EP0422431B1 - Angular-diversity device - Google Patents

Angular-diversity device Download PDF

Info

Publication number
EP0422431B1
EP0422431B1 EP90118209A EP90118209A EP0422431B1 EP 0422431 B1 EP0422431 B1 EP 0422431B1 EP 90118209 A EP90118209 A EP 90118209A EP 90118209 A EP90118209 A EP 90118209A EP 0422431 B1 EP0422431 B1 EP 0422431B1
Authority
EP
European Patent Office
Prior art keywords
wave
waveguide
mode
polarization
antisymmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90118209A
Other languages
German (de)
French (fr)
Other versions
EP0422431A3 (en
EP0422431A2 (en
Inventor
Ulrich Dr.Ing . Mahr
Karl-Heinz Mierzwiak
Günter Dr.Ing. Mörz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0422431A2 publication Critical patent/EP0422431A2/en
Publication of EP0422431A3 publication Critical patent/EP0422431A3/en
Application granted granted Critical
Publication of EP0422431B1 publication Critical patent/EP0422431B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas

Definitions

  • the present invention relates to an arrangement for receiving microwave signals which are subject to multipath propagation according to the angle diversity method, an antenna feed system being provided which comprises at least one main radiation lobe oriented in the main direction of propagation of the waves from at least one wave type with symmetrical field distribution and secondary radiation lobes oriented in secondary directions of propagation of the waves Wave types generated with antisymmetric field distribution.
  • the physical properties of the radio field have a significant influence on the transmission quality of microwave links.
  • the waves emanating from a transmitting antenna can propagate to the receiving antenna in a direct way, but also in a detour. These waves arriving in different ways at the receiving antenna can lead to field cancellation due to their amplitude / phase positions. Such fading phenomena lead to a significant increase in the frequency of bit errors, particularly when digital signals are transmitted using higher-level modulation methods. The frequency of errors when receiving signals in the case of multipath propagation can be greatly reduced by so-called diversity methods.
  • An angle diversity method is known from EP 0 061 576 B1, for example, which is based on the multi-mode principle.
  • symmetrical wave types are excited by signals that reach the receiving antenna from a main direction of propagation, and signals that spread through detours stimulate waves with an antisymmetric field distribution.
  • a mode coupler belonging to the antenna feed system separates these different wave types, and a selection receiver derives an optimal reception signal from them.
  • this selection receiver contains a combiner (for example in the HF or IF level) which forms a best signal from both signals.
  • the main radiation lobe oriented in the main direction of propagation is formed by the H10 wave type, and the secondary radiation lobes pointing in azimuth and elevation directions are generated by the H20, H11 and E11 wave types.
  • an antenna feed system which, according to the monopulse principle, obtains antenna placement signals for the azimuth and elevation directions.
  • the antenna feed system generates a sum and a difference diagram.
  • the difference diagram consists of two radiation lobes spread in the azimuth direction and two in the elevation direction.
  • the invention is based on the object of specifying an angular diversity arrangement of the type mentioned at the outset which, in the case of multipath propagation in a radio field, enables reception of the transmitted signals with a low frequency of errors.
  • signals transmitted in the polarization planes which are subject to multipath propagation, can also be received with a low frequency of errors.
  • the secondary radiation lobes spread in one plane the orthogonal polarizations are assigned and each of which is formed from at least one higher wave type. Because of the differently polarized spread secondary radiation lobes, signals which propagate through detours can also still be received, which have likewise been emitted on different polarizations. Furthermore, it is possible to receive signals that were transmitted on one polarization, but were rotated in the polarization during the propagation via detours.
  • This antenna feed system shows an antenna feed system which works according to an angle diversity method based on the multimode principle.
  • This antenna feed system has an exciter horn 1, a multi-type waveguide branch 2, a waveguide transition 3 that matches the cross section of the exciter horn 1 to the cross section of the multi-type waveguide branch 2, a double polarization switch 4 and two series parallel branches 5 and 6.
  • the antenna feed system is designed and dimensioned in such a way that the radiation diagram of the excitation horn 1 has one main radiation lobe oriented in the main direction of propagation of the waves and two secondary radiation lobes which are spread in a plane, preferably the elevation plane, which are oriented in the secondary directions of propagation of the waves. having.
  • the main radiation lobe is generated from at least one wave type with a symmetrical field distribution.
  • This can be, for example, the H10 or H01 wave type if the exciter horn is smooth-walled. If both the H10 wave type and the orthogonally polarized H01 wave type are excited, it is possible to receive signals incident axially to the main radiation lobes which are assigned to different polarizations.
  • the main radiation lobe is generated by the excitation of hybrid wave types (e.g. HE11).
  • hybrid wave types e.g. HE11
  • the spread secondary lobes are formed from mutually orthogonally polarized wave types with an antisymmetric field distribution.
  • Such antisymmetric wave types can be, for example, the H20 wave type and a wave type resulting from the superimposition of an H11 and an E11 wave.
  • the superposition of the H11 and E11 wave types should be such that there is a field cancellation in the polarization direction of the H20 wave type and a field strength addition occurs in the orthogonal polarization direction.
  • the multi-type waveguide branch 2, designed as a rectangular waveguide, is divided at one end into two partial waveguides by a separating plate 7, which runs parallel to the narrow waveguide sides and is guided in grooves 8 in the broad waveguide sides.
  • a waveguide 41, 42 designed as a polarization switch is connected to each of these partial waveguides of the multi-type waveguide branch 2.
  • Each of the two waveguides 41 and 42 is provided with two outlets 411, 412 and 421, 422 which are arranged one behind the other and are rotated by 90 ° with respect to one another.
  • the two waveguides 41 and 42 designed as polarization switches are arranged directly next to one another and separated from one another by a common wall 43. This creates a very compact arrangement, referred to here as a double polarization switch 4.
  • the wave types propagating in the multi-type waveguide branch 2, the field states of which prevail at the exciter side end shown in FIGS. 2a, 3a, 4a and 5a, take in the partial waveguides created by the separating plate 7 those in FIGS. 2b, 3b, 4b and 5b displayed field states.
  • the H01 wave type (FIG. 2a) in the two partial waveguides is divided into two vertically polarized, in-phase waves (FIG. 2b).
  • the wave created by superimposing the H11 and the E11 wave type (FIG. 3a) is divided into two antiphase, vertically polarized waves (FIG. 3b) by the separating plate 7 in the two partial waveguides.
