EP0133144B1 - Procédé d'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés - Google Patents

Procédé d'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés Download PDF

Info

Publication number
EP0133144B1
EP0133144B1 EP84420126A EP84420126A EP0133144B1 EP 0133144 B1 EP0133144 B1 EP 0133144B1 EP 84420126 A EP84420126 A EP 84420126A EP 84420126 A EP84420126 A EP 84420126A EP 0133144 B1 EP0133144 B1 EP 0133144B1
Authority
EP
European Patent Office
Prior art keywords
powder
jacket
aluminium alloy
hot
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84420126A
Other languages
German (de)
English (en)
Other versions
EP0133144A1 (fr
Inventor
Jean Meunier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cegedur Societe de Transformation de lAluminium Pechiney SA
Original Assignee
Cegedur Societe de Transformation de lAluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9291139&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0133144(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cegedur Societe de Transformation de lAluminium Pechiney SA filed Critical Cegedur Societe de Transformation de lAluminium Pechiney SA
Publication of EP0133144A1 publication Critical patent/EP0133144A1/fr
Application granted granted Critical
Publication of EP0133144B1 publication Critical patent/EP0133144B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1216Container composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding

Definitions

  • the present invention relates to the production from high strength aluminum alloy powder of spun semi-finished products intended in particular for applications in the aeronautical industry.
  • obtaining extruded semi-finished products may require, in an initial phase, either casting processes or powder compression processes.
  • the choice between one or the other of these methods is made mainly according to the composition of the alloy used and the mechanical characteristics sought for the semi-finished product.
  • the problem is to spin aluminum alloys in order to obtain semi-finished products intended more particularly for aeronautics and for which we seek both a relatively high breaking strength and generally greater than 500 MPa, and a suitable elongation at least equal to 5%.
  • Such characteristics can be achieved by using either alloys which, according to the standards of the Aluminum Association, belong to the 7000 series and in particular the alloys 7090 and 7091, or more recently alloys of the lithium family, such as those which contain in particular 2 to 3% of lithium as well as other elements of addition such as copper, magnesium, zinc, zirconium, etc ...
  • the powder obtained then has a particular morphology of spherical grains. These grains have the disadvantage of being poorly suited to compression and give rise to the formation of pieces of poor mechanical quality which tend to crumble.
  • the compression ratio of the powder could be increased to avoid this annoyance, but this would therefore reduce the possibilities of subsequent degassing of the hot piece and thus harm the quality of the final product.
  • this cold compression rate it is necessary to limit this cold compression rate so that before and during the sheathing, and in any case until they have been densified to 100%, these pieces have the possibility of reacting with the surrounding medium and in particular of capturing the humidity of the air, which causes besides an oxidation of the alloy, the formation of hydrogen within the billet. This hydrogen will cause the presence, in the semi-finished products resulting from the spinning of such plots, of porosities very detrimental to the desired high resistance.
  • This process is characterized in that a powder is loaded either with an alloy of the 7000 series (alloy AI-Zn-Mg-Cu) or an alloy AI-Li, in a sheath of aluminum alloy of the series 5000, degas the powder hot under a pressure lower than atmospheric pressure, seals the sheath, spins the assembly in reverse while hot and heat treatment with ambient air.
  • the alloy powder used is obtained by atomization in a neutral gas, preferably helium, and optionally by atomization in air in the case of alloys of the 7000 series, which are preferably alloys 7090 and 7091.
  • This powder preferably has a particle size of less than 400 ⁇ m so as to obtain a suitable semi-finished product. It is loaded directly into the sheath at the outlet of the bulk atomizer without prior compression so that the cold compression phase provided for in the prior process is thus avoided.
  • This has the advantage, while simplifying the process, of eliminating the problems inherent in pollution of the powder during this operation and of facilitating subsequent degassing.
  • the powder can be cold pre-compressed before loading it into the sheath.
  • the sheath used is made of aluminum alloy which lends itself well to deformation during the spinning operation, and preferably of A-G3 or A-G5. It has the shape of a closed cylindrical box. equipped on one of its bottoms with an appendix intended for filling and subsequent degassing. This sheath has a thickness of the order of a few millimeters which varies according to its diameter.
  • the content of the sheath is connected to a gas pumping device via the appendix and under its action, a pressure is established and maintained below atmospheric pressure and in any case less than 0.13 Pa while bringing the sheath and its contents to a temperature between 350 and 550 ° C.
  • the sheath is then sealed in a leaktight manner by an appropriate means, and subjected directly to a reverse spinning operation at a temperature between 350 and 500 ° C.
  • the step of the prior art consisting of hot compressing and sintering the powder in a matrix before machining the sheath and spinning is omitted.
  • the semi-finished product is compact and has a regular continuous plating in intimate contact with the underlying powder. But such a result can only be obtained by reverse spinning.
  • the metal is pushed by means of a pestle along the press container, through a fixed die which determines the profile of the semi-finished product.
  • the die In reverse spinning, the die is fixed on the pestle and the metal spins in a direction opposite to that of the advance of the pestle.
  • the “lubricating action of the sheath eliminates any friction of the powder with the die, so that the spinning speeds usually used in the prior art can be significantly increased and speeds higher than those obtained during spinning products cast in hard alloys without risk of decohesion on the surface of the powder grains insufficiently sintered as was the case with the products obtained in the prior art by spinning after hot compression.
  • Such a plated composite semi-finished product then lends itself very well to heat treatment operations, dissolving at 530 ° C. generally carried out on lithium alloys and tempering for 6 to 10 hours between 150 and 200 ° C. in ovens. conventional air without the need to take any special precautions since the waterproof sheath exerts a protective role vis-à-vis the environment.
  • the present invention finds its application in obtaining semi-finished products having high mechanical strength, suitable elongation and good environmental resistance, characteristics which make them particularly suitable for applications in the aeronautical industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

  • La présente invention est relative à l'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés destinés notamment à des applications dans l'industrie aéronautique.
  • Dans le domaine de l'aluminium, l'obtention de demi-produits filés peut faire appel dans une phase initiale, soit à des procédés de coulée, soit à des procédés de compression de poudres. Le choix entre l'un ou l'autre de ces procédés est fait principalement en fonction de la composition de l'alliage mis en oeuvre et des caractéristiques mécaniques recherchées pour le demi-produit.
  • Dans la présente invention, le problème est de filer des alliages d'aluminium en vue d'obtenir des demi-produits destinés plus particulièrement à l'aéronautique et pour lesquels on recherche à la fois une résistance à la rupture relativement élevée et généralement supérieure à 500 MPa, et un allongement convenable au moins égal à 5 %.
  • De telles caractéristiques peuvent être réalisées en mettant en oeuvre, soit des alliages qui, suivant les normes de l'Aluminium Association, appartiennent à la série des 7000 et notamment les alliages 7090 et 7091, soit plus récemment des alliages de la famille du lithium, tels que ceux qui contiennent notamment 2 à 3 % de lithium ainsi que d'autres éléments d'addition comme le cuivre, le magnésium, le zinc, le zirconium, etc...
  • Toutefois, les procédés classiques évoqués ci-dessus s'adaptent mal à ces alliages.
  • En effet, si l'on opère par coulée, on obtient généralement une forte ségrégation du produit coulé qui présente alors une grande aptitude à la criquabilité, d'où un taux de rebut prohibitif des pièces ainsi réalisées. Quant aux demi-produits filés qui en résultent, leur structure à gros grains et à phases grossières les rendent particulièrement fragiles. Autant d'inconvénients qui rendent ce procédé inadapté au but recherché.
  • Si l'on recourt aux procédés de la métallurgie des poudres, on se heurte, notamment avec les alliages au lithium, car cet élément a une très grande réactivité chimique, à un problème de pollution par l'environnement.
  • Certes, on peut pallier cette difficulté en protégeant momentanément la poudre du milieu extérieur par une gaine par exemple, jusqu'à ce qu'elle ait été densifiée par compression et frittage. Ce moyen a été appliqué aux alliages AI-Fe-Ce dans le brevet US 4 379 719 qui décrit un procédé comprenant les étapes suivantes :
    • - pulvérisation de l'alliage par atomisation,
    • - compression de la poudre sous forme d'un lopin,
    • - mise sous gaine du lopin,
    • - dégazage à chaud du lopin, sous pression réduite et fermeture de la gaine,
    • - compression de l'ensemble à chaud dans une matrice et frittage de la poudre,
    • - usinage de la gaine pour la séparer du lopin,
    • - filage à chaud du lopin fritté,
    • - application de traitements thermiques, de mise en solution éventuellement et de revenu nécessaire pour atteindre les caractéristiques requises.
  • Mais un tel procédé, outre le fait qu'il comporte une gamme d'opérations nombreuses et relativement complexes, présente également d'autres inconvénients. C'est ainsi que lorsqu'il s'agit de mettre en oeuvre des poudres très sensibles à l'environnement, on ne peut les fabriquer de façon classique par atomisation dans l'air car elles s'oxyderaient et conduiraient à des produits aux caractéristiques mécaniques inadaptées, Il faut donc recourir à des atmosphères de gaz neutre tel que l'hélium de préférence.
  • Dans ces conditions d'atomisation, la poudre obtenue présente alors une morphologie particulière de grains sphériques. Ces grains ont le désavantage de mal se prêter à la compression et donnent lieu à la formation de lopins de mauvaise qualité mécanique qui tendent à s'effriter.
  • Certes, on pourrait augmenter le taux de compression de la poudre pour éviter cet ennui, mais on réduirait de ce fait les possibilités de dégazage ultérieur du lopin à chaud et on nuirait ainsi à la qualité du produit final. C'est pourquoi, on est obligé de limiter ce taux de compression à froid de sorte qu'avant et au cours de la mise sous gaine, et en tout cas jusqu'à ce qu'ils aient été densifiés à 100 %, ces lopins ont la possibilité de réagir avec le milieu environnant et de capter notamment l'humidité de l'air, ce qui provoque outre une oxydation de l'alliage, la formation d'hydrogène au sein du lopin. Cet hydrogène va entraîner la présence, dans les demi-produits résultant du filage de tels lopins, de porosités très préjudiciables à la haute résistance souhaitée.
  • De plus, la présence de ce gaz et d'autres produits de la réaction avec l'environnement va limiter le taux de frittage et empêcher d'atteindre une densification finale convenable lors de l'opération de compression à chaud. C'est pourquoi, il est impératif de procéder à un dégazage poussé du lopin.
  • Néanmoins, dans les conditions du procédé évoqué ci-dessus, et en prenant toutes les précautions pour réaliser un bon dégazage, on constate dans la plupart des cas qu'après compression à chaud et frittage du lopin au sein de la gaine, puis élimination de la gaine, le produit obtenu se file mal et conduit à des demi-produits criqués sur lesquels apparaissent des décohésions locales.
  • Dans une certaine mesure, on a pu parer à ces défauts en jouant sur la température du filage, la nature de l'outillage ou même en diminuant la vitesse de filage mais c'est alors au détriment de l'économie du procédé.
  • En outre, dans le cas des alliages aluminium- lithium, il faut prendre des précautions lors des traitements thermiques destinés à améliorer leurs caractéristiques mécaniques, en raison de leur sensibilité à l'environnement. En particulier, on ne peut pas procéder à ces traitements dans des fours à l'air ambiant.
  • Au vu des difficultés inhérentes à ce procédé de l'art antérieur, mais voulant néanmoins bénéficier des avantages de la métallurgie des poudres, la demanderesse a cherché à le modifier afin de mieux l'adapter au problème posé. En particulier, elle a voulu, tout en simplifiant le procédé, faciliter le dégazage à chaud de la poudre, améliorer les conditions de filage pour éviter les criques et les décohésions et permettre les traitements thermiques sans précaution particulière.
  • Elle est arrivée ainsi à obtenir des demi-produits filés sous forme de composites plaqués dans lesquels l'âme en alliage à haute résistance, initialement pulvérulente, a été protégée constamment au cours de sa mise en forme de l'action polluante de l'environnement par une gaine étanche, ce qui confère une structure saine dépourvue de toute porosité et de haute résistance, et où ladite âme se trouve en contact intime avec une gaine qui épouse fidèlement la forme de la filière, ce qui donne au composite une structure compacte et de géométrie régulière.
  • Ce procédé est caractérisé en ce que l'on charge une poudre soit d'un alliage de la série 7000 (alliage AI-Zn-Mg-Cu) soit un alliage AI-Li, dans une gaine en alliage d'aluminium de la série 5000, dégaze la poudre à chaud sous une pression inférieure à la pression atmosphérique, scelle la gaine, file l'ensemble en inverse à chaud et traite thermiquement à l'air ambiant.
  • La poudre d'alliage utilisée est obtenue par atomisation dans un gaz neutre, de préférence l'hélium, et éventuellement par atomisation dans l'air dans le cas des alliages de la série 7000, qui sont de préférence des alliages 7090 et 7091.
  • Cette poudre a de préférence une granulométrie inférieure à 400 ¡.Lm de façon à obtenir un demi-produit convenable. Elle est chargée directement dans la gaine à la sortie de l'atomiseur en vrac sans compression préalable de sorte qu'on évite ainsi la phase de compression à froid prévue dans le procédé antérieur. Ceci a pour avantage, tout en simplifiant le procédé, de supprimer les problèmes inhérents à la pollution de la poudre lors de cette opération et de faciliter le dégazage ultérieur. Toutefois, pour certaines poudres de densité faible, obtenues à partir des alliages de la série 7000 atomisés dans l'air, on peut procéder à une précompression à froid de la poudre avant de la charger dans la gaine.
  • La gaine utilisée est en alliage d'aluminium se prêtant bien à la déformation lors de l'opération de filage, et de préférence en A-G3 ou en A-G5. Elle a la forme d'une boîte cylindrique fermée. équipée sur l'un de ses fonds d'un appendice destiné au remplissage et au dégazage ultérieur. Cette gaine a une épaisseur de l'ordre de quelques millimètres qui varie suivant son diamètre.
  • Après chargement, le contenu de la gaine est relié à un dispositif de pompage de gaz par l'intermédiaire de l'appendice et sous son action, on établit et maintient une pression inférieure à la pression atmosphérique et en tout cas inférieure à 0,13 Pa tout en portant la gaine et son contenu à une température comprise entre 350 et 550 °C.
  • Dans ces conditions, le dégazage de l'alliage à haute résistance s'effectue parfaitement sans être entravé par les freinages qui résultaient dans le procédé de l'art antérieur du passage du gaz entre des grains de poudre serrés les uns contre les autres du fait de la compression initiale à froid.
  • La gaine est alors scellée de façon étanche par un moyen adéquat, et soumise directement à une opération de filage en inverse à une température comprise entre 350 et 500 °C.
  • Ainsi, on supprime l'étape de l'art antérieur consistant à comprimer à chaud et à fritter la poudre dans une matrice avant usinage de la gaine et filage.
  • On constate alors de façon surprenante que le demi-produit obtenu est compact et présente un placage régulier continu en contact intime avec la poudre sous-jacente. Mais un tel résultat ne peut être obtenu que par filage en inverse.
  • On sait, en effet, qu'il existe deux types principaux de filage : le filage direct et le filage inverse.
  • - Dans le filage direct, le métal est poussé au moyen d'un pilon le long du conteneur de la presse, au travers d'une filière fixe qui détermine le profil du demi-produit.
  • Si on applique ce type de filage au lopin comprimé à chaud de l'art antérieur, il se produit un frottement important du métal sur la paroi du conteneur, ce qui entraîne l'apparition de criques et de décohésions locales dont on a parlé plus haut. Par contre, si on file l'ensemble gaine- conteneur suivant l'invention, la gaine sert de lubrifiant et diminue les frottements du produit avec le conteneur. Toutefois, cette gaine se déchire et pénètre à l'intérieur de la poudre de sorte que le demi-produit filé obtenu présente un placage discontinu avec des inclusions de gaine dans l'âme ce qui supprime toute protection ultérieure contre l'environnement et empêche l'obtention d'une haute résistance.
  • - Dans le filage inverse, la filière est fixée sur le pilon et le métal file dans un sens opposé à celui de l'avance du pilon.
  • Quand on applique ce type de filage à la poudre gainée, on constate que la densification de la poudre s'effectue correctement, que la gaine ne subit aucune déformation préjudiciable à la bonne étanchéité de la poudre comprimée sous-jacente, c'est-à-dire qu'elle ne se déchire pas, ni ne pénètre à l'intérieur de la poudre compactée mais forme un placage régulier et en contact intime avec toute la périphérie de l'alliage à haute résistance de sorte qu'il en résulte un demi-produit de rectitude convenable épousant parfaitement le profil de la filière utilisée et particulièrement insensible aux agressions de l'environnement. De plus, l'action « lubrifiante de la gaine supprime tout frottement de la poudre avec la filière, de sorte que l'on peut augmenter sensiblement les vitesses de filage habituellement utilisées dans l'art antérieur et atteindre des vitesses supérieures à celles obtenues lors du filage de produits coulés en alliages durs sans risque de décohésion en surface des grains de poudre insuffisamment frittés comme c'était le cas avec les produits obtenus dans l'art antérieur par filage après compression à chaud.
  • Un tel demi-produit composite plaqué se prête alors très bien aux opérations de traitement thermique, de mise en solution à 530 °C pratiquées généralement sur les alliages au lithium et de revenu pendant 6 à 10 heures entre 150 et 200 °C dans des fours à l'air classiques sans qu'il soit nécessaire de prendre des précautions particulières puisque la gaine étanche exerce un rôle protecteur vis-à-vis de l'environnement.
  • Les dessins qui accompagnent la présente demande sont relatifs à des méplats de 50 x 22 mm, filés à partir de poudres d'alliages AI-Li-Cu-Mg-Zr et d'une gaine en A-G3 suivant le procédé de l'invention. Ils montrent sur la figure 1 une coupe transversale et sur la figure 2 une coupe longitudinale du méplat.
  • Sur la figure 1, on peut constater que la gaine (1) est disposée régulièrement tout autour de la partie compactée (2) et ne présente aucune séparation locale. De même, sur la figure 2, on peut également noter, outre la régularité du placage (3) autour de l'âme (4) une parfaite rectitude du profilé.
  • La présente invention trouve son application dans l'obtention de demi-produits ayant une grande résistance mécanique, un allongement convenable et une bonne tenue à l'environnement, caractéristiques qui les rendent particulièrement aptes à des applications dans l'industrie aéronautique.

Claims (16)

1. Procédé d'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés, caractérisé en ce que l'on charge une poudre d'alliage de la série 7000 (alliage AI-Zn-Mg-Cu) dans une gaine en alliage d'aluminium de la série 5000, dégaze la poudre à chaud sous une pression inférieure à la pression atmosphérique, scelle la gaine, file l'ensemble en inverse à chaud et traite thermiquement à l'air ambiant.
2. Procédé d'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés, caractérisé en ce que l'on charge une poudre d'alliage AI-Li dans une gaine en alliage d'aluminium de la série 5000, dégaze la poudre à chaud sous une pression inférieure à la pression atmosphérique, scelle la gaine, file l'ensemble en inverse à chaud et traite thermiquement à l'air ambiant.
3. Procédé selon les revendications 1 et 2, caractérisé en ce que la poudre a une granulométrie inférieure à 400 ).lm.
4. Procédé selon la revendication 1, caractérisé en ce que l'alliage d'aluminium en poudre appartient au groupe constitué par les alliages 7090 et 7091.
5. Procédé selon la revendication 2, caractérisé en ce que l'alliage d'aluminium en poudre contient 2 à 3 % de lithium.
6. Procédé selon la revendication 1, caractérisé en ce que la poudre est obtenue par atomisation dans l'air.
7. Procédé selon la revendication 7, caractérisé en ce que la poudre est précompactée à froid avant chargement dans la gaine.
8. Procédé selon la revendication 2, caractérisé en ce que la poudre est obtenue par atomisation dans un gaz neutre.
9. Procédé selon la revendication 9, caractérisé en ce que le gaz neutre est de l'hélium.
10. Procédé selon les revendications 1 et 2, caractérisé en ce que l'alliage de la gaine appartient au groupe constitué par les A-G3 et les A-G5.
11. Procédé selon les revendications 1 et 2, caractérisé en ce que la poudre est dégazée à une température comprise entre 350 et 550 °C.
12. Procédé selon les revendications 1 et 2, caractérisé en ce que l'on dégaze la poudre sous une pression absolue inférieure à 0,13 Pa.
13. Procédé selon les revendications 1 et 2, caractérisé en ce que l'on file à une température comprise entre 350 et 500 °C.
14. Procédé selon les revendications 1 et 2, caractérisé en ce que l'on file à une vitesse supérieure à celle des produits coulés en alliages durs.
15. Procédé selon la revendication 2, caractérisé en ce que le produit filé est soumis à un traitement de mise en solution vers 530 °C à l'air ambiant.
16. Procédé selon les revendications 1 et 2, caractérisé en ce que le produit filé est soumis à un traitement de revenu entre 150 et 200 °C pendant 6 à 10 heures.
EP84420126A 1983-07-21 1984-07-18 Procédé d'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés Expired EP0133144B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8312381A FR2549493B1 (fr) 1983-07-21 1983-07-21 Procede d'obtention a partir de poudre d'alliage d'aluminium a haute resistance de demi-produits files
FR8312381 1983-07-21

Publications (2)

Publication Number Publication Date
EP0133144A1 EP0133144A1 (fr) 1985-02-13
EP0133144B1 true EP0133144B1 (fr) 1986-11-12

Family

ID=9291139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84420126A Expired EP0133144B1 (fr) 1983-07-21 1984-07-18 Procédé d'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés

Country Status (4)

Country Link
US (1) US4575450A (fr)
EP (1) EP0133144B1 (fr)
DE (1) DE3461256D1 (fr)
FR (1) FR2549493B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749926B1 (en) 1999-07-23 2004-06-15 Nippon Sheet Glass Company, Limited Curved glass sheet for vehicle window

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3481322D1 (de) * 1983-12-02 1990-03-15 Sumitomo Electric Industries Aluminiumlegierungen und verfahren zu ihrer herstellung.
CH675089A5 (fr) * 1988-02-08 1990-08-31 Asea Brown Boveri
US5561829A (en) * 1993-07-22 1996-10-01 Aluminum Company Of America Method of producing structural metal matrix composite products from a blend of powders
DE69906369T2 (de) 1998-12-03 2003-08-21 Nippon Sheet Glass Co Ltd Verfahren und vorrichtung zum herstellen einer gebogenen glasplatte
US7625520B2 (en) * 2003-11-18 2009-12-01 Dwa Technologies, Inc. Manufacturing method for high yield rate of metal matrix composite sheet production
JP5059512B2 (ja) 2007-02-28 2012-10-24 株式会社神戸製鋼所 高強度、高延性Al合金およびその製造方法
US9044823B2 (en) * 2012-06-25 2015-06-02 Kurimoto, Ltd. Long light metal billet and method for manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1155274A (fr) * 1955-08-18 1958-04-24 Ver Leichtmetallwerke Gmbh Procédé d'application d'une couche métallique superficielle sur des pièces en aluminium fritté
GB879590A (en) * 1959-02-27 1961-10-11 Chesterfield Tube Company Ltd Improvements relating to the forming of sintered articles
US3664889A (en) * 1969-05-26 1972-05-23 Lockheed Aircraft Corp TERNARY, QUATERNARY AND MORE COMPLEX ALLOYS OF Be-Al
US3664008A (en) * 1969-06-12 1972-05-23 Federal Mogul Corp Method of producing elongated highly densified powdered metal articles
US3954458A (en) * 1973-11-12 1976-05-04 Kaiser Aluminum & Chemical Corporation Degassing powder metallurgical products
CH599348A5 (fr) * 1975-10-20 1978-05-31 Bbc Brown Boveri & Cie
FR2456783A1 (fr) * 1979-05-16 1980-12-12 Cegedur Corps creux composite et procede de fabrication
US4460541A (en) * 1980-01-16 1984-07-17 Reynolds Metals Company Aluminum powder metallurgy
DE3167605D1 (en) * 1980-07-31 1985-01-17 Mpd Technology Dispersion-strengthened aluminium alloys
US4464199A (en) * 1981-11-20 1984-08-07 Aluminum Company Of America Aluminum powder alloy product for high temperature application
US4379719A (en) * 1981-11-20 1983-04-12 Aluminum Company Of America Aluminum powder alloy product for high temperature application
CA1230761A (fr) * 1982-07-12 1987-12-29 Fumio Kiyota Poudre d'alliage d'aluminium a haute resistance a la chaleur et a l'usure, et element connexe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749926B1 (en) 1999-07-23 2004-06-15 Nippon Sheet Glass Company, Limited Curved glass sheet for vehicle window

Also Published As

Publication number Publication date
FR2549493A1 (fr) 1985-01-25
DE3461256D1 (en) 1987-01-02
FR2549493B1 (fr) 1987-07-31
EP0133144A1 (fr) 1985-02-13
US4575450A (en) 1986-03-11

Similar Documents

Publication Publication Date Title
Gronostajski et al. Direct recycling of aluminium chips into extruded products
CA1340873C (fr) Procede pour reduire la despersion des valeurs des caracteristiques mecaniques d'alliages de tungstene-nickel-fer
US4099314A (en) Method of producing hollow bodies in aluminum-silicon alloys by powder-extrusion
CA2023837C (fr) Alliages de magnesium a haute resistance mecanique et procede d'obtention par solidification rapide
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
FR2532867A1 (fr) Procede de fabrication de produits a base d'alliage de poudre d'aluminium presentant des proprietes de resistance amelioree
FR2573777A1 (fr) Alliage d'aluminium resistant a la chaleur, a haute resistance, et procede pour fabriquer un element porteur constitue de cet alliage
EP0133144B1 (fr) Procédé d'obtention à partir de poudre d'alliage d'aluminium à haute résistance de demi-produits filés
CH626406A5 (fr)
US5368629A (en) Rotor for oil pump made of aluminum alloy and method of manufacturing the same
FR2489371A1 (fr) Alliage de cuivre durci par dispersion d'alumine, poudre d'alliage et son procede de fabrication
FR2486601A1 (fr) Materiaux pour paliers et leurs procedes de fabrication
JPS6121295B2 (fr)
FR2581658A1 (fr) Nouveaux alliages dotes de performances electriques et mecaniques elevees, leur fabrication et leurs applications en particulier dans les domaines electrique, electronique et connectique
JP4397425B1 (ja) Ti粒子分散マグネシウム基複合材料の製造方法
EP1702082B1 (fr) Procede de fabrication de segments diamantes pour des outils de coupe
EP0019569B1 (fr) Corps creux composite et procédé de fabrication
RU2015851C1 (ru) Способ получения порошкового сплава на основе меди
EP0119939B1 (fr) Procédé de frittage sous pression de poudres d'alliages d'aluminium
FR2672619A1 (fr) Materiau composite a base de tungstene et procede pour sa preparation.
FR2609916A1 (fr) Procede de forgeage sous enveloppe et par matricage a chaud d'un materiau peu ductile et tres resistant en etat superplastique
FR2528743A1 (fr) Procede et dispositif de fabrication de pieces minces de forme complexe par compaction isostatique a chaud
FR2692184A1 (fr) Procédé de fabrication d'un alliage métallique en poudre.
EP0142405A1 (fr) Pièce mécanique en poudre d'alliage d'aluminium et procédé d'obtention
JPS5845348A (ja) アルミニウム合金製摺動部材の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI

17P Request for examination filed

Effective date: 19850308

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REF Corresponds to:

Ref document number: 3461256

Country of ref document: DE

Date of ref document: 19870102

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VEREINIGTE ALUMINIUM-WERKE AG, BERLIN UND BONN

Effective date: 19870811

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
27W Patent revoked

Effective date: 19890213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL