EP0122578B1 - Verfahren zur Überwachung der Ermüdung von Bauteilen z.B. in Kernkraftwerken - Google Patents

Verfahren zur Überwachung der Ermüdung von Bauteilen z.B. in Kernkraftwerken Download PDF

Info

Publication number
EP0122578B1
EP0122578B1 EP84103962A EP84103962A EP0122578B1 EP 0122578 B1 EP0122578 B1 EP 0122578B1 EP 84103962 A EP84103962 A EP 84103962A EP 84103962 A EP84103962 A EP 84103962A EP 0122578 B1 EP0122578 B1 EP 0122578B1
Authority
EP
European Patent Office
Prior art keywords
memory
stress
computing unit
component
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84103962A
Other languages
English (en)
French (fr)
Other versions
EP0122578A2 (de
EP0122578A3 (en
Inventor
Reinhold Dr. Dipl.-Ing. Braschel
Manfred Dipl.-Ing. Miksch
Rolf Dipl.-Ing. Schiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0122578A2 publication Critical patent/EP0122578A2/de
Publication of EP0122578A3 publication Critical patent/EP0122578A3/de
Application granted granted Critical
Publication of EP0122578B1 publication Critical patent/EP0122578B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles

Definitions

  • the invention relates to a method for monitoring the fatigue of preferably thermally and / or mechanically loaded components, such as. B. in nuclear power plants or aircraft, with sensors attached to the outside of the monitored components.
  • the object of the invention is to provide a method for monitoring the fatigue of components, for. B. in a nuclear power plant to create a continuous, based on actual measurement data operational monitoring.
  • this object is achieved by a method according to claim 1, which is characterized on the one hand in that the measured values measured by sensors on the components to be monitored arrive in a certain time cycle at a process computer which contains a first computing unit which records the measured course of the measured values dissolves into uniform elementary courses charged with different weighting factors and stores them in a first memory such that a superposition of these preferably triangular elementary courses weighted with the weighting factors approximates the actually measured course of the respective measured values, so that the values stored in a second memory for the elementary voltage profiles generated from these elementary profiles of the measured values are called up from these elementary profiles of the measured values and weights in a second arithmetic unit by superimposing them with the above-mentioned weighting factors
  • the elementary voltage curves approximate the actual voltage curve and are stored in a third memory, and that a third arithmetic unit calculates the partial utilization factor of the component resulting from an evaluation cycle from this stored, approximate voltage curve using voltage-dependent fatigue curves and outputs it to a fourth memory in which
  • a component for example a feed water nozzle in a nuclear power plant.
  • the corresponding temperature profiles inside this component are now calculated (temperature backward analysis).
  • the tensile stress profiles in the wall material of the component can be calculated.
  • mechanical measurement values measured on the component can also be converted into partial utilization rates.
  • Advertisements during ultrasound tests can be tracked continuously.
  • This monitoring also makes it possible to carry out repair measures that are necessary in a targeted and thus economical manner.
  • the operational monitoring system enables e.g. B. for all areas in power plants a more precise and, above all, more economical implementation of stress and fatigue analyzes.
  • the invention is applicable not only in the power plant area described by way of example, but also in other areas. Another example is the fatigue check of aircraft components etc.
  • Figure 1 shows a flow diagram for the method for monitoring the fatigue of components in a nuclear power plant.
  • the basis for the fatigue analysis is the material-specific, empirically determined fatigue curve, e.g. B.
  • Fig. 2 shows.
  • the individual reference stress ranges ⁇ v are assigned the maximum permissible number N of load changes.
  • the material fatigue caused by n equal load change fluctuations is determined by the "utilization factor" expressed.
  • the total utilization factor Ug of formula gives it j as the sum of the individual partial utilization factors U according to
  • n in each case, based on the associated reference stress change ⁇ i , the number of load changes actually occurring, and N ; the maximum number of load changes resulting from the curve according to FIG. 2.
  • the temperatures are measured using suitable sensors (13), which in the example are arranged on a pipe section (14).
  • the monitoring device according to the invention makes use of a particularly simple calculation of the voltage distribution, which is therefore described in detail below:
  • the invention makes use of this superposition principle in that it approximates complex temperature profiles from elementary triangular temperature profiles, so-called “elementary transients”, according to a modular principle.
  • An attempt is made to present the externally measured temperature curve R (boundary condition) as a superposition of appropriately weighted elementary transients T l l ... T n '(FIG. 6) of the inner surface surface temperatures R of the inner surface, ie The temperature field T belonging to the surface temperature R is then approximately through given.
  • the elementary transients T i which are used here are due to the temperature profile occurring on the inside of the corresponding component (for example a pipe section (14) according to FIG. 3) defined as shown in Figs. 4 and 5.