  • the H10 wave type (FIG. 4a) merges into two in-phase, horizontally polarized waves (FIG. 4b) in the two partial waveguides on both sides of the separating plate 7.
  • the H20 wave type (FIG. 5a) is divided by the separating plate 7 into two, opposite-phase waves polarized in the horizontal direction (FIG. 5b).
  • the following wave types can then be tapped from the outputs 411, 412, 421 and 422 of the double polarization switch 4 coupled to the multi-type waveguide branch 2.
  • the field energy components of the H01 and the wave type resulting from the superimposition of the H11 and E11 waves originating from one of the two partial waveguides of the multi-type waveguide branch 2 are available.
  • the energy components of the same wave types originating from the other partial waveguide can be tapped off at the output 421 of the other waveguide 42.
  • the output 412 of the waveguide 41 supplies the field energy components of the H10 wave type and the H20 wave type originating from one of the two partial waveguides of the multi-type waveguide branch 2.
  • the field energy components of the same wave types originating from the other partial waveguide can be tapped off at the output 422 of the waveguide 42.
  • the field energy components of the same polarization present at the outputs 411, 412, 421, 422 are combined by means of two series parallel branches 5, 6, the outputs of which separate the field energy components of the symmetrical and the antisymmetric wave types.
  • the series parallel branching 5 is connected with its two gates 511 and 521 to the two outputs 411 and 421 of the double polarization switch 4.
  • the entire field energy of the horizontally polarized H01 wave can be tapped off at gate 53 - the so-called E-gate - of the series parallel junction 5 (magic T), and the entire field energy of that wave is available at gate 54 - the so-called H-gate Available, which resulted from the superposition of the H11 and E11 waves.
  • the gates 612 and 622 are coupled to the outputs 412 and 422 of the double polarization switch 4 from the second series parallel branch 6.
  • a diversity receiver of a known type derives an optimal reception signal from the waves available at gates 53, 54, 63 and 64 of the two series parallel branches 5 and 6.
  • the separating plate 7 used in the multi-type waveguide branch 2 is provided on its end face pointing into the interior of the waveguide with a pin 9 which is oriented in the direction of wave propagation.
  • This pin 9 has an influence on the H11 and E11 shaft types.
  • the length of the pin 9 is selected so that there is a phase overlap of the H11 and E11 shaft types. Its length is approximately 1/8 of the waveguide wavelength of these two types of waves. 1 that the pin 9 is provided with a cross-sectional jump in order to implement a transformation stage.
  • a further transformation stage can be formed by the partition plate 7 in the multi-type waveguide branch 2 with the waveguide wall 43 of the double polarization switch 4 separating the two waveguides 41 and 42.
  • the waveguide wall 43 of the double polarization switch 4 and the separating plate 7 meet in the multi-type waveguide branch 2 on the end face. If the separating plate 7 and the waveguide wall 43 have different thicknesses, a transformation stage is created.
  • a slot 10 extending transversely to the direction of wave propagation is introduced into the partition plate 7. The capacitive effect of the separating plate 7 on the shaft types H01, H11 and E11 can be compensated for by inserting two opposing tuning pins into the two narrow sides of the waveguide 2.
  • tuning pins are then to be arranged in front of the front end face of the separating plate 7 at a distance of approximately 3/4 of the waveguide wavelength for the basic wave type.
  • Inductive effects of the separating plate 7 on the H10 and H20 shaft types can be compensated for by tuning pins in the broad sides of the waveguide 2.
  • tuning pins for the basic wave type in front of the front end face of the separating plate 7 at a distance of half and at a distance of an entire waveguide wavelength.
  • Tuning pins are to be arranged in a known manner where the wave type to be influenced has its field maximum.
  • the cross-sectional adaptation taking place in the waveguide transition 3 from the rectangular excitation horn 1 to the rectangular waveguide of the multi-type waveguide branch 2 takes place continuously.
  • the cross-sectional deformation takes place within the waveguide transition 3 in the E and H planes differently, and in such a way that in this waveguide transition 3 further higher wave types are excited (e.g. H30, H03, H12, E12).
  • the symmetrical basic wave type H10, H01
  • an approximately rotationally symmetrical and low cross-polarization excitation radiation diagram is created.
  • the continuous cross-sectional expansion is carried out in such a way that a very good reflection behavior is achieved over a broad band in both polarizations with a short overall length.
  • the waveguide transition 3 shown as a separate component in FIG. 1 can also be integrated in the excitation horn 1.
  • the antenna feed system described above is advantageously used in a double reflector antenna with a parabolic main reflector HR and an elliptical subreflector SR.
  • the geometry of this double reflector antenna is designed so that, according to the geometric optics, a distortion-free representation of the excitation radiation diagram, consisting of the main radiation lobe HK and the spread secondary radiation lobe NK, is ensured in the antenna aperture. 1 is installed in the double reflector antenna in such a way that the H01 wave (see FIG. 2a) is assigned the vertical polarization in the radiation field of the antenna.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Table Devices Or Equipment (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

2.1 It is intended to specify an angular-diversity system which permits reception of the transmitted signals with a low error probability during multipath propagation in a radio field. 2.2 A main beam lobe, which is oriented in the main propagation direction of the waves and consists of at least one wave type with a symmetrical field distribution, is generated in an antenna supply system (1, 2, 3, 4, 5, 6). Two sidelobes, which are spread in a plane with respect to the main beam lobe, are formed from waves polarised at right angles to one another, having an antisymmetrical field distribution. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Anordnung zum Empfang von Mikrowellensignalen, die einer Mehrwegeausbreitung unterliegen, nach dem Winkeldiversityverfahren, wobei ein Antennenspeisesystem vorgesehen ist, das mindestens eine in Hauptausbreitungsrichtung der Wellen orientierte Hauptstrahlungskeule aus mindestens einem Wellentyp mit symmetrischer Feldverteilung und in Nebenausbreitungsrichtungen der Wellen orientierte Nebenstrahlungskeulen aus Wellentypen mit antisymmetrischer Feldverteilung erzeugt.The present invention relates to an arrangement for receiving microwave signals which are subject to multipath propagation according to the angle diversity method, an antenna feed system being provided which comprises at least one main radiation lobe oriented in the main direction of propagation of the waves from at least one wave type with symmetrical field distribution and secondary radiation lobes oriented in secondary directions of propagation of the waves Wave types generated with antisymmetric field distribution.

