EP0132667B1 - Thermisch hochbeanspruchte, gekühlte Turbinenschaufel - Google Patents

Thermisch hochbeanspruchte, gekühlte Turbinenschaufel Download PDF

Info

Publication number
EP0132667B1
EP0132667B1 EP84107962A EP84107962A EP0132667B1 EP 0132667 B1 EP0132667 B1 EP 0132667B1 EP 84107962 A EP84107962 A EP 84107962A EP 84107962 A EP84107962 A EP 84107962A EP 0132667 B1 EP0132667 B1 EP 0132667B1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
blade according
ceramic
metal felt
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107962A
Other languages
English (en)
French (fr)
Other versions
EP0132667A1 (de
Inventor
Klaus Dr.Rer.Nat. Dipl.-Chem. Schweitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0132667A1 publication Critical patent/EP0132667A1/de
Application granted granted Critical
Publication of EP0132667B1 publication Critical patent/EP0132667B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/907Porous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12444Embodying fibers interengaged or between layers [e.g., paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the invention relates to a thermally highly stressed cooled turbine blade, with a supporting metallic core, which has integrated cooling air guide grooves on its surface and with a heat-insulating jacket.
  • the object of the invention is to provide a thermally highly stressed cooled turbine blade of the type mentioned, which can be cooled particularly well and effectively in operation with a simple structure.
  • the jacket consists of a layer composite which is applied to the outside of a ceramic thermal insulation layer from a metal felt which is firmly connected to the webs of the cooling air guide grooves and covers the cooling air guide grooves.
  • the cooling air guide grooves are expediently already prefabricated during the investment casting process of the metallic support core or subsequently incorporated by milling, spark erosion or electrochemical removal.
  • a heat-insulating component from a layer composite, which consists of a metal felt layer, a ceramic cover layer and an intermediate metal layer connecting the other two.
  • the metal felt layer is supposed to compensate for the different thermal expansions of the ceramic cover layer and the metallic substrate by their elasticity.
  • the metal felt layer is not exposed to cooling air.
  • the metal felt is advantageously soldered, welded or glued to the webs of the cooling air guide grooves.
  • the support core webs and outer jacket are cast in one piece and are therefore comparatively complex to manufacture.
  • the metal felt suitably consists of a high-temperature and corrosion-resistant alloy, in particular based on nickel and / or cobalt (for example NiCr, NiCrAI, Hastelloy X, NiCrAIY alloy, CoCrAIY alloy).
  • a high-temperature and corrosion-resistant alloy in particular based on nickel and / or cobalt (for example NiCr, NiCrAI, Hastelloy X, NiCrAIY alloy, CoCrAIY alloy).
  • the metal felt serves as an elastic carrier material for a ceramic thermal barrier coating, which can be applied to the felt in various ways. For a particularly good hold, it is provided that the metal felt is partially infiltrated with ceramic from the outside and is coated on the outside with a compact ceramic layer which forms the actual thermal insulation layer.
  • the ceramic layer is expediently infiltrated and applied by thermal spraying or by a slip sintering process.
  • the layer can also be infiltrated and applied by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the ceramic layer expediently consists of partially or fully stabilized zirconium oxide. It can be applied to the metal felt by one of the aforementioned methods, but also by a combination of several of the aforementioned methods.
  • the outer surface of the actual ceramic thermal barrier coating is expediently polished and / or aerodynamically shaped in order to better serve turbine blade purposes.
  • the invention therefore creates a new cooling concept for a thermally highly stressed cooled turbine blade: the cooling configuration of the effusion cooling is combined with a thermal barrier coating, which means that the air effusion associated with high cooling air consumption can be reduced to reduce the heat transfer. Instead, the thermal insulation of a ceramic layer is used. The heat that still flows through the thermal insulation layer is optimally dissipated through the metal felt, which has a very large surface area, namely the heat is removed directly from the thermal insulation layer, so that the load-bearing metal support core of the highly stressed turbine blade remains comparatively cold. In comparison to effusion cooling, cooling air can be saved and the thermodynamic efficiency increased by the invention with the same cooling effectiveness.
  • the heat-insulating ceramic layer can be made much denser by the metal felt intermediate layer than when directly applied to the compact metallic base body, so that very good thermal insulation is possible.
  • the interior of a turbine blade 1 is shown schematically in FIG. 1.
  • the turbine blade 1 is composed of a metallic support core 2, a metal felt 4 surrounding the metallic support core 2 and a ceramic thermal insulation layer 6 surrounding the outside of the metal felt 4 in a composite construction.
  • the metal support core is a nickel-based alloy and has cooling air guide grooves 3 with webs 5 on its surface, to which the metal felt 4 is soldered, welded or glued.
  • the metal felt itself is based on NiCrAI, is provided as an elastic carrier material for the outer thermal insulation layer 6 and offers a large surface area for optimal dissipation of the heat flowing through the thermal insulation layer 6.
  • the outer heat insulation layer 6 is partially or fully stabilized zirconium oxide, with a good anchoring of the outer heat insulation layer 6 with the metal felt 4 by partial infiltration of the felt, preferably by chemical vapor deposition (CVD).
  • the infiltration layer of the felt is clearly shown in detail A in FIG. 2.
  • the compact zirconium oxide layer is deposited on it, which takes over the actual heat-insulating function.
  • the advantage of the invention is that the heat does not have to flow through the entire component during operation, but is supplied to the cooling medium in the shortest possible way, the heat flow being kept low overall due to the low thermal conductivity or ceramic layer, so that despite an increased gas temperature, a lower one Cooling air requirement is necessary.
  • the easily deformable metal felt 4 which is preferably a NiCrAI felt, which is made of heat-resistant, e.g. Nickel-based alloy is soldered onto the metallic support core, which allows the application of a very dense and comparatively thick ceramic layer (compared to the application on solid metallic substrates), since the differences in the thermal expansion between metal and ceramic due to the easy deformability of the metal felt do not lead to the build-up of leads to impermissible high voltages for the ceramic.
  • a turbine blade trailing edge is shown in detail B1, which is comparatively pointed and contains the ends of the enclosed metal felt 4.
  • the detail B2 illustrated in FIG. 3 is characterized by a different drive edge construction with a larger rounding.

