Phasen- und Amplitudencharakteristik über einen weiten Frequenzbereich nachgebildet, wobei sie nur einmalig fest eingestellt bzw. abgeglichen werden muß. Dieser Signalweg wird über den Koppler mit dem Grundwellensignal gekoppelt. Das Verfahren ist gleichermaßen im Rund- wie im Rechteck-/Quadrathohlleiterquerschnitt anwendbar, wobei für jede Polarisationsrichtung ein eigener Kompensationskreis aufzubauen ist.In the device according to the invention, a special mode coupler which has an external signal input is thus used to excite the compensating higher wave in the feed waveguide. In contrast to the known solutions, this allows the construction of an external correction signal path, in the course of which broadband effective, i.e. frequency-matched passive phase and amplitude setting elements are installed. With their help, a predetermined phase and amplitude characteristic is simulated over a wide frequency range, it only having to be permanently set or adjusted once. This signal path is coupled to the fundamental wave signal via the coupler. The method can be used in the round as well as in the rectangular / square waveguide cross-section, with a separate compensation circuit having to be set up for each polarization direction.

In vorteilhafter Weise wird das Korrektursignal mittels des Korrekturnetzwerks so eingestellt, daß außer dem vom Reflektor jeweils erzeugten Kreuzpolarisationsanteil auch Dispersionen der Phasenlagen in der Hohlleiterzuführung und im Freiraum und außerdem die Eigenschaften des Modenkopplers berücksichtigt sind.The correction signal is advantageously set by means of the correction network such that, in addition to the cross-polarization component generated by the reflector in each case, dispersions of the phase positions in the waveguide feed and in the free space and also the properties of the mode coupler are taken into account.

Mit einer entsprechend der Erfindung ausgebildeten Kompensationseinrichtung läßt sich bei Linearpolarisation in einem breiten Frequenzbereich eine wesentliche Verbesserung des Kreuzpolarisationsverhaltens bei seitlich gespeisten Reflektorantennen erreichen.With a compensation device designed in accordance with the invention, a significant improvement in the cross-polarization behavior with side-fed reflector antennas can be achieved in the case of linear polarization in a wide frequency range.

Die Erfindung wird im folgenden anhand eines in einer Figur dargestellten Schaltungsbeispiels erläutert.The invention is explained below with reference to a circuit example shown in a figure.

Die Antenne besteht einem gekrümmten Reflektor 9, auf den ein mit seinem Speisezentrum im Reflektorbrennpunkt angeordneter Hornstrahler 8 seitlich einstrahlt. Gespeist wird der Hornstrahler 8 über einen Zuführungshohlleiter 7. Bei Betrachtung in Senderichtung wird über einen Signalkoppler 3 aus einem nur die Grundwelle führenden Teil 1 des Zuführungshohlleiters ein bestimmter Anteil des ankommenden Grundwellensignals abgeleitet und über eine Leitung 2 einem Korrekturnetzwerk 4 zugeführt. Die im Netzwerk 4 enthaltene Schaltung besteht aus verschiedenen, der Amplitudeneinstellung dienenden Dämpfungskreisen 11 und Phasengliedern 10, die so bemessen sind, daß sie über das gewünschte Frequenzband die notwendige Signalcharakteristik einstellen. Das dem Netzwerk 4 entnommene Korrektursignal wird dann einem äußeren Eingang 5 eines Modenkopplers 6 eingegeben und dort als höherer Wellentyp wieder in den Zuführungshohlleiter 7 eingekoppelt und zusammen mit der Grundwelle vom Hornstrahler 8 zum Reflektor 9 hin abgestrahlt. Das dem äußeren Eingang 5 des Modenkopplers 6 zugeführte zusätzliche Signal ist so geartet, daß es den vom Reflektor 9 jeweils erzeugten Kreuzpolarisationsanteil kompensiert, d.h. das Korrekturnetzwerk 4 muß auch beispielsweise Dispersionen der Phasen im Hohlleiter 7, im Freiraum (Nahfeld) und Eigenschaften des Modenkopplers 6 berücksichtigen. Beispiele für entsprechende Kombinationen von Hohlleiterwellentypen, die in verschiedenen Strahlern zur Kompensation erzeugt werden können, sind in der folgenden Tabelle zusammengestellt.