Die physikalischen Eigenschaften des Funkfeldes haben einen wesentlichen Einfluß auf die Übertragungsqualität von Richtfunkstrecken. Die von einer Sendeantenne ausgehenden Wellen können sich auf einem direkten Weg, aber auch auf Umwegen, zur Empfangsantenne ausbreiten. Bei diesen auf verschiedenen Wegen bei der Empfangsantenne eintreffenden Wellen kann es aufgrund ihrer Amplituden-/Phasenlagen zu einer Feldauslöschung kommen. Solche Schwunderscheinungen führen insbesondere bei der Übertragung von Digitalsignalen mit höherstufigen Modulationsverfahren zu einem deutlichen Anstieg der Bitfehlerhäufigkeit. Die Fehlerhäufigkeit beim Empfang von Signalen bei einer Mehrwegeausbreitung läßt sich durch sogenannte Diversityverfahren stark reduzieren.The physical properties of the radio field have a significant influence on the transmission quality of microwave links. The waves emanating from a transmitting antenna can propagate to the receiving antenna in a direct way, but also in a detour. These waves arriving in different ways at the receiving antenna can lead to field cancellation due to their amplitude / phase positions. Such fading phenomena lead to a significant increase in the frequency of bit errors, particularly when digital signals are transmitted using higher-level modulation methods. The frequency of errors when receiving signals in the case of multipath propagation can be greatly reduced by so-called diversity methods.

Aus der EP 0 061 576 B1 ist beispielsweise ein Winkeldiversityverfahren bekannt, das auf dem Mehrmodenprinzip basiert. Dabei werden im Erregerhorn des Antennenspeisesystems von Signalen, die aus einer Hauptausbreitungsrichtung zur Empfangsantenne gelangen, symmetrische Wellentypen angeregt, und Signale, die sich auf Umwegen ausbreiten, regen Wellen mit antisymmetrischer Feldverteilung an. Ein zum Antennenspeisesystem gehörender Modenkoppler trennt diese verschiedenen Wellentypen, und ein Auswahlempfänger leitet aus diesen ein optimales Empfangssignal ab. Dieser Auswahlempfänger enthält dem Stand der Technik gemäß einen Kombinator (z. B. in der HF- oder der ZF-Ebene), der aus beiden Signalen ein Bestsignal bildet. Beim Winkeldiversityverfahren der EP 0 061 576 B1 wird die in Hauptausbreitungsrichtung orientierte Hauptstrahlungskeule durch den H10-Wellentyp gebildet, und die in Azimut- und Elevationsrichtung weisenden Nebenstrahlungskeulen werden durch den H20-, H11- und den E11-Wellentyp erzeugt.An angle diversity method is known from EP 0 061 576 B1, for example, which is based on the multi-mode principle. In the excitation horn of the antenna feed system, symmetrical wave types are excited by signals that reach the receiving antenna from a main direction of propagation, and signals that spread through detours stimulate waves with an antisymmetric field distribution. A mode coupler belonging to the antenna feed system separates these different wave types, and a selection receiver derives an optimal reception signal from them. According to the prior art, this selection receiver contains a combiner (for example in the HF or IF level) which forms a best signal from both signals. In the angular diversity method of EP 0 061 576 B1, the main radiation lobe oriented in the main direction of propagation is formed by the H10 wave type, and the secondary radiation lobes pointing in azimuth and elevation directions are generated by the H20, H11 and E11 wave types.

Aus der DE-A-36 04 431 ist ein Antennenspeisesystem bekannt, das nach dem Monopulsprinzip Antennenablagesignale für die Azimut- und Elevationsrichtung gewinnt. Dabei erzeugt das Antennenspeisesystem ein Summen- und ein Differenzdiagramm. Das Differenzdiagramm besteht aus zwei in Azimutrichtung und zwei in Elevationsrichtung gespreizten Strahlungskeulen.From DE-A-36 04 431 an antenna feed system is known which, according to the monopulse principle, obtains antenna placement signals for the azimuth and elevation directions. The antenna feed system generates a sum and a difference diagram. The difference diagram consists of two radiation lobes spread in the azimuth direction and two in the elevation direction.

Der Erfindung liegt die Aufgabe zugrunde, eine Winkeldiversityanordnung der eingangs genannten Art anzugeben, die bei Mehrwegeausbreitung in einem Funkfeld einen Empfang der übertragenen Signale mit geringer Fehlerhäufigkeit ermöglicht.The invention is based on the object of specifying an angular diversity arrangement of the type mentioned at the outset which, in the case of multipath propagation in a radio field, enables reception of the transmitted signals with a low frequency of errors.

Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Weiterbildungen der erfundenen Anordnung gehen aus den Unteransprüchen hervor.According to the invention, this object is achieved by the features of claim 1. Appropriate further developments of the invented arrangement emerge from the subclaims.

Mit der Anordnung gemäß der Erfindung können auch in den Polarisationsebenen übertragene Signale, welche einer Mehrwegeausbreitung unterliegen, mit geringer Fehlerhäufigkeit empfangen werden. Das wird möglich durch die in einer Ebene gespreizten Nebenstrahlungskeulen, denen orthogonale Polarisationen zugeordnet sind und von denen jede aus mindestens einem höheren Wellentyp gebildet wird. Aufgrund der unterschiedlich polarisierten gespreizten Nebenstrahlungskeulen können auch sich auf Umwegen ausbreitende Signale noch empfangen werden, die ebenfalls auf unterschiedlichen Polarisationen ausgesendet worden sind. Weiterhin ist damit der Empfang von Signalen möglich, die zwar auf einer Polarisation gesendet wurden, aber bei der Ausbreitung über Umwege in der Polarisation gedreht wurden.With the arrangement according to the invention, signals transmitted in the polarization planes, which are subject to multipath propagation, can also be received with a low frequency of errors. This is made possible by the secondary radiation lobes spread in one plane, the orthogonal polarizations are assigned and each of which is formed from at least one higher wave type. Because of the differently polarized spread secondary radiation lobes, signals which propagate through detours can also still be received, which have likewise been emitted on different polarizations. Furthermore, it is possible to receive signals that were transmitted on one polarization, but were rotated in the polarization during the propagation via detours.