  • i denotes the point on the inside opposite the measuring point i
  • E (I) the temperature profile on the inside
  • (x, t) the dependence on the coordinates of place and time.
  • FIG. 6 shows how a uniform, piece-wise linear internal temperature curve T (I) (represented by a continuous line), by means of superposition, elementary transients shifted in time and differently weighted
  • T j (1) , T 2 (I) , T3 (I) , T 4 (I) can be obtained, the courses of which have the shape of simple triangles on the inside, as shown in FIG. 4.
  • the “response” to an elementary transient T E (I) at point x on the inside of a component is the temperature curve E (A) according to FIG. 8 in the opposite Point y on the outside, and by superposition of the “answers” T 1 (A) -T 4 (A) according to FIG. 9, an “answer” to the temperature profile according to FIG.
  • the temperature-backward analysis mentioned uses a measured outside temperature curve to determine the corresponding inside temperature curve according to the following scheme:
  • the outside temperature T (A) is approximately represented as a superposition of answers E i (A), i.e. of elementary curves or elementary transients for the outer surface at location i :
  • the measured curve of the outside temperature would be replaced by a large number of overlapping, time-shifted and differently weighted triangular element temperature curves.
  • the individual weightings r j are determined in such a way that the best possible approximation to the actually measured profile of the outside temperature is achieved.
  • Equation (8) can be described as follows:
  • D is a linear differential operator. As is known, this system can be uniquely solved with given displacements or given forces in the peripheral area, taking into account the body balance conditions.
  • weightings of the individual elementary transients determined in the temperature backward analysis explained with reference to FIGS. 4 to 9 can also be used directly when the individual voltage profiles are superimposed.
  • the relevant weighting factors for the individual temperature transients determined in the temperature backward analysis are determined in block 2 in accordance with the flow diagram shown in FIG. 1.
  • the elementary reference stress curves corresponding to the elementary transients T of the temperature of the inner surface are stored in the block-specific stress file for unit load cases, block 3 in FIG. 1. From this voltage file for unit load cases, the reference voltage curves stored for the respective temperature transient, specific to the module, are called up and multiplied in block 2 by the associated weighting factors. In block 4, the elementary voltage curves called up in the voltage file 3 and weighted in block 2 are followed by Superposition of the actual voltage curve determined.
  • the degree of utilization is calculated in block 5 with the aid of a specific algorithm.
  • This algorithm is known as the "rainflow" or reservoir algorithm. It is essentially based on the fact that the determined voltage curve is broken down into a finite number of simple-period processes. (See K. Roik, lectures on steel construction, Wilhelm Ernst and Son Verlag, 1978, p. 69). A material-dependent partial utilization factor is stored in a memory FAT for each of these processes.
  • the partial utilization factor U to be applied for the individual periodic elementary cycle is then obtained in block 5 using the rainflow algorithm ; , which is included in the determination of the total utilization factor according to equation (2).
  • the result is the cumulative time profile of the overall degree of utilization, which is transferred to peripheral devices.
  • the part of the fatigue monitoring of a certain component described up to now by continuously updating the degree of utilization can be summarized as follows: On the basis of the measurement data that record the outside temperatures, the internal temperatures are first calculated back; the internal temperature curve is broken down into weighted "elementary transients". The individual elementary transients obtained when the temperature profile is divided are individually assigned voltage transients previously calculated from a file and superimposed on a voltage profile. From the superposed stress curve, partial degrees of utilization and the degree of utilization are calculated from the rainflow method using predefined fatigue curves. The replacement of the monitored component can be planned in good time before the overall degree of utilization reaches its highest permissible limit, namely the value 1.
  • the corresponding load cases are identified in block 8 on the basis of various system-specific operating signals, which can essentially be seen in the control room 7 in the exemplary embodiment of a nuclear power plant 1.
  • Such typical load cases are e.g. For example: slow start-up, rapid shutdown, etc.
  • the voltage file shown in block 9 contains the corresponding reference voltage curves. This means: For each load case identified on the basis of certain operating signals or operating signal combinations, the associated voltages are taken from block 9 from the voltage file and compiled in block 10 to form a voltage curve.
  • the data that are stored in the voltage file in block 9 have been determined on the basis of theoretical considerations and / or calculations, or have been measured in the past for special load cases. It is a matter of previously known - calculated or measured - voltage profiles for special load cases, from which the voltage profile is composed in block 10.
  • the flow of information leads again from block 10 to block 5, where the associated partial utilization rate is calculated from this comparison voltage curve with the aid of the rainflow or reservoir algorithm.