Figure imgb0001
The antenna consists of a curved reflector 9 onto which a horn radiator 8 arranged with its feed center in the reflector focal point radiates laterally. The horn 8 is fed via a feed waveguide 7. When viewed in the transmission direction, a certain proportion of the incoming fundamental wave signal is derived via a signal coupler 3 from a part 1 of the feed waveguide that only guides the fundamental wave and is fed via a line 2 to a correction network 4. The circuit contained in the network 4 consists of various damping circuits 11 and phase elements 10 which serve to adjust the amplitude and are dimensioned such that they set the necessary signal characteristics over the desired frequency band. The correction signal taken from the network 4 is then input to an external input 5 of a mode coupler 6 and is coupled there again as a higher wave type into the feed waveguide 7 and emitted together with the fundamental wave from the horn antenna 8 to the reflector 9. The additional signal supplied to the outer input 5 of the mode coupler 6 is such that it compensates for the cross-polarization component generated by the reflector 9, i.e. the correction network 4 must also, for example, dispersions of the phases in the waveguide 7, in free space (near field) and the properties of the mode coupler 6 consider. Examples of corresponding combinations of waveguide shaft types that can be generated in different emitters for compensation are listed in the following table.
Figure imgb0001

Claims (3)

1. Device for compensating interfering cross-polarization components, caused by deflection at a curved reflector (9), in an antenna provided for linear polarization, the curved reflector of which receives offset radiation from a primary radiator (8), designed as a horn or waveguide radiator, in the waveguide feed (7) of which waves of a wave type higher in comparison with the fundamental wave are induced, which waves have the same amplitudes in phase opposition as the waves of that wave type which would induce the same interfering cross-polarization components as are actually caused by the curved reflector, characterized in that a mode coupler (6), constructed somewhat like a direction-finding wave coupler, is installed in the waveguide feed (7) of the primary radiator (8) and has an outer signal input (5), to which a corrector signal is applied which induces the respectively compensating wave of the higher wave type in the waveguide feed, in that the correction signal applied to the outer signal input (5) of the mode coupler (6) is taken from the output of an external correction signal path, along which there are arranged as a correcting network (4) passive phase and amplitude adjusters (10, 11) which have broadband effect, i.e. are frequency-adapted, and are dimensioned such that the necessary correction signal characteristic is adjusted over the desired frequency band, and in that the correction signal path is connected on its input side (2) via a coupler (3) to the part (1) of the waveguide feed only carrying the fundamental wave in such a way that a part of the fundamental wave signal is coupled into the correction signal path.
2. Device according to Claim 1, characterized in that a separated correction signal path is provided for each direction of polarization of the antenna.
3. Device according to Claim 1 or 2, characterized in that the correction signal is adjusted by means of the correcting network (4) such that, apart from the cross-polarization component generated in each case by the reflector (9), dispersions of the phase relationships in the waveguide feed (7) and in the free space as well as the properties of the mode coupler (6) are taken into account.
EP84111834A 1983-10-06 1984-10-03 Device for compensating cross-polarized components in an antenna with curved reflector and off-set primary feed Expired - Lifetime EP0140199B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84111834T ATE55848T1 (en) 1983-10-06 1984-10-03 DEVICE FOR COMPENSATION OF CROSS POLARIZATION COMPONENTS IN AN ANTENNA WITH A CURVED REFLECTOR AND A SIDE RADIATION PRIMARY RADIATOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833336418 DE3336418A1 (en) 1983-10-06 1983-10-06 DEVICE FOR COMPENSATING CROSS-POLARIZATION COMPONENTS IN AN ANTENNA WITH A CURVED REFLECTOR AND A SIDE-RADIATING PRIME RADIATOR
DE3336418 1983-10-06

Publications (3)

Publication Number Publication Date
EP0140199A2 EP0140199A2 (en) 1985-05-08
EP0140199A3 EP0140199A3 (en) 1986-07-23
EP0140199B1 true EP0140199B1 (en) 1990-08-22