Anhand eines in der Zeichnung dargestellten Ausführungsbeispiels wird nachfolgend die Erfindung näher erläutert. Es zeigen:

Fig. 1
ein Antennenspeisesystem, welches das erfindungsgemäße Winkeldiversityverfahren durchführt,
Fig. 2 - 5
verschiedene Feldzustände in diesem Antennenspeisesystem und
Fig. 6
eine schematische Darstellung des in einer Doppelreflektorantenne eingesetzten Antennenspeisesystems.
Based on an embodiment shown in the drawing, the invention is explained in more detail below. Show it:
Fig. 1
an antenna feed system which carries out the angular diversity method according to the invention,
Figs. 2-5
different field conditions in this antenna feed system and
Fig. 6
is a schematic representation of the antenna feed system used in a double reflector antenna.

Der Fig. 1 ist ein Antennenspeisesystem zu entnehmen, das nach einem auf dem Mehrmodenprinzip basierenden Winkeldiversityverfahren arbeitet. Dieses Antennenspeisesystem besitzt ein Erregerhorn 1, eine Mehrtyp-Wellenleiterverzweigung 2, einen den Querschnitt des Erregerhorns 1 an den Querschnitt der Mehrtyp-Wellenleiterverzweigung 2 anpassenden Hohlleiterübergang 3, eine Doppelpolarisationsweiche 4 und zwei Serien-Parallelverzweigungen 5 und 6. Dabei ist das Antennenspeisesystem so konzipiert und dimensioniert, daß das Strahlungsdiagramm des Erregerhorns 1 eine in Hauptausbreitungsrichtung der Wellen orientierte Hauptstrahlungskeule und zwei gegenüber dieser in einer Ebene, vorzugsweise der Elevationsebene, gespreizte Nebenstrahlungskeulen, welche in die Nebenausbreitungsrichtungen der Wellen orientiert sind, aufweist. Die Hauptstrahlungskeule wird aus mindestens einem Wellentyp mit symmetrischer Feldverteilung erzeugt. Es kann dies beispielsweise der H10- oder der H01-Wellentyp sein, wenn das Erregerhorn glattwandig ist. Wird sowohl der H10-Wellentyp als auch der dazu orthogonal polarisierte H01-Wellentyp angeregt, so ist der Empfang von axial zu den Hauptstrahlungskeulen einfallenden Signalen möglich, die unterschiedlichen Polarisationen zugeordnet sind. Wird ein Erregerhorn mit gerillter (corrugated) Wandstruktur eingesetzt, so entsteht die Hauptstrahlungskeule durch die Anregung von Hybridwellentypen (z.B. HE11). Die gespreizten Nebenstrahlungskeulen werden aus orthogonal zueinander polarisierten Wellentypen mit antisymmetrischer Feldverteilung gebildet. Solche antisymmetrische Wellentypen können beispielsweise der H20-Wellentyp und ein aus der Überlagerung einer H11- und einer E11-Welle entstehender Wellentyp sein. Die Überlagerung des H11- und des E11-Wellentyps soll so erfolgen, daß es in der Polarisationsrichtung des H20-Wellentyps zu einer Feldauslöschung, und in der dazu orthogonalen Polarisationsrichtung zu einer Feldstärkeaddition kommt.1 shows an antenna feed system which works according to an angle diversity method based on the multimode principle. This antenna feed system has an exciter horn 1, a multi-type waveguide branch 2, a waveguide transition 3 that matches the cross section of the exciter horn 1 to the cross section of the multi-type waveguide branch 2, a double polarization switch 4 and two series parallel branches 5 and 6. The antenna feed system is designed and dimensioned in such a way that the radiation diagram of the excitation horn 1 has one main radiation lobe oriented in the main direction of propagation of the waves and two secondary radiation lobes which are spread in a plane, preferably the elevation plane, which are oriented in the secondary directions of propagation of the waves. having. The main radiation lobe is generated from at least one wave type with a symmetrical field distribution. This can be, for example, the H10 or H01 wave type if the exciter horn is smooth-walled. If both the H10 wave type and the orthogonally polarized H01 wave type are excited, it is possible to receive signals incident axially to the main radiation lobes which are assigned to different polarizations. If an exciter horn with a corrugated wall structure is used, the main radiation lobe is generated by the excitation of hybrid wave types (e.g. HE11). The spread secondary lobes are formed from mutually orthogonally polarized wave types with an antisymmetric field distribution. Such antisymmetric wave types can be, for example, the H20 wave type and a wave type resulting from the superimposition of an H11 and an E11 wave. The superposition of the H11 and E11 wave types should be such that there is a field cancellation in the polarization direction of the H20 wave type and a field strength addition occurs in the orthogonal polarization direction.