  • the calculation of the degree of partial utilization in block 5 by way of blocks 7 to 10, i.e. based on the load case identification and the voltage data determined for identified load cases based on previous processes and / or calculations, thus runs in parallel with the determination of the degree of utilization via the component to be monitored directly measured temperature and other mechanical data and their processing in blocks 2 to 5.
  • the operating data are recorded in a block 11 and stored in a data memory, a so-called log book, indicated by block 12 in FIG. 1.
  • a data memory a so-called log book, indicated by block 12 in FIG. 1.
  • the results of the calculation of the stress distribution in block 4 and the formation of the stress curve in block 10 are continuously compared on the basis of the load case identification in block 8 and that the most unfavorable value is used to determine the degree of utilization to ensure maximum security. This makes it possible to determine the superimposition of voltages for the monitored modules that occurs during certain load cases that can be identified in the load case.
  • the data determined in this way can be used to obtain data for module-related, life-extending operating modes of the system.
  • the measured values relevant to the subject of the application come from three different sources in a nuclear power plant, namely the temperature sensors 13, 20, the mechanical sensors 15, 21 and the sensors 22, the control room 7, from which the nuclear power plant 1 is controlled.
  • the temperature sensors 13, 20 provide the measured values which are required for the temperature backward analysis described above.
  • the mechanical sensors 15, 21 stand for such signal transmitters or sensors, which allow information about mechanical stresses, such as. B. measuring instruments for internal pressure, flow rate, level indicators etc.
  • the operating signals emanating from the sensors 22 of the control room 7 can be used to determine the current operating state (load case) of the operating system 1 or power plant.
  • a first memory FIFO I 37 First In / First Out
  • a second memory FIFO II 38 are connected to the unit for measured value acquisition MWE 34 via a data bus 36.
  • the data that is first read in time is also read out first in time.
  • the memories 37, 38 are buffer memories.
  • the first memory 37 is in alternating connection with the computing unit LCID 39 (load case identification), which is used to identify the individual load cases.
  • the basis for the identification of the individual load cases are the operating signals coming from the sensors 22 of the control room 7.
  • the computing unit LCID 39 determines, based on the load cases identified in this way, from the voltage file for specified load cases LCL 9, comparison voltage values for identified load cases, and component-dependent as well as various weighting factors for these comparison voltage values, which are determined by various sensors, and places them in one of the computing units HSP / VSP 40 for later superposition not represented RAM.
  • the temperature and voltage measurement values prepared by the measurement value acquisition MWE 34 go directly to the second memory FIFO II 38 and from there to the voltage file for unit load cases 3, which contains the memory TLL (Thermal Load Library) 41 for thermal load cases and the memory MLL 42 (Mechanical Load Library) for mechanical load cases.
  • TLL Thermal Load Library
  • MLL 42 Mechanism Load Library
  • the computing unit VSP 40 determines the resulting voltage curve by superimposing it and stores it in the STACK HSP VSP 43 memory. This is divided into two storage units 44 and 45 for the main voltages (HSP) and the determined reference voltages (VSP).
  • the resulting reference stress curve stored in the memory unit 44 of the working memory STACK HSP VSP 43 is calculated in the third arithmetic unit RFL (rainflow) 46 with the aid of the material-related fatigue curves (cf. FIG. 2) stored in the memory FAT (fatigue) 47 with the rainflow mentioned above. or reservoir algorithm processed.
  • the resulting partial utilization levels are added to the utilization level already stored in the RAM USE I 48 memory.
  • the crack growth can be calculated.
  • these main stresses occurring in the arithmetic unit HSP / VSP are stored in the memory unit STACK HSP 44 of the memory STACK HSP / VSP 43 and retrieved from there by a second arithmetic unit RFL 11 and processed on the basis of the stress-dependent crack growth curves stored in the memory RWK 50.
  • the calculation result, the crack growth per load unit is added to the crack lengths previously stored in RAM USE II 51.
  • the process computer 30 is connected to the console CO 35, which has the usual peripheral devices (printer, writer, etc.) and can be read in the degree of utilization and the accumulated crack lengths.
  • the console 35 which is usually in the control room 7, allows the replacement of components that have been used in foreseeable periods to be planned in good time. It also enables the operating system to be operated in the way that is most gentle on the most vulnerable or most worn components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Überwachung der Ermüdung von vorzugsweise thermisch und/oder mechanisch belasteten Bauteilen, wie z. B. solchen in Kernkraftwerken oder Flugzeugen, mit außen an den überwachten Bauteilen angebrachten Sensoren.