Description

  • Die Erfindung betrifft eine thermisch hochbeanspruchte gekühlte Turbinenschaufel, mit einem tragenden metallischen Kern, der an seiner Oberfläche integrierte Kühlluftführungsnuten aufweist und mit einem wärmedämmenden Mantel.
  • Da die Prozesstemperaturen von thermischen Kraftmaschinen in jüngerer Zeit immer höher geschraubt werden, andererseits aber keine Materialien gefunden werden konnten, die bei den extrem hohen Prozessteniperaturen genügend mechanische Festigkeit bzw. Dauerhaftigkeit aufweisen, geht man heute davon aus, dass Bauteile, die extrem hohen Temperaturen ausgesetzt sind, wie z.B. Turbinenschaufeln von Gasturbinen, in jedem Fall mittels einer besonders vorzusehenden Kühlvorrichtung auf einem zulässigen Temperaturniveau gehalten werden müssen.
  • Neben vielen anderen Kühlvorrichtungen sind Entwicklungen bekannt, wonach thermisch hochbeansprüchte Turbinenschaufeln mit porösen Oberflächen versehen werden, durch die aus einem inneren Hohlraum heraus ein Kühlmedium nach aussen strömt und somit eine kühlende Grenzschicht an der Oberfläche der Turbinenschaufel ausbildet. Ein derartiges Kühlprinzip ist als sogenannte Effusionskühlung bekannt (vergleiche DE-A-25 03 285). Nachteilig ist hierbei der hohe Durchströmungswiderstand der Kühlluft sowie der grosse Kühlluftverbrauch für eine effektive Kühlung der äusseren Manteloberfläche.
  • Aufgabe der Erfindung ist die Schaffung einer thermisch hochbeanspruchten gekühlten Turbinenschaufel der eingangs genannten Art, die bei einfachem Aufbau im Betrieb besonders gut und effektiv gekühlt werden kann.
  • Gelöst wird die der Erfindung zugrunde liegende Aufgabe dadurch, dass der Mantel aus einem Schichtverbund, der aus einem fest mit den Stegen der Kühlluftführungsnuten verbundenen und die Kühlluftführungsnuten abdeckenden Metallfilz auf den aussenseitig eine keramische Wärmedämmschicht aufgebracht ist, besteht. Die Kühlluftführungsnuten sind zweckmässigerweise bereits beim Feingussverfahren des metallischen Stützkerns vorgefertigt oder nachträglich durch Fräsen, Funkenerodieren oder elektrochemisches Abtragen eingearbeitet.
  • Aus der GB-A-2054 054 ist es zwar bekannt, ein wärmedämmendes Bauteil aus einem Schichtverbund aufzubauen, der aus einer Metallfilzschicht, einer keramsichen Deckschicht und einer dazwischen liegenden, die beiden anderen verbindenden Metällschicht, besteht.
  • Die Metallfilzschicht soll die unterschiedlichen Wärmedehnungen von keramischer Deckschicht und metallischem Untergrund durch ihre Elastizität ausgleichen. Eine Beaufschlagung der Metallfilzschicht mit Kühlluft findet dabei nicht statt.
  • In weiterer Ausbildung der Erfindung ist der Metallfilz vorteilhafterweise auf die Stege der Kühlluftführungsnuten aufgelötet, geschweisst oder geklebt. Nach dem Stand der Technik gemäss DE-A-25 03 285 sind Stützkernstege und Aussenmantel einstückig gegossen und mithin vergleichsweise aufwendig in der Fertigung.
  • Der Metallfilz besteht zweckmässigerweise aus einer hochtemperatur- und korrosionsbeständigen Legierung, insbesondere auf Nickel-- und/ oder Kobaltbasis (beispielsweise NiCr, NiCrAI, Hastelloy X, NiCrAIY-Legierung, CoCrAIY-Legierung).
  • Der Metallfilz dient als elastisches Trägermaterial für eine keramische Wärmedämmschicht, die auf verschiedene Weise auf den Filz aufgebracht werden kann. Für einen besonders guten Halt ist vorgesehen, dass der Metallfilz von aussen teilweise mit Keramik infiltriert und aussen mit einer kompakten Keramikschicht überzogen ist, die die eigentliche Wärmedämmschicht bildet.
  • Die Infiltration und Aufbringung der Keramikschicht erfolgt zweckmässigerweise durch thermisches Spritzen oder durch ein Schlicker-Sinterverfahren.
  • Auch kann die Infiltration und Aufbringung der Schicht durch chemische Gasphasenabscheidung (CVD) erfolgen.
  • Zweckmässigerweise besteht die Keramikschicht aus teil- oder vollstabilisiertem Zirkonoxid. Die Aufbringung auf den Metallfilz kann durch eines der vorgenannten, aber auch durch Kombination von mehreren der vorgenannten Verfahren erfolgen.