Die zuvor aufgeführten, im Erregerhorn und/oder im Hohlleiterübergang 3 angeregten Wellentypen - es sind die H01-, H11-, E11-, H10- und H20-Wellentypen - haben an dem erregerhornseitigen Eingang der Mehrtyp-Wellenleiterverzweigung 2 die in den Fig. 2a, 3a, 4a und 5a dargestellten Feldzustande. Die als Rechteckhohlleiter ausgeführte Mehrtyp-Wellenleiterverzweigung 2 ist an einem Ende durch ein Trennblech 7, das parallel zu den Hohlleiterschmalseiten verläuft, und in Nuten 8 in den Hohlleiterbreitseiten geführt ist, in zwei Teilhohlleiter aufgeteilt. An jeden dieser Teilhohlleiter der Mehrtyp-Wellenleiterverzweigung 2 wird ein als Polarisationsweiche ausgebildeter Hohlleiter 41, 42 angeschlossen. Jeder der beiden Hohlleiter 41 und 42 ist mit zwei hintereinander angeordneten, um 90° gegeneinander verdrehten Ausgängen 411, 412 bzw. 421, 422 versehen. Wie der Fig. 1 zu entnehmen ist, sind die beiden als Polarisationsweichen ausgebildeten Hohlleiter 41 und 42 direkt nebeneinander angeordnet und durch eine gemeinsame Wand 43 voneinander getrennt. Dadurch entsteht eine sehr kompakte, hier als Doppelpolarisationsweiche 4 bezeichnete Anordnung. Die sich in der Mehrtyp-Wellenleiterverzweigung 2 ausbreitenden Wellentypen, deren am erregerseitigen Ende vorherrschenden Feldzustände die Fig. 2a, 3a, 4a und 5a zeigen, nehmen in den durch das Trennblech 7 geschaffenen Teilhohlleitern die in den Fig. 2b, 3b, 4b und 5b dargestellten Feldzustände an. So teilt sich der H01-Wellentyp (Fig. 2a) in den beiden Teilhohlleitern in zwei vertikal polarisierte, gleichphasige Wellen (Fig. 2b) auf. Die durch Überlagerung des H11- und des E11-Wellentyps (Fig. 3a) entstandene Welle wird durch das Trennblech 7 in den beiden Teilhohlleitern in zwei gegenphasige, vertikal polarisierte Wellen (Fig. 3b) aufgeteilt. Der H10-Wellentyp (Fig. 4a) geht in den beiden Teilhohlleitern zu beiden Seiten des Trennblechs 7 in zwei gleichphasige, horizontal polarisierte Wellen (Fig. 4b) über. Schließlich wird der H20-Wellentyp (Fig. 5a) durch das Trennblech 7 in zwei in horizontaler Richtung polarisierte, gegenphasige Wellen (Fig. 5b) aufgeteilt. An den Ausgängen 411, 412, 421 und 422 der an die Mehrtyp-Wellenleiterverzweigung 2 angekoppelten Doppelpolarisationsweiche 4 sind dann folgende Wellentypen abgreifbar. Am Ausgang 411 des Hohlleiters 41 stehen die aus einem der beiden Teilhohlleiter der Mehrtyp-Wellenleiterverzweigung 2 stammenden Feldenergieanteile des H01- und des aus der Überlagerung der H11- und derE11-Wellen entstandenen Wellentyps zur Verfügung. Die aus dem anderen Teilhohlleiter stammenden Energieanteile derselben Wellentypen sind an dem Ausgang 421 des anderen Hohlleiters 42 abgreifbar. Der Ausgang 412 des Hohlleiters 41 liefert die aus einem der beiden Teilhohlleiter der Mehrtyp-Wellenleiterverzweigung 2 stammenden Feldenergieanteile des H10-Wellentyps und des H20 Wellentyps. Die aus dem anderen Teilhohlleiter stammenden Feldenergieanteile derselben Wellentypen können am Ausgang 422 des Hohlleiters 42 abgegriffen werden. Die an den Ausgängen 411, 412, 421, 422 anstehenden Feldenergieanteile gleicher Polarisation werden mittels zweier Serien-Parallelverzweigungen 5, 6 zusammengefaßt, deren Ausgänge die Feldenergieanteile der symmetrischen und der antisymmetrischen Wellentypen voneinander trennen. Die Serien-Parallelverzweigung 5 ist mit ihren zwei Toren 511 und 521 an die beiden Ausgänge 411 und 421 der Doppelpolarisationsweiche 4 angeschlossen. Am Tor 53 - dem sogenannten E-Tor - der Serien-Parallelverzweigung 5 (magisches T) ist die gesamte Feldenergie der hier horizontal polarisierten H01-Welle abgreifbar, und am Tor 54 - dem sogenannten H-Tor - steht die gesamte Feldenergie derjenigen Welle zur Verfügung, die aus der Überlagerung der H11- und der E11-Wellen entstanden ist. Von der zweiten Serien-Parallelverzweigung 6 sind die Tore 612 und 622 mit den Ausgängen 412 und 422 der Doppelpolarisationsweiche 4 gekoppelt. Am Tor 64 - dem sogenannten H-Tor - der Serien-Parallelverzweigung 6 steht dann die gesamte Feldenergie der hier vertikal polarisierten H10-Welle an, und das Tor 63 - das sogenannte E-Tor - liefert die gesamte Feldenergie der hier vertikal polarisierten H20-Welle.The previously mentioned wave types excited in the exciter horn and / or in the waveguide transition 3 - they are the H01, H11, E11, H10 and H20 wave types - have the multi-type waveguide branch at the input on the exciter horn side 2, the field states shown in FIGS. 2a, 3a, 4a and 5a. The multi-type waveguide branch 2, designed as a rectangular waveguide, is divided at one end into two partial waveguides by a separating plate 7, which runs parallel to the narrow waveguide sides and is guided in grooves 8 in the broad waveguide sides. A waveguide 41, 42 designed as a polarization switch is connected to each of these partial waveguides of the multi-type waveguide branch 2. Each of the two waveguides 41 and 42 is provided with two outlets 411, 412 and 421, 422 which are arranged one behind the other and are rotated by 90 ° with respect to one another. As can be seen from FIG. 1, the two waveguides 41 and 42 designed as polarization switches are arranged directly next to one another and separated from one another by a common wall 43. This creates a very compact arrangement, referred to here as a double polarization switch 4. The wave types propagating in the multi-type waveguide branch 2, the field states of which prevail at the exciter side end shown in FIGS. 2a, 3a, 4a and 5a, take in the partial waveguides created by the separating plate 7 those in FIGS. 2b, 3b, 4b and 5b displayed field states. The H01 wave type (FIG. 2a) in the two partial waveguides is divided into two vertically polarized, in-phase waves (FIG. 2b). The wave created by superimposing the H11 and the E11 wave type (FIG. 3a) is divided into two antiphase, vertically polarized waves (FIG. 3b) by the separating plate 7 in the two partial waveguides. The H10 wave type (FIG. 4a) merges into two in-phase, horizontally polarized waves (FIG. 4b) in the two partial waveguides on both sides of the separating plate 7. Finally, the H20 wave type (FIG. 5a) is divided by the separating plate 7 into two, opposite-phase waves polarized in the horizontal direction (FIG. 5b). At The following wave types can then be tapped from the outputs 411, 412, 421 and 422 of the double polarization switch 4 coupled to the multi-type waveguide branch 2. At the output 411 of the waveguide 41, the field energy components of the H01 and the wave type resulting from the superimposition of the H11 and E11 waves originating from one of the two partial waveguides of the multi-type waveguide branch 2 are available. The energy components of the same wave types originating from the other partial waveguide can be tapped off at the output 421 of the other waveguide 42. The output 412 of the waveguide 41 supplies the field energy components of the H10 wave type and the H20 wave type originating from one of the two partial waveguides of the multi-type waveguide branch 2. The field energy components of the same wave types originating from the other partial waveguide can be tapped off at the output 422 of the waveguide 42. The field energy components of the same polarization present at the outputs 411, 412, 421, 422 are combined by means of two series parallel branches 5, 6, the outputs of which separate the field energy components of the symmetrical and the antisymmetric wave types. The series parallel branching 5 is connected with its two gates 511 and 521 to the two outputs 411 and 421 of the double polarization switch 4. The entire field energy of the horizontally polarized H01 wave can be tapped off at gate 53 - the so-called E-gate - of the series parallel junction 5 (magic T), and the entire field energy of that wave is available at gate 54 - the so-called H-gate Available, which resulted from the superposition of the H11 and E11 waves. The gates 612 and 622 are coupled to the outputs 412 and 422 of the double polarization switch 4 from the second series parallel branch 6. At the gate 64 - the so-called H-gate - there is the series parallel branch 6 then the entire field energy of the vertically polarized H10 wave, and the gate 63 - the so-called E-gate - supplies the entire field energy of the vertically polarized H20 wave.