  • Die seitherige Ermüdungsanalyse für einzelne Bauteile, wie z. B. für einen Speisewasserstutzen in einem Kernkraftwerk, erfolgt aufgrund von Lastfallspezifikationen, die neben thermischen und mechanischen Belastungsdaten Annahmen über die jeweils zu erwartenden Häufigkeiten mechanischer Belastungsfälle enthalten. Der Nachteil einer solchen Spezifikation liegt in den theoretischen Annahmen, die oft nicht mit den im Betrieb durch Messung tatsächlich festgestellten Beanspruchungen übereinstimmen.
  • Auf der anderen Seite ist eine genaue Ermüdungsanalyse erwünscht, um möglichst präzise vorhersagen zu können, wann ein bestimmtes Bauteil seinen maximalen Ausnutzungsgrad erreicht hat und demgemäß ausgetauscht werden muß.
  • Aufgabe der Erfindung ist es, ein Verfahren zur Überwachung der Ermüdung von Bauteilen, z. B. in einem Kernkraftwerk, zu schaffen, das eine kontinuierliche, auf tatsächlich anfallende Meßdaten gestützte Betriebsüberwachung ermöglicht.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren gemäß Anspruch 1, das einerseits dadurch gekennzeichnet ist, daß die von Sensoren an den zu überwachenden Bauteilen in einem bestimmten Zeittakt gemessenen Meßwerte an einen Prozeßrechner gelangen, der eine erste Recheneinheit enthält, die den gemessenen Verlauf der Meßwerte in einheitliche mit unterschiedlichen Gewichtungsfaktoren beaufschlagte Elementarverläufe auflöst und in einem ersten Speicher abspeichert, derart, daß eine Überlagerung dieser mit den Gewichtungsfaktoren gewichteten vorzugsweise dreieckigen Elementarverläufe eine Annäherung an den tatsächlich gemessenen Verlauf der jeweiligen Meßwerte ergibt, daß die in einem zweiten Speicher gespeicherten Werte für die von diesen Elementarverläufen der Meßwerte erzeugten elementaren Spannungsverläufe von diesen Elementarverläufen der Meßwerte abgerufen werden und in einer zweiten Recheneinheit durch Überlagerung dieser mit den obengenannten Gewichtungsfaktoren gewichteten elementaren Spannungsverläufe der tatsächliche Spannungsverlauf angenähert und in einen dritten Speicher abgespeichert wird, daß ferner eine dritte Recheneinheit aus diesem abgespeicherten, angenäherten Spannungsverlauf unter Verwendung von spannungsabhängigen Ermüdungskurven den sich während eines Auswertungszyklus ergebenden Teilausnutzungsgrad des Bauteils errechnet und an einen vierten Speicher abgibt, in dem der Teilausnutzungsgrad zu dem darin gespeicherten Gesamtausnutzungsgrad hinzuaddiert wird und einen neuen Wert für den Gesamtausnutzungsgrad bildet.
  • Im konkreten Fall bedeutet dies z. B., daß entlang des Umfangs eines Bauteils, beispielsweise eines Speisewasserstutzens in einem Kemkraftwerk, Temperatursensoren angeordnet sind. Aufgrund der örtlichen Temperaturverteilung und/oder des zeitlichen Temperaturverlaufs werden nun die entsprechenden Temperaturverläufe im Inneren dieses Bauteils berechnet (Temperatur-Rückwärts-Analyse). Auf der Grundlage dieser für das Innere des Bauteils errechneten Temperaturen lassen sich rechnerisch die Zugspannungsverläufe im Wandmaterial des Bauteils ermitteln. Dieses an sich sehr komplizierte Verfahren wird dadurch vereinfacht, daß die Berechnungen nicht für den tatsächlich gemessenen Verlauf der Meßwerte erfolgen, sondern für « Elementarverläufe ", sogenannten Elementartransienten, als . deren Überlagerung - bei Verwendung bestimmter Gewichtungsfaktoren - der tatsächlich gemessene Temperaturverlauf näherungseise dargestellt werden kann. Infolge der Linearität des für die Berechnung der Spannungsverläufe aus den Temperaturverläufen geltenden Gleichungssystems läßt sich auch der tatsächlich auftretende Zugspannungsverlauf als entsprechende, d. h. mit denselben Gewichtungsfaktoren versehene Überlagerung elementarer Zugspannungsverläufe darstellen, die den elementaren Temperaturverläufen entsprechen. Der durch diese Überlagerung ermittelte - angenäherte - Vergleichsspannungsverlauf wird dann mit Hilfe des bekannten Rainflow- oder Reservoir-Algorithmus abgearbeitet, d. h. in Teilnutzungsgrade umgerechnet. Auf diese Art lassen sich die während der Auswertungszyklen ergebenden Teilausnutzungsgrade zum jeweiligen neuesten Gesamtausnutzungsgrad, einem für die Ermüdung eines Bauteils charakteristischen Wert, aufaddieren.