Family

ID=6211190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111834A Expired - Lifetime EP0140199B1 (en) 1983-10-06 1984-10-03 Device for compensating cross-polarized components in an antenna with curved reflector and off-set primary feed

Country Status (3)

Country Link
EP (1) EP0140199B1 (en)
AT (1) ATE55848T1 (en)
DE (1) DE3336418A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60120909T2 (en) 2001-03-22 2007-02-08 Alcatel Double reflector antenna with deflector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1449265A (en) * 1965-10-05 1966-08-12 Ass Elect Ind Improvements in microwave beam exploration devices
US3413642A (en) * 1966-05-05 1968-11-26 Bell Telephone Labor Inc Dual mode antenna
CA890032A (en) * 1970-08-10 1972-01-04 Wu Chuang-Jy Microwave horn-paraboloidal antenna
GB1525514A (en) * 1975-10-29 1978-09-20 Rudge A Primary feeds for offset parabolic reflector antennas
JPS5362919A (en) * 1976-11-18 1978-06-05 Kokusai Denshin Denwa Co Ltd Axial radio compensator system

Also Published As

Publication number Publication date
ATE55848T1 (en) 1990-09-15
EP0140199A2 (en) 1985-05-08
DE3336418C2 (en) 1987-09-24
DE3336418A1 (en) 1985-05-02
EP0140199A3 (en) 1986-07-23

Similar Documents

Publication Publication Date Title
DE69024756T2 (en) Slot antenna with controllable polarization
EP0061576B1 (en) Microwave communication transmission apparatus with multimode diversity combining reception
DE69016479T2 (en) Spotlight for circularly polarized weles with low cross polarization.
DE1942678A1 (en) Arrangement for signal feeding in a single pulse system working in several modes
DE10195823B3 (en) Antenna element, transceiver and method of operating a transceiver
EP0140199B1 (en) Device for compensating cross-polarized components in an antenna with curved reflector and off-set primary feed
DE1163406B (en) Antenna arrangement with adjustable bundling of the scanning beam
DE3336452C2 (en)
EP0422431B1 (en) Angular-diversity device
DE1516751C3 (en) Device for tracking an antenna to an object emitting electromagnetic waves
DE2752680A1 (en) Directional aerial for very short waves - has main exciter producing main lobe, and secondary exciters producing secondary lobes compensating interferences
DE2828807C2 (en) Radar-Cassegrain antenna with a primary radiator that is operated with two electromagnetic waves polarized perpendicular to each other
DE2650220C3 (en) Antenna with electronic chart panning
DE2729110C2 (en) Radiation-fed phased array antenna
DE2449106C3 (en) Broadband horn reflector tears
EP0510588A1 (en) Device for compensating cross-polarized components in an antenna with a curved reflector and off-set primary feed
DE1466295C3 (en) Horn parabolic antenna
DE977679C (en) Directional antenna for high frequency waves
DE2348156A1 (en) Aerial for very short radio waves for satellite communication - uses cassegrain-aerial with main- and sub-reflector for wide-area irradiation
DE1933950A1 (en) Arrangement for exciting a waveform H20 in a rectangular waveguide as well as monoplus source containing this arrangement
DE3203901A1 (en) Antenna energiser having a plurality of wave types
DE2141142A1 (en) METHOD AND ANTENNA FOR SENDING AND RECEIVING RAYS OF ELECTROMAGNETIC ENERGY
DE2461283A1 (en) OTATION-SYMMETRIC CASSEGRAIN ANTENNA
AT261005B (en) Device for generating and / or receiving electromagnetic directional radiation polarized at right angles to one another
DE2137125C3 (en) Multi-wave horn radiator with a rectangular cross-section used as a primary radiator in conjunction with a focused secondary radiator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870114

17Q First examination report despatched

Effective date: 19890126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 55848

Country of ref document: AT

Date of ref document: 19900915

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900913

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19901005

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901019

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901022

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901024

Year of fee payment: 7

ET Fr: translation filed
ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19901031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 7

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910124

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911003

Ref country code: AT

Effective date: 19911003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

Ref country code: BE

Effective date: 19911031

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84111834.2

Effective date: 19920510