Ein hier nicht dargestellter und nicht näher beschriebener Diversityempfänger bekannter Bauart leitet aus den an den Toren 53, 54, 63 und 64 der beiden Serien-Parallelverzweigungen 5 und 6 zur Verfügung stehenden Wellen ein optimales Empfangssignal ab.A diversity receiver of a known type, not shown here and not described in more detail, derives an optimal reception signal from the waves available at gates 53, 54, 63 and 64 of the two series parallel branches 5 and 6.

Das in der Mehrtyp-Wellenleiterverzweigung 2 eingesetzte Trennblech 7 ist an seiner in das Innere des Hohlleiters weisenden Stirnseite mit einem Stift 9 versehen, der in Wellenausbreitungsrichtung orientiert ist. Dieser Stift 9 hat einen Einfluß auf den H11- und den E11-Wellentyp. Die Länge des Stiftes 9 ist so gewählt, daß es zu einer phasengleichen Überlagerung des H11- und des E11-Wellentyps kommt. Seine Länge beträgt ca. 1/8 der Hohlleiterwellenlänge dieser beiden Wellentypen. Der Fig. 1 ist zu entnehmen, daß der Stift 9 zur Realisierung einer Transformationsstufe mit einem Querschnittsprung versehen ist. Eine weitere Transformationsstufe kann das Trennblech 7 in der Mehrtyp-Wellenleiterverzweigung 2 mit der die beiden Hohlleiter 41 und 42 voneinander trennenden Hohlleiterwand 43 der Doppelpolarisationsweiche 4 bilden. Wenn die Mehrtyp-Wellenleiterverzweigung 2 mit der Doppelpolarisationsweiche 4 gekoppelt ist, treffen die Hohlleiterwand 43 der Doppelpolarisationsweiche 4 und das Trennblech 7 in der Mehrtyp-Wellenleiterverzweigung 2 stirnseitig zusammen. Bei unterschiedlicher Dicke des Trennblechs 7 und der Hohlleiterwand 43 entsteht eine Transformationsstufe. Um den H11- und den E11-Wellentyp besser an die Doppelpolarisationsweiche 4 anzupassen, kann, wie die Fig. 1 zeigt, in das Trennblech 7 ein quer zur Wellenausbreitungsrichtung verlaufender Schlitz 10 eingebracht werden. Die kapazitive Wirkung des Trennblechs 7 auf die Wellentypen H01, H11 und E11 läßt sich dadurch kompensieren, daß in die beiden Schmalseiten des Hohlleiters 2 zwei einander gegenüberliegende Abstimmstifte eingebracht werden. Diese Abstimmstifte sind dann vor der vorderen Stirnseite des Trennblechs 7 in einem Abstand von etwa 3/4 der Hohlleiterwellenlänge für den Grundwellentyp anzuordnen. Induktive Wirkungen des Trennblechs 7 auf den H10- und den H20-Wellentyp lassen sich durch Abstimmstifte in den Breitseiten des Hohlleiters 2 kompensieren. Hierfür ist es zweckmäßig, vor der vorderen Stirnseite des Trennblechs 7 in einem Abstand von einer halben, und in einem Abstand von einer ganzen Hohlleiterwellenlänge für den Grundwellentyp Abstimmstifte vorzusehen. Abstimmstifte sind in bekannter Weise jeweils dort anzuordnen, wo der zu beeinflußende Wellentyp sein Feldmaximum hat.The separating plate 7 used in the multi-type waveguide branch 2 is provided on its end face pointing into the interior of the waveguide with a pin 9 which is oriented in the direction of wave propagation. This pin 9 has an influence on the H11 and E11 shaft types. The length of the pin 9 is selected so that there is a phase overlap of the H11 and E11 shaft types. Its length is approximately 1/8 of the waveguide wavelength of these two types of waves. 1 that the pin 9 is provided with a cross-sectional jump in order to implement a transformation stage. A further transformation stage can be formed by the partition plate 7 in the multi-type waveguide branch 2 with the waveguide wall 43 of the double polarization switch 4 separating the two waveguides 41 and 42. If the multi-type waveguide branch 2 is coupled to the double polarization switch 4, the waveguide wall 43 of the double polarization switch 4 and the separating plate 7 meet in the multi-type waveguide branch 2 on the end face. If the separating plate 7 and the waveguide wall 43 have different thicknesses, a transformation stage is created. In order to better adapt the H11 and E11 wave types to the double polarization switch 4, As shown in FIG. 1, a slot 10 extending transversely to the direction of wave propagation is introduced into the partition plate 7. The capacitive effect of the separating plate 7 on the shaft types H01, H11 and E11 can be compensated for by inserting two opposing tuning pins into the two narrow sides of the waveguide 2. These tuning pins are then to be arranged in front of the front end face of the separating plate 7 at a distance of approximately 3/4 of the waveguide wavelength for the basic wave type. Inductive effects of the separating plate 7 on the H10 and H20 shaft types can be compensated for by tuning pins in the broad sides of the waveguide 2. For this purpose, it is expedient to provide tuning pins for the basic wave type in front of the front end face of the separating plate 7 at a distance of half and at a distance of an entire waveguide wavelength. Tuning pins are to be arranged in a known manner where the wave type to be influenced has its field maximum.