  • In ähnlicher Weise, wie im vorstehenden Absatz anhand von Temperaturmeßwerten erläutert, lassen sich auch am Bauteil gemessene mechanische Meßwerte in Teilausnutzungsgrade umwandeln.
  • Parallel dazu kann andererseits vorgesehen sein, daß neben den unmittelbar an dem zu überwachenden Bauteil abgegriffenen Meßwerten auch Betriebsdaten, die - beispielsweise von einer Warte oder einem Stellpult aus - das Betriebssystem steuern zu dem das zu überwachende Bauteil gehört, zur Lastfallidentifizierung herangezogen werden. Derartige Lastfälle in einem Kernkraftwerk sind beispielsweise « Anfahren », « Schnellabschaltung » usw. Diesen einzelnen Lastfällen kann man nun bestimmte
  • - empirisch festgestellte oder auf der Grundlage von Annahmen berechnete oder geschätzte - Vergleichsspannungsverläufe zuordnen, so daß bei Identifizierung derartiger Lastfälle durch evtl. zusätzliche Überlagerung mit geeignet gewichteten mechanischen Einheitslastfällen ein Vergleichsspannungsverlauf entsteht, der mit Hilfe des Rainflow-Algorithmus ebenfalls wieder in einen Teilausnutzungsgrad umgerechnet werden kann.
  • Die Vorteile des Verfahrens lassen sich wie folgt zusammenfassen :
  • Die einheitliche Vorgehensweise führt bei allen Bauteilen zu vergleichbaren Ergebnissen und gibt Hinweise auf kritische Bauteile.
  • Die zeitliche Erfassung der einzelnen Betriebsvorgänge und die kontinuierlichen Temperaturmessungen führen zur genauen Bestimmung der Ausnutzungsgrade.
  • Sollte bei der Überwachung eine kritische Tendenz erkannt werden, ist es möglich, rechtzeitig durch eine neu festzulegende Schonfahrweise die Lebensdauer einzelner, gefährdeter Komponenten zu erhöhen.
  • Anzeigen bei Ultraschall-Prüfungen können gezielt kontinuierlich verfolgt werden.
  • Durch die Überwachung des Rißwachstums ist man in der Lage, auch bei der Erreichung der rechnerischen Ausnutzung von 1,0 die Anlage weiter zu betreiben.
  • Durch diese Überwachung ist auch ein gezielter und damit wirtschaftlicher Ablauf eventuell erforderlicher Reparaturmaßnahmen möglich.
  • Die kontinuierliche Betriebsüberwachung führt zur lückenlosen Betriebsdatenerfassung (Logbuch).
  • Das Betriebsüberwachungssystem ermöglicht z. B. für alle Bereiche in Kraftwerken eine genauere und vor allem auch wirtschaftlichere Durchführung von Spannungs- und Ermüdungsanalysen.
  • Die Erfindung ist nicht nur im beispielhaft beschriebenen Kraftwerksbereich, sondern auch in anderen Bereichen anwendbar. Genannt sei als weiteres Beispiel die Überprüfung der Ermüdung von Bauteilen von Flugzeugen etc.
  • Ein Ausführungsbeispiel der Erfindung und ihrer vorteilhaften Weiterbildung wird im folgenden anhand der beigefügten Zeichungen beschrieben.
  • Es stellen dar:
    • Fig. 1 ein Ablaufschema des Verfahrens,
    • Fig. 2 eine Ermüdungskurve für den Bauteil (materialspezifische Ermüdungskurve),
    • Fig. 3 die schematische Anordnung mehrerer Temperatursensoren entlang des äußeren Umfangs eines rohrförmigen Bauteils,
    • Fig. 4 den zeitlichen Verlauf einer Elementartransiente,
    • Fig. 5 den örtlichen Verlauf einer Elementartransiente,
    • Fig. 6 die zeitliche Überlagerung mehrerer gewichteter Elementartransienten,
    • Fig. 7 eine weitere Darstellung einer Elementartransiente an einem Punkt x der Innenseite eines Bauteils,
    • Fig. 8 der sich daraus als « Antwort ergebende Verlauf der Temperatur in dem dem genannten Punkt x auf der Innenseite gegenüberliegenden Punkt y an der Außenseite,
    • Fig. 9 die durch Überlagerung von Antworten gemäß Fig. 8 entstehende Antwort auf überlagerte Elementartransienten nach Fig. 6,
    • Fig. 10 ein Blockschaltbild eines Ausführungsbeispiels.