  • Die äussere Oberfläche der eigentlichen keramischen Wärmedämmschicht ist zweckmässigerweise poliert und/oder aerodynamisch geformt, um Turbinenschaufelzwecken besser zu dienen.
  • Durch die Erfindung wird mithin eine neues Kühlungskonzept für eine thermisch hochbeanspruchte gekühlte Turbinenschaufel geschaffen: es wird die Kühlkonfiguration der Effusionskühlung mit einer Wärmedämmschicht kombiniert, wodurch auf die mit grossem Kühlluftverbrauch verbundene Lufteffusion zur Verminderung des Wärmeüberganges verzeichtet werden kann. Stattdessen wird die Wärmedämmung einer Keramikschicht ausgenutzt. Die noch durch die Wärmedämmschicht hindurchfliessende Wärme wird durch den Metallfilz, der eine sehr grosse Oberfläche besitzt, optimal abgeführt, und zwar wird die Wärme der Wärmedämmschicht direkt entzogen, so dass der die Belastung tragende metallische Stützkern der hochbeanspruchten Turbinenschaufel vergleichsweise kalt bleibt. Im Vergleich zur Effusionskühlung kann durch die Erfindung bei gleicher Kühlungseffektivität Kühlluft eingespart und der thermodynamische Wirkungsgrad gesteigert werden. Die wärmedämmende Keramikschicht kann durch die Metallfilz-Zwischenschicht wesentlich dichter als bei direkter Aufbringung auf den kompakten metallischen Grundkörper hergestellt werden, so dass eine sehr gute Wärmedämmung möglich ist.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung näher erläutert; es zeigen:
    • Fig. 1 einen schematischen Querschnitt durch eine Turbinenschaufel,
    • Fig. 2 die Einzelheit A der Fig. 1 in grösserer schematischer Darstellung, und
    • Fig. 3 den Hinterkanten-Querschnitt der Turbinenschaufel in anderer Ausführung.
  • In Fig. 1 ist schematisch das Innere einer Turbinenschaufel 1 gezeigt. Die Turbinenschaufel 1 setzt sich aus einem metallischen Stützkern 2, einem den metallischen Stützkern 2 umschliessenden Metallfilz 4 und einer aussenseitig den Metallfilz 4 umschliessenden keramischen Wärmedämmschicht 6 in einer Verbundbauweise zusammen.
  • Der metallene Stützkern ist eine Nickelbasislegierung und besitzt an seiner Oberfläche eingearbeitete Kühlluftführungsnuten 3 mit Stegen 5, an denen der Metallfilz 4 aufgelötet, geschweisst oder angeklebt ist.
  • Der Metallfilz selbst ist auf NiCrAI-Basis aufgebaut, ist als elastisches Trägermaterial für die äussere Wärmedämmschicht 6 vorgesehen und bietet eine grosse Oberfläche zur optimalen Abführung der durch die Wärmedämmschicht 6 hindurchfliessenden Wärme.
  • Die äussere Wärmedämmschicht 6 ist teil- oder vollstabilisiertes Zirkonoxid, wobei eine gute Verankerung der äusseren Wärmedämmschicht 6 mit dem Metallfilz 4 durch Teilinfiltration des Filzes erzielt wird, und zwar vorzugsweise durch chemische Gasphasenabscheidung (CVD). Die Infiltrationsschicht des Filzes ist deutlich in der Einzelheit A der Fig. 2 gezeigt. Auf ihr ist die kompakte Zirkonoxidschicht abgeschieden, die die eigentliche wärmedämmende Funktion übernimmt.
  • Der Vorteil der Erfindung liegt darin, dass die Wärme im Betrieb nicht durch das gesamte Bauteil fliessen muss, sondern auf kürzestem Wege dem Kühlmedium zugeführt wird, wobei der Wärmefluss durch die niedrige Wärmeleitfähigkeit oder Keramikschicht insgesamt niedrig gehalten wird, so dass trotz gesteigerter Gastemperatur ein geringer Kühlluftbedarf notwendig ist.
  • Der leicht verformbare Metallfilz 4, der bevorzugt ein NiCrAI-Filz ist, der aus warmfester, z.B. Nickelbasislegierung auf den metallischen Stützkern aufgelötet ist, gestattet die Aufbringung einer sehr dichten und vergleichsweise dicken Keramikschicht (im Vergleich zur Aufbringung auf massive metallische Substrate), da die Unterschiede in der thermischen Dehnung zwischen Metall und Keramik durch die leichte Deformierbarkeit des Metallfilzes nicht zum Aufbau von für die Keramik unzulässigen hohen Spannungen führt.
  • In Fig. 1 ist in der Einzelheit B1 eine Turbinenschaufelhinterkante gezeigt, die vergleichsweise spitz ausgebildet ist und die Enden des eingeschlossenen Metallfilzes 4 enthält.
  • Die in Fig. 3 veranschaulichte Einzelheit B2 kennzeichnet sich durch eine andere Austriebskantenkonstruktion mit grösserer Rundung.