Die in dem Hohlleiterübergang 3 stattfindende Querschnittsanpassung vom rechteckigen Erregerhorn 1 auf den Rechteckhohlleiter der Mehrtyp-Wellenleiterverzweigung 2 erfolgt kontinuierlich. Die Querschnittsverformung erfolgt innerhalb des Hohlleiterübergangs 3 in der E- und in der H-Ebene unterschiedlich, und zwar so, daß in diesem Hohlleiterübergang 3 weitere höhere Wellentypen angeregt werden (z. B. H30, H03, H12, E12). Durch Überlagerung dieser höheren Wellentypen mit dem symmetrischen Grundwellentyp (H10, H01) entsteht ein annähernd rotationssymmetrisches und kreuzpolarisationsarmes Erreger-Strahlungsdiagramm. Die kontinuierliche Querschnittserweiterung ist gleichzeitig so ausgeführt, daß bei kurzer Baulänge in beiden Polarisationen breitbandig ein sehr gutes Reflexionsverhalten erreicht wird.The cross-sectional adaptation taking place in the waveguide transition 3 from the rectangular excitation horn 1 to the rectangular waveguide of the multi-type waveguide branch 2 takes place continuously. The cross-sectional deformation takes place within the waveguide transition 3 in the E and H planes differently, and in such a way that in this waveguide transition 3 further higher wave types are excited (e.g. H30, H03, H12, E12). By superimposing these higher wave types with the symmetrical basic wave type (H10, H01) an approximately rotationally symmetrical and low cross-polarization excitation radiation diagram is created. At the same time, the continuous cross-sectional expansion is carried out in such a way that a very good reflection behavior is achieved over a broad band in both polarizations with a short overall length.

Der in der Fig. 1 als eigenes Bauteil dargestellte Hohlleiterübergang 3 kann auch im Erregerhorn 1 integriert werden.The waveguide transition 3 shown as a separate component in FIG. 1 can also be integrated in the excitation horn 1.

Das vorangehend beschriebene Antennenspeisesystem wird, wie die Fig. 6 zeigt, vorteilhafterweise in einer Doppelreflektorantenne mit einem parabolischen Hauptreflektor HR und einem elliptischen Subreflektor SR eingesetzt. Die Geometrie dieser Doppelreflektorantenne ist so ausgelegt, daß nach der geometrischen Optik eine verzerrungsfreie Abbildung des Erreger-Strahlungsdiagramms, bestehend aus der Hauptstrahlungskeule HK und den gespreizten Nebenstrahlungskeulen NK, in die Antennenapertur gewährleistet ist.
Der Einbau des Speisesystems nach Fig. 1 in die Doppelreflektorantenne erfolgt so, daß der H01-Welle (vgl. Fig. 2a) die vertikale Polarisation im Strahlungsfeld der Antenne zugeordnet ist.
As shown in FIG. 6, the antenna feed system described above is advantageously used in a double reflector antenna with a parabolic main reflector HR and an elliptical subreflector SR. The geometry of this double reflector antenna is designed so that, according to the geometric optics, a distortion-free representation of the excitation radiation diagram, consisting of the main radiation lobe HK and the spread secondary radiation lobe NK, is ensured in the antenna aperture.
1 is installed in the double reflector antenna in such a way that the H01 wave (see FIG. 2a) is assigned the vertical polarization in the radiation field of the antenna.

Claims (7)

  1. Arrangement for the reception of microwave signals which are subject to multipath propagation, using the angular diversity method, an antenna feed system being provided which produces at least one main radiation lobe (HK), which is oriented in the main propagation direction of the waves, of at least one wave mode having a symmetrical field distribution, and side lobes (NK), which are oriented in secondary propagation directions of the waves, of wave modes having an antisymmetric field distribution, characterized
    - in that the antenna feed system is designed such that only two side lobes (NK) are produced, which are spread in a plane and are produced by the superimposition of two wave modes, which are polarized orthogonally with respect to one another, having an antisymmetric field distribution,
    - in that a multi-mode waveguide junction (2) splits the symmetrical wave mode or modes, which are excited in an excitation horn (1) and form the main radiation lobe or lobes (HK), and the antisymmetric wave modes, which are likewise excited therein and form the spread side lobes (NK), between two polarization duplexers (4, 41, 42),
    - in that the multi-mode waveguide junction (2) is a rectangular waveguide in which a separating plate (7) is used which runs parallel to the narrow side of the waveguide and splits each of the wave modes fed into the multi-mode waveguide junction (2) into two field energy elements which are to be supplied to the two polarization duplexers (4, 41, 42), and
    - in that a pin (9) which is oriented in the wave propagation direction is arranged at the front end of the separating plate (7), facing the excitation horn (1), and is of such a length that in-phase superimposition takes place between the antisymmetric wave modes.
  2. Arrangement according to Claim 1, characterized in that the two spread side lobes (NK) lie in the elevation plane.
  3. Arrangement according to Claim 1, characterized in that the side lobes (NK) are produced by superimposition of the H11 wave mode and the E11 wave mode, and by the H20 wave mode and the H02 wave mode.
  4. Arrangement according to Claim 1, characterized in that a first series/parallel junction (5) comprising both polarization duplexers (4, 41, 42) outputs the field energy elements of the wave modes having a first polarization and, of these, makes available the field energy of the symmetrical wave mode at an E port (53) and the field energy of the antisymmetric wave mode at an H port (54), and in that a second series/parallel junction (6) comprising both polarization duplexers (4, 41, 42) outputs the field energy elements of the wave types having a second polarization and, of these, makes available the field energy of the symmetrical wave mode at an H port (64) and the field energy of the antisymmetric wave mode at an E port (63).
  5. Arrangement according to Claim 1, characterized in that tuning pins, in order to compensate for the inductive effect of the separating plate, are arranged on the two broad sides of the waveguide of the multi-mode waveguide junction (2) at a distance of approximately half a waveguide wavelength and approximately one entire waveguide wavelength from the front end of the separating plate (7).
  6. Arrangement according to Claim 1, characterized in that the separating plate (7) has at least one slot (10) which extends transversely with respect to the wave propagation direction.
  7. Arrangement according to Claim 1, characterized in that there is a waveguide transition (3) between the rectangular aperture cross-section of the excitation horn (1) and the rectangular waveguide of the multi-mode waveguide junction (2), which waveguide transition (3) has suitable cross-section extensions, which differ in the E plane and the H plane, so that higher wave modes are excited in them which contribute to maintenance of a low level of cross-polarization, in order to adapt the excitation polar diagrams in the E plane and the H plane.
EP90118209A 1989-10-09 1990-09-21 Angular-diversity device Expired - Lifetime EP0422431B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3933683 1989-10-09
DE3933683 1989-10-09