  • Figur 1 zeigt ein Ablaufschema für das Verfahren zur Überwachung der Ermüdung von Bauteilen in einem Kernkraftwerk. Grundlage für die Ermüdungsanalyse ist die materialspezifische, empirisch ermittelte Ermüdungskurve, wie z. B. Fig. 2 zeigt. In ihr ist den einzelnen Vergleichsspannungsschwingbreiten Δσv die jeweils maximal zulässige Anzahl N der Lastwechsel zugeordnet. Die durch n gleiche Lastwechselschwankungen bewirkte Materialermüdung wird durch den «Ausnutzungsgrad " (Usage Factor)
    Figure imgb0001
    ausgedrückt.
  • Für verschiedene Lastwechselschwankungen Δσi ergibt sich der gesamte Ausnutzungsfaktor Uges als Summe der einzelnen Teilausnutzungsfaktoren Uj gemäß der Formel
    Figure imgb0002
  • Dabei ist n; jeweils, bezogen auf die zugehörige Vergleichsspannungsänderung Δσi, die Anzahl der tatsächlich aufgetretenen Lastwechsel, und N; die sich aus der Kurve nach Figur 2 ergebenden maximale Anzahl von Lastwechseln.
  • Im einzelnen ergeben sich die Erfordernisse dieser Feststellungen beim Betrieb von Reaktorsystemen aus dem ASME-Code, Sec. III (Stress Categories). Durch das erfindungsgemäße Überwachungsverfahren kann jeweils der Gesamtausnutzungsgrad zu einem bestimmten Zeitpunkt festgestellt werden.
  • Das in Figur 1 symbolisch mit 1 gekennzeichnete Betriebssystem, z. B. ein Kernkraftwerk, gibt bestimmte Meßwerte ab. Es folgt dann im Kästchen 2 die Meßwerterfassung und die Gewichtung der Einheitslastfälle :
  • Die wichtigsten Meßwerte, aufgrund derer die Spannungsverteilung und daraus dann der Ausnutzungsgrad berechnet wird, sind die Temperaturen, es ist nämlich im allgemeinen - z. B. mangels geeigneter langzeitstabiler Dehnmeßstreifen - nicht möglich, die Spannungsverläufe im Material unmittelbar zu messen und der Bestimmung des Ausnutzungsgrades zugrunde zu legen. Die Berechnung erfolgt deshalb aufgrund einer Temperatur-Rückwärts-Analyse (thermal backward-analysis), die davon ausgeht, daß sich aus den Außentemperaturen, deren zeitlicher und räumlicher Verlauf durch geeignete Sensoren gemessen werden kann, die Temperaturverteilung in der gesamten Struktur und daraus wiederum die Spannungsverteilung berechenbar ist.
  • Die Messung der Temperaturen erfolgt dabei, wie schematisch in Fig. 3 dargestellt, mit geeigneten Sensoren (13), die im Beispiel an einem Rohrstück (14) angeordnet sind. Die erfindungsgemäße Überwachungseinrichtung macht sich eine besonders einfache Errechnung der Spannungsverteilung zunutze, die im folgenden daher aus führlich dargestellt wird :
  • Allgemein gilt die Wärmeleitungsgleichung
    Figure imgb0003
  • Wird a als konstant vorausgesetzt und sind T1 und T2 Temperaturfelder, also Lösungen der Gleichung (3), die den Randbedingungen R1 und R2 genügen, so sind sowohl T = T1 + T2 als (für konstantes r) auch T = r · T1 Lösungen von (3), die den Randbedingungen R = R1 + R2 bzw. R = r · R1 genügen.
  • Die Erfindung macht sich dieses Superpositionsprinzip zunutze, indem sie nach einem Baukastenprinzip komplexe Temperaturverläufe approximativ aus elementaren dreieckigen Temperaturverläufen, sog. « Elementartransienten », zusammensetzt. Dabei wird versucht, den außen gemessenen Temperaturverlauf R (Randbedingung) als Superposition von sich aus geeignet gewichteten Elementartransienten Tl l... Tn' (Fig. 6) der Innenoberfläche ergebenden Oberflächentemperaturen R der Innenoberfläche darzustellen, d. h.
    Figure imgb0004
    Das zur Oberflächentemperatur R gehörige Temperaturfeld T ist dann näherungsweise durch
    Figure imgb0005
    gegeben.
  • Die Elementartransienten Ti, die hier verwendet werden, sind durch den auf der Innenseite des entsprechenden Bauteils (z. B. eines Rohrabschnittes (14) nach Fig. 3) auftretenden Temperaturverlauf
    Figure imgb0006
    definiert, wie er in Fig. 4 und 5 dargestellt ist.
  • In diesen Abbildungen 4 bis 6 bezeichnet i den der Meßstelle i gegenüberliegenden Punkt an der Innenseite, E(I) den Temperaturverlauf an der Innenseite und (x, t) die Abhängigkeit von den Koordinaten Ort und Zeit.
  • Fig. 6 zeigt wie ein gleichmäßig stückweiser linearer Innentemperaturverlauf T(I) (dargestellt durch eine durchgehende linie), durch Superposition zeitlich gegeneinander verschobener und unterschiedlich gewichteter Elementartransienten
  • Tj (1), T2 (I), T3(I), T4 (I) gewonnen werden kann, deren Verläufe an der Innenseite die Form einfacher Dreiecke, wie in Fig. 4 dargestellt, haben.
  • Wie aus den Fig. 7 bis 9 ersichtlich, ergibt sich als «Antwort" auf eine Elementartransiente TE (I) in einem Punkt x auf der Innenseite eines Bauteils (Fig.7) der Temperaturverlauf E(A) gemäß Fig. 8 im gegenüberliegenden Punkt y an der Außenseite. Entsprechend läßt sich durch Superposition der « Antworten » T1 (A)-T4 (A) gemäß Fig. 9 eine « Antwort » auf den Temperaturverlauf nach Fig. 6 ermitteln.
  • Die erwähnte Temperatur-Rückwärts-Analyse ermittelt aus einem gemessenen Außentemperaturverlauf den entsprechenden Innentemperaturverlauf nach folgendem Schema : Zunächst wird die Außentemperatur T(A) näherungsweise als Superposition von Antworten Ei (A) d. h. von Elementarverläufen bzw. Elementartransienten für die Außenoberfläche am Ort i dargestellt :
    Figure imgb0007
  • Bildlich dargestellt würde der gemessene Verlauf der Außentemperatur durch eine Vielzahl sich überlagernder zeitlich gegeneinander verschobener und unterschiedlich gewichteter dreieckiger Elementartemperaturverläufe ersetzt. Dabei werden die einzelnen Gewichtungen rj so bestimmt, daß eine möglichst gute Annäherung an den tatsächlich gemessenen Verlauf der Außentemperatur erreicht wird.
  • Bei dieser Approximation wird der Fehler im quadratischen Mittel minimiert. Mathematisch ausgedrückt bedeutet dies, daß das Integral
    Figure imgb0008
    minimiert wird.
  • Aufgrund der Linearität der Wärmeleitungsgleichung (3) kann jetzt auf den Temperaturverlauf an der Innenseite geschlossen werden :
    Figure imgb0009
  • Man vergleiche hierzu auch die Figuren 8 mit 7. Aus diesen geht deutlich hevor, wie sich ein angenommener Elementarverlauf der Temperatur an der Rohrinnenwand im Punkte x (Fig. 7) zeitlich verschoben in einen Temperaturverlauf an der Außenwand auswirkt.
  • Aus der durch den Innentemperaturverlauf eindeutig bestimmten Temperaturverteilung läßt sich nun der zugehörige Spannungszustand nach dem verallgemeinerten Hooke'schen Gesetz wie folgt bestimmen :
    Figure imgb0010
  • Die Materialwerte E, a und µ werden als konstant vorausgesetzt. Löst man die ersten drei Gleichungen nach T auf, faßt die Größen u, v, w sowie die σ's und die τ's zu einem Vektor s zusammen und bezeichnet ferner mit T den Vektor (T, T, T, O, O, O), so läßt sich Gleichung (8) wie folgt umschreiben :
    Figure imgb0011
  • Dabei ist D ein linearer Differentialoperator. Dieses System ist bekanntlich bei vorgegebenen Verschiebungen oder vorgegebenen Kräften auf dem Randgebiet unter Berücksichtigung der Körpergleichgewichtsbedingungen eindeutig lösbar.
  • Daraus ergibt sich : Läßt sich das Temperaturfeld T gemäß Gleichung (5) als Superposition von Elementartransienten T darstellen und ist für jedes T der daraus resultierende Spannungszustand si bekannt, so läßt sich auch die Gleichung (9) durch Superposition lösen, nämlich in der Form
    Figure imgb0012
  • Das bedeutet, daß die bei der an Hand der Fig. 4 bis 9 erläuterten Temperatur-Rückwärts-Analyse ermittelten Gewichtungen der einzelnen Elementartransienten sich auch direkt bei der Überlagerung der einzelnen Spannungsverläufe einsetzen lassen. Die maßgeblichen Gewichtungsfaktoren für die bei der Temperatur-Rückwärts-Analyse ermittelten einzelnen Temperaturtransienten werden gemäß dem in Fig. 1 dargestellten Ablaufschema im Block 2 ermittelt.
  • Die den Elementartransienten T der Temperatur der Innenoberfläche entsprechenden elementaren Vergleichsspannungsverläufe sind in der bausteinspezifischen Spannungsdatei für Einheitslastfälle, in Fig. 1, Block 3 gespeichert. Aus dieser Spannungsdatei für Einheitslastfälle werden die für die jeweilige Temperaturtransiente bausteinspezifisch gespeicherten Vergleichsspannungsverläufe abgerufen und im Block 2 mit den zugehörigen Gewichtungsfaktoren multipliziert. Aus den in der Spannungsdatei 3 abgerufenen, und in Block 2 gewichteten elementaren Spannungsverläufen wird in Block 4 durch Überlagerung der tatsächliche Spannungsverlauf ermittelt.
  • Aus diesem so in Block 4 ermittelten Spannungsverlauf wird im Block 5 mit Hilfe eines bestimmten Algorithmus der Ausnutzungsgrad berechnet. Dieser Algorithmus ist als « Rainflow » - oder Reservoir-Algorithmus bekannt. Im wesentlichen basiert er darauf, daß der ermittelte Spannungsverlauf in eine endliche Anzahl einfachperiodischer Vorgänge zerlegt wird. (Vgl. K. Roik, Vorlesungen über Stahlbau, Verlag Wilhelm Ernst und Sohn, 1978, S. 69). Für jedes dieser Vorgänge ist in einem Speicher FAT ein materialabhängiger Teilausnutzungsfaktor abgespeichert.
  • Aus der für das Bauteil bzw. für das Material geltenden Ermüdungskurve nach Figur 2 ergibt sich dann im Block 5 unter Anwendung des Rainflow-Algorithmus der für den einzelnen periodischen Elementarzyklus anzusetzende Teilausnutzungsfaktor U;, der in die Bestimmung des gesamten Ausnutzungsfaktors nach Gleichung (2) eingeht. In Block 6 fällt das Ergebnis, der aufsummierte zeitliche Verlauf des Gesamtausnutzungsgrades an, der an Periphergeräte transferiert wird.
  • Den bis jetzt beschriebenen Teil der Ermüdungsüberwachung eines bestimmten Bauteils durch laufende Fortschreibung des Ausnutzungsgrades kann man zusammenfassend wie folgt kennzeichnen : Aufgrund der Meßdaten, die die Außentemperaturen erfassen, wird zunächst auf die inneren Temperaturen zurückgerechnet; der innere Temperaturverlauf wird in gewichtete « Elementartransienten » zerlegt. Den bei der Aufteilung des Temperaturverlaufs gewonnenen einzelnen Elementartrasienten werden aus einer Datei vorab gerechnete Spannungstransienten einzeln zugeordnet und zu einem Spannungsverlauf superponiert. Aus dem superponierten Spannungsverlauf werden nach der Rainflow-Methode anhand vorgegebener Ermüdungskurven Teilausnutzungsgrade und daraus der Ausnutzungsgrad errechnet. Rechtzeitig bevor der Gesamtausnutzungsgrad seine oberste zulässige Grenze, nämlich den Wert 1 erreicht, kann der Austausch des überwachten Bauteils geplant werden.
  • Parallel zu der bis jetzt beschriebenen Ermittlung des Ausnutzungsgrades läuft noch eine zweite Ermüdungsüberwachung für Bauteile ab, deren Beanspruchung nicht oder nur unzureichend durch Außentemperaturmessungen festgestellt werden kann. Anhand verschiedener systemspezifischer Betriebssignale, die im Ausführungsbeispiel eines Kernkraftwerkes 1 im wesentlichen der Warte 7 entnehmbar sind, werden im Block 8 die entsprechenden Lastfälle identifiziert. Solche typischen Lastfälle sind z. B.: Langsames Anfahren, Schnellabschaltung usw. Für derartig indentifizierte Lastfälle enthält die im Block 9 dargestellte Spannungsdatei die entsprechenden Vergleichsspannungsverläufe. Das bedeutet : Aus dem Block 9 werden zu jedem aufgrund bestimmter Betriebssignale oder Betriebssignalkombinationen identifizierten Lastfall die zugehörigen Spannungen aus der Spannungsdatei entnommen und im Block 10 zu einem Spannungsverlauf zusammengestellt. Die Daten, die in der Spannungsdatei im Block 9 gespeichert sind, sind aufgrund theoretischer Überlegungen und/oder Berechnungen ermittelt oder aber in der Vergangenheit bei speziellen Lastfällen gemessen worden. Es handelt sich also um von früher - berechnet oder gemessen - her bekannte Spannungsverläufe für spezielle Lastfälle, aus denen im Block 10 der Spannungsverlauf zusammengesetzt wird. Vom Block 10 führt der Informationsfluß wieder in