Claims (10)

1. Thermisch hochbeanspruchte gekühlte Turbinenschaufel (1 ), mit einem tragenden metallischen Kern (2), der an seiner Oberfläche integrierte Kühlluftführungsnuten (3) aufweist und mit einem wärmedämmenden Mantel, dadurch gekennzeichnet, dass der Mantel aus einem Schichtverbund, der aus einem fest mit den Stegen (5) der Kühlluftführungsnuten (3) verbundenen und die Kühlluftführungsnuten (3) abdekkenden Metallfilz (4) auf den aussenseitig eine keramische Wärmedämmschicht (6) aufgebracht ist, besteht.
2. Turbinenschaufel nach Anspruch 1, dadurch gekennzeichnet, dass der Metallfilz (4) auf die Stege (5) aufgelötet, geschweisst oder geklebt ist.
3. Turbinenschaufel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Metallfilz (4) aus einer hochtemperatur- und korrosionsbeständigen Legierung besteht.
4. Turbinenschaufel nach Anspruch 3, dadurch gekennzeichnet, dass der Metallfilz (4) eine Legierung auf Nickel- und/oder Kobaltbasis ist.
5. Turbinenschaufel nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass der Metallfilz (4) von aussen teilweise mit Keramik (7) infiltriert und aussen mit einer kompakten Keramikschicht überzogen ist, die die eigentliche Wärmedämmschicht (6) bildet.
6. Turbinenschaufel nach Anspruch 5, dadurch gekennzeichnet, dass die Infiltration und Aufbringung der Keramikschicht durch thermisches Spritzen erfolgt.
7. Turbinenschaufel nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Infiltration und Aufbringung der Keramikschicht durch ein Schlicker-Sinterverfahren erfolgt.
8. Turbinenschaufel nach den Ansprüchen 5 bis 7, dadurch gekennzeichnet, dass die Infiltration und Aufbringung der Keramikschicht durch chemische Gasphasenabscheidung erfolgt.
9. Turbinenschaufel nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die Wärmedämmschicht (6) aussen poliert und/oder aerodynamisch geformt ist.
10. Turbinenschaufel nach den Ansprüchen 5 bis 9, dadurch gekennzeichnet, dass die Keramikschicht aus teil- oder vollstabilisiertem Zirkonoxid besteht.
EP84107962A 1983-07-28 1984-07-07 Thermisch hochbeanspruchte, gekühlte Turbinenschaufel Expired EP0132667B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3327218 1983-07-28
DE19833327218 DE3327218A1 (de) 1983-07-28 1983-07-28 Thermisch hochbeanspruchtes, gekuehltes bauteil, insbesondere turbinenschaufel

Publications (2)

Publication Number Publication Date
EP0132667A1 EP0132667A1 (de) 1985-02-13
EP0132667B1 true EP0132667B1 (de) 1987-10-28

Family

ID=6205134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107962A Expired EP0132667B1 (de) 1983-07-28 1984-07-07 Thermisch hochbeanspruchte, gekühlte Turbinenschaufel

Country Status (4)

Country Link
US (1) US4629397A (de)
EP (1) EP0132667B1 (de)
JP (1) JPS6045703A (de)
DE (2) DE3327218A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076157A2 (de) 1999-08-09 2001-02-14 ALSTOM POWER (Schweiz) AG Reibungskomponente einer thermischen Turbomaschine
DE10024302A1 (de) * 2000-05-17 2001-11-22 Alstom Power Nv Verfahren zur Herstellung eines thermisch belasteten Gussteils
US7141128B2 (en) 2002-08-16 2006-11-28 Alstom Technology Ltd Intermetallic material and use of this material

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3514379A1 (de) * 1985-04-20 1986-10-23 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Waermetauscher
JPS6217307A (ja) * 1985-07-17 1987-01-26 Natl Res Inst For Metals 空冷翼
US4838030A (en) * 1987-08-06 1989-06-13 Avco Corporation Combustion chamber liner having failure activated cooling and dectection system
US4838031A (en) * 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
JP2753235B2 (ja) * 1987-10-23 1998-05-18 財団法人電力中央研究所 遮熱緩衝層製造方法
US4790721A (en) * 1988-04-25 1988-12-13 Rockwell International Corporation Blade assembly
USRE34173E (en) * 1988-10-11 1993-02-02 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
US4904542A (en) * 1988-10-11 1990-02-27 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
US5102305A (en) * 1988-12-13 1992-04-07 Allied-Signal Inc. Turbomachine having a unitary ceramic rotating assembly
US5139716A (en) * 1990-02-20 1992-08-18 Loral Aerospace Corp. Method of fabricating coolable ceramic structures
US5367873A (en) * 1991-06-24 1994-11-29 United Technologies Corporation One-piece flameholder
DE4137373C1 (de) * 1991-11-13 1993-06-17 Siemens Ag, 8000 Muenchen, De
US5413463A (en) * 1991-12-30 1995-05-09 General Electric Company Turbulated cooling passages in gas turbine buckets
US5295530A (en) * 1992-02-18 1994-03-22 General Motors Corporation Single-cast, high-temperature, thin wall structures and methods of making the same
US5279111A (en) * 1992-08-27 1994-01-18 Inco Limited Gas turbine cooling
US5493855A (en) * 1992-12-17 1996-02-27 Alfred E. Tisch Turbine having suspended rotor blades
DE4303135C2 (de) * 1993-02-04 1997-06-05 Mtu Muenchen Gmbh Wärmedämmschicht aus Keramik auf Metallbauteilen und Verfahren zu ihrer Herstellung
US5454426A (en) * 1993-09-20 1995-10-03 Moseley; Thomas S. Thermal sweep insulation system for minimizing entropy increase of an associated adiabatic enthalpizer
US5626462A (en) * 1995-01-03 1997-05-06 General Electric Company Double-wall airfoil
UA23886C2 (uk) * 1996-03-12 2002-04-15 Юнайтед Технолоджіз Корп. Пратт Енд Уітні Спосіб виготовлення пустотілих виробів складної форми
DE19627860C1 (de) * 1996-07-11 1998-01-08 Mtu Muenchen Gmbh Schaufel für Strömungsmaschine mit metallischer Deckschicht
WO1998031922A1 (de) * 1997-01-14 1998-07-23 Siemens Aktiengesellschaft Turbinenschaufel für eine strömungskraftmaschine, insbesondere eine gasturbine
DE19750517A1 (de) * 1997-11-14 1999-05-20 Asea Brown Boveri Hitzeschild
DE19801407C2 (de) * 1998-01-16 1999-12-02 Daimler Chrysler Ag Brennkammer für Hochleistungstriebwerke und Düsen
DE19848104A1 (de) * 1998-10-19 2000-04-20 Asea Brown Boveri Turbinenschaufel
DE19928871A1 (de) * 1999-06-24 2000-12-28 Abb Research Ltd Turbinenschaufel
DE19959598A1 (de) * 1999-12-10 2001-06-13 Rolls Royce Deutschland Verfahren zum Herstellen einer Schaufel einer Strömungsmaschine
US6514046B1 (en) * 2000-09-29 2003-02-04 Siemens Westinghouse Power Corporation Ceramic composite vane with metallic substructure
WO2002027145A2 (en) * 2000-09-29 2002-04-04 Siemens Westinghouse Power Corporation Vane assembly for a turbine and combustion turbine with this vane assembly
US6465110B1 (en) 2000-10-10 2002-10-15 Material Sciences Corporation Metal felt laminate structures
GB0117110D0 (en) * 2001-07-13 2001-09-05 Siemens Ag Coolable segment for a turbomachinery and combustion turbine
US6602053B2 (en) * 2001-08-02 2003-08-05 Siemens Westinghouse Power Corporation Cooling structure and method of manufacturing the same
US6565312B1 (en) * 2001-12-19 2003-05-20 The Boeing Company Fluid-cooled turbine blades
US6699015B2 (en) 2002-02-19 2004-03-02 The Boeing Company Blades having coolant channels lined with a shape memory alloy and an associated fabrication method
US6726444B2 (en) * 2002-03-18 2004-04-27 General Electric Company Hybrid high temperature articles and method of making
US6709230B2 (en) * 2002-05-31 2004-03-23 Siemens Westinghouse Power Corporation Ceramic matrix composite gas turbine vane
US6648597B1 (en) 2002-05-31 2003-11-18 Siemens Westinghouse Power Corporation Ceramic matrix composite turbine vane
US9068464B2 (en) * 2002-09-17 2015-06-30 Siemens Energy, Inc. Method of joining ceramic parts and articles so formed
US7093359B2 (en) 2002-09-17 2006-08-22 Siemens Westinghouse Power Corporation Composite structure formed by CMC-on-insulation process
US7275720B2 (en) * 2003-06-09 2007-10-02 The Boeing Company Actively cooled ceramic thermal protection system
DE10346366A1 (de) * 2003-09-29 2005-04-28 Rolls Royce Deutschland Turbinenschaufel für ein Flugzeugtriebwerk und Gießform zu deren Herstellung
US7066717B2 (en) * 2004-04-22 2006-06-27 Siemens Power Generation, Inc. Ceramic matrix composite airfoil trailing edge arrangement
DE102004023623A1 (de) * 2004-05-10 2005-12-01 Alstom Technology Ltd Strömungsmaschinenschaufel
US7435058B2 (en) * 2005-01-18 2008-10-14 Siemens Power Generation, Inc. Ceramic matrix composite vane with chordwise stiffener
US7500828B2 (en) * 2005-05-05 2009-03-10 Florida Turbine Technologies, Inc. Airfoil having porous metal filled cavities
US7422417B2 (en) * 2005-05-05 2008-09-09 Florida Turbine Technologies, Inc. Airfoil with a porous fiber metal layer
US7641440B2 (en) * 2006-08-31 2010-01-05 Siemens Energy, Inc. Cooling arrangement for CMC components with thermally conductive layer
US7704049B1 (en) 2006-12-08 2010-04-27 Florida Turbine Technologies, Inc. TBC attachment construction for a cooled turbine airfoil and method of forming a TBC covered airfoil
US20080199661A1 (en) * 2007-02-15 2008-08-21 Siemens Power Generation, Inc. Thermally insulated CMC structure with internal cooling
DE102008058142A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen und/oder Reparieren eines Rotors einer Strömungsmaschine und Rotor hierzu
DE102008058141A1 (de) * 2008-11-20 2010-05-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer Schaufel für einen Rotor einer Strömungsmaschine
US8956105B2 (en) * 2008-12-31 2015-02-17 Rolls-Royce North American Technologies, Inc. Turbine vane for gas turbine engine
US8246291B2 (en) * 2009-05-21 2012-08-21 Rolls-Royce Corporation Thermal system for a working member of a power plant
US8256088B2 (en) * 2009-08-24 2012-09-04 Siemens Energy, Inc. Joining mechanism with stem tension and interlocked compression ring
US9528382B2 (en) * 2009-11-10 2016-12-27 General Electric Company Airfoil heat shield
US8894363B2 (en) 2011-02-09 2014-11-25 Siemens Energy, Inc. Cooling module design and method for cooling components of a gas turbine system
US9334741B2 (en) 2010-04-22 2016-05-10 Siemens Energy, Inc. Discreetly defined porous wall structure for transpirational cooling
US8739404B2 (en) 2010-11-23 2014-06-03 General Electric Company Turbine components with cooling features and methods of manufacturing the same
US8793871B2 (en) 2011-03-17 2014-08-05 Siemens Energy, Inc. Process for making a wall with a porous element for component cooling
US20130094971A1 (en) * 2011-10-12 2013-04-18 General Electric Company Hot gas path component for turbine system
US9034465B2 (en) * 2012-06-08 2015-05-19 United Technologies Corporation Thermally insulative attachment
US9003657B2 (en) 2012-12-18 2015-04-14 General Electric Company Components with porous metal cooling and methods of manufacture
US9617857B2 (en) * 2013-02-23 2017-04-11 Rolls-Royce Corporation Gas turbine engine component
WO2015041963A1 (en) * 2013-09-23 2015-03-26 United Technologies Corporation Cmc airfoil with sharp trailing edge and method of making same
US10539041B2 (en) * 2013-10-22 2020-01-21 General Electric Company Cooled article and method of forming a cooled article
DE102013223585A1 (de) 2013-11-19 2015-06-03 MTU Aero Engines AG Einlaufbelag auf Basis von Metallfasern
US10934854B2 (en) * 2018-09-11 2021-03-02 General Electric Company CMC component cooling cavities
CN113287251A (zh) * 2019-01-10 2021-08-20 三菱重工发动机和增压器株式会社 马达和逆变器一体型旋转电机
FR3105649B1 (fr) * 2019-12-19 2021-11-26 Valeo Equip Electr Moteur Machine électrique tournante refroidie

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB656503A (en) * 1947-10-27 1951-08-22 Snecma Improvements in or relating to members to be used in heat engines
GB778672A (en) * 1954-10-18 1957-07-10 Parsons & Marine Eng Turbine Improvements in and relating to the cooling of bodies subject to a hot gas stream, for example turbine blades
GB783710A (en) * 1954-11-25 1957-09-25 Power Jets Res & Dev Ltd Improvements in turbine blades and in the cooling thereof
US3011761A (en) * 1954-11-25 1961-12-05 Power Jets Res & Dev Ltd Turbine blades
US3032316A (en) * 1958-10-09 1962-05-01 Bruce E Kramer Jet turbine buckets and method of making the same
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
US3114612A (en) * 1959-05-15 1963-12-17 Eugene W Friedrich Composite structure
US3215511A (en) * 1962-03-30 1965-11-02 Union Carbide Corp Gas turbine nozzle vane and like articles
US3647316A (en) * 1970-04-28 1972-03-07 Curtiss Wright Corp Variable permeability and oxidation-resistant airfoil
US4148350A (en) * 1975-01-28 1979-04-10 Mtu-Motoren Und Turbinen-Union Munchen Gmbh Method for manufacturing a thermally high-stressed cooled component
DE2503285C2 (de) * 1975-01-28 1984-08-30 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur Herstellung eines einstückigen thermisch hochbeanspruchten gekühlten Bauteils, insbesondere einer Schaufel für Turbinentriebwerke
US4199937A (en) * 1975-03-19 1980-04-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat exchanger and method of making
US4042162A (en) * 1975-07-11 1977-08-16 General Motors Corporation Airfoil fabrication
FR2337040A1 (fr) * 1975-12-31 1977-07-29 Poudres & Explosifs Ste Nale Perfectionnements aux panneaux metalliques monocouches a fibres a hautes proprietes mecaniques et a leurs procedes de fabrication
US4075364A (en) * 1976-04-15 1978-02-21 Brunswick Corporation Porous ceramic seals and method of making same
US4338380A (en) * 1976-04-05 1982-07-06 Brunswick Corporation Method of attaching ceramics to metals for high temperature operation and laminated composite
US4135851A (en) * 1977-05-27 1979-01-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite seal for turbomachinery
DE2834864C3 (de) * 1978-08-09 1981-11-19 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Laufschaufel für eine Gasturbine
DE2834843A1 (de) * 1978-08-09 1980-06-26 Motoren Turbinen Union Zusammengesetzte keramik-gasturbinenschaufel
US4273824A (en) * 1979-05-11 1981-06-16 United Technologies Corporation Ceramic faced structures and methods for manufacture thereof
US4289446A (en) * 1979-06-27 1981-09-15 United Technologies Corporation Ceramic faced outer air seal for gas turbine engines
FR2463849A1 (fr) * 1979-08-23 1981-02-27 Onera (Off Nat Aerospatiale) Perfectionnements apportes aux aubes tournantes de turbines a gaz, et aux turbines a gaz equipees de ces aubes
US4336276A (en) * 1980-03-30 1982-06-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fully plasma-sprayed compliant backed ceramic turbine seal
DE3151413A1 (de) * 1981-12-24 1983-07-14 MTU Motoren- und Turbinen-Union München GmbH, 8000 München "schaufel einer stroemungsmaschine, insbesondere gasturbine"
DE3235230A1 (de) * 1982-09-23 1984-03-29 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gasturbinenschaufel mit metallkern und keramikblatt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. TRAUPEL "Thermische Turbomaschinen", zweiter Band, 1982, Springer Verlag Berlin, Heidelberg, New-York, Seite 360, Abb. 19.10.7 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076157A2 (de) 1999-08-09 2001-02-14 ALSTOM POWER (Schweiz) AG Reibungskomponente einer thermischen Turbomaschine
DE19937577A1 (de) * 1999-08-09 2001-02-15 Abb Alstom Power Ch Ag Reibungsbehaftete Gasturbinenkomponente
DE10024302A1 (de) * 2000-05-17 2001-11-22 Alstom Power Nv Verfahren zur Herstellung eines thermisch belasteten Gussteils
EP1645347A1 (de) 2000-05-17 2006-04-12 Alstom Technology Ltd Verfahren zur Herstellung eines thermisch belasteten Gussteils
US7141128B2 (en) 2002-08-16 2006-11-28 Alstom Technology Ltd Intermetallic material and use of this material

Also Published As

Publication number Publication date
JPS6045703A (ja) 1985-03-12
EP0132667A1 (de) 1985-02-13
DE3327218A1 (de) 1985-02-07
DE3467016D1 (en) 1987-12-03
US4629397A (en) 1986-12-16

Similar Documents

Publication Publication Date Title
EP0132667B1 (de) Thermisch hochbeanspruchte, gekühlte Turbinenschaufel
DE602004002721T2 (de) Umweltsperrschicht für Substrate auf der Basis von Silizium
DE602004008145T2 (de) Bindungsschicht für Substrate die auf Silizium basiert sind
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
EP1064510B1 (de) Wandsegment für einen brennraum sowie brennraum
DE60026973T2 (de) Wärmedämmschicht mit sinterresistenz
EP0075228A2 (de) Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf Keramikbasis
DE3638658C1 (de) Waermedaemmende Auskleidung fuer eine Gasturbine
DE3015867A1 (de) Verfahren zum herstellen eines mit keramik bedeckten gegenstands sowie mit keramik bedecktes gebilde
EP1275748A2 (de) Hochtemperaturbeständiger Schutzüberzug mit eingebetteten lokalen Erhebungen sowie Verfahren zur Herstellung des Schutzüberzuges
WO2005049312A1 (de) Hochtemperatur-schichtsystem zur wärmeableitung und verfahren zu dessen herstellung
EP1528343A1 (de) Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand
EP1253294A2 (de) Gasturbinendichtung
DE112014001276T5 (de) Verfahren und Vorrichtung zur Herstellung und Reparatur von Wärmesperren
DE3401742A1 (de) Rotor einer axialstroemungsmaschine
DE102005050873A1 (de) Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
DE3019920A1 (de) Einrichtung zur minimierung und konstanthaltung des schaufelspitzenspiels von axialturbinen fuer gasturbinentriebwerke
CH707023B1 (de) Heissgaspfadkomponente mit einer Schichtanordnung und Verfahren zur Herstellung einer Heissgaspfadkomponente mit einer Schichtanordnung.
EP1606494B1 (de) Kühlbares schichtsystem
DE3307749A1 (de) Bauteil mit einem kompositwerkstoff-ueberzug und verfahren zum aufbringen des ueberzugs
DE2346918A1 (de) Verfahren zum verdichten, haerten und verstaerken von formkoerpern und ueberzuegen mit einer durchgehenden porositaet
EP1876336A2 (de) Gasturbinenbauteil für Flugtriebwerke sowie Verfahren zur Herstellung von Gasturbinenbauteilen für Flugtriebwerke
EP1464721A2 (de) Wärmedämmschichtsystem
EP0432699B1 (de) Bauteil aus Metall mit einem Schutz gegen Titanfeuer und Verfahren zur Herstellung des Bauteils
DE10221114C1 (de) Dichtung für Strömungsmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19850626

17Q First examination report despatched

Effective date: 19860207

R17C First examination report despatched (corrected)

Effective date: 19860731

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3467016

Country of ref document: DE

Date of ref document: 19871203

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910614

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910618

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910627

Year of fee payment: 8

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920708

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84107962.7

Effective date: 19930204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030916

Year of fee payment: 20