Publications (3)

Publication Number Publication Date
EP0422431A2 EP0422431A2 (en) 1991-04-17
EP0422431A3 EP0422431A3 (en) 1991-12-18
EP0422431B1 true EP0422431B1 (en) 1996-12-27

Family

ID=6391116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90118209A Expired - Lifetime EP0422431B1 (en) 1989-10-09 1990-09-21 Angular-diversity device

Country Status (3)

Country Link
EP (1) EP0422431B1 (en)
AT (1) ATE146907T1 (en)
DE (1) DE59010617D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575788B1 (en) * 1992-06-26 1997-03-19 Siemens Aktiengesellschaft XPD-optimised multimode angle diversity launcher
FR2704695B1 (en) * 1993-04-30 1995-06-23 Thomson Csf REAR RADIATION SOURCE FOR REFLECTOR ANTENNA.
DE4326824C2 (en) * 1993-08-10 1997-09-11 Siemens Ag Waveguide circuit with two polarization switches
DE102013011651A1 (en) * 2013-07-11 2015-01-15 ESA-microwave service GmbH Antenna feed system in the microwave range for reflector antennas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626925C3 (en) * 1976-06-16 1981-01-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for compensating for propagation fluctuations in communication systems
DE3111731A1 (en) * 1981-03-25 1982-10-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt MICROWAVE TRANSMISSION DEVICE WITH MULTI-MODE DIVERSITY COMBINATION RECEPTION
DE3604431A1 (en) * 1986-02-13 1987-08-20 Licentia Gmbh Mode coupler for monopulse applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Merrill I. Skolnik, "Radar Handbook", 1970, McGraw-Hill, Seiten 21-18-21-21. *

Also Published As

Publication number Publication date
EP0422431A3 (en) 1991-12-18
ATE146907T1 (en) 1997-01-15
EP0422431A2 (en) 1991-04-17
DE59010617D1 (en) 1997-02-06

Similar Documents

Publication Publication Date Title
DE69715518T2 (en) Antenna feeder for multiple frequencies
EP0061576B1 (en) Microwave communication transmission apparatus with multimode diversity combining reception
DE112004000077B4 (en) Twisted waveguide and wireless device
DE2502531A1 (en) ANTENNA ARRANGEMENT
DE69016479T2 (en) Spotlight for circularly polarized weles with low cross polarization.
DE3931752A1 (en) COAXIAL SLOT ANTENNA
DE3852650T2 (en) MICROWAVE MULTIPLEXER WITH MULTI-MODE FILTER.
EP0041077B1 (en) Antenna-feeding system for a tracking antenna
DE3786664T2 (en) MICROWAVE EXCITER FOR ORTHOGONAL POLARIZED WAVES.
DE60200997T2 (en) Converter for receiving satellite broadcasting from multiple satellites
EP0422431B1 (en) Angular-diversity device
DE68918426T2 (en) Dual frequency radiating device.
DE60305677T2 (en) High frequency module and antenna device
DE2810483C2 (en) Antenna with a feed waveguide having slots and a radiator line enclosing an angle with this
DE1107736B (en) Horn antenna with rectangular cross-section for microwaves
EP2159870B1 (en) Signal branching for use in a communication system
DE2335792A1 (en) RADIO NAVIGATION, IN PARTICULAR LANDING SYSTEM
DE2719283A1 (en) ANTENNA FEEDING SYSTEM FOR DOUBLE POLARIZATION
DE4039898C2 (en) High-frequency radar antenna feed arrangement - includes optical axis between antenna interface and MIC with focussing unit coupling IC antenna patches and interface
WO1999004282A1 (en) Device for sending and receiving radar waves, especially for a distance sensor
DE2626926C2 (en) Waveguide primary radiator with rectangular cross-section for a reflector antenna with beam swivel
DE69630299T2 (en) ANTENNA ELEMENT FOR TWO ORTHOGONAL POLARISATIONS
DE4412769A1 (en) Microwave reflector aerial for car distance warning radar
DE69601015T2 (en) Multifunctional antenna arrangement with horn antenna
EP0419892B1 (en) Microwave polarisation filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE GB LI NL SE

17P Request for examination filed

Effective date: 19911114

17Q First examination report despatched

Effective date: 19931116

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE GB LI NL SE

REF Corresponds to:

Ref document number: 146907

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

REF Corresponds to:

Ref document number: 59010617

Country of ref document: DE

Date of ref document: 19970206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000817

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000911

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000925

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000927

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001011

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010921

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

EUG Se: european patent has lapsed

Ref document number: 90118209.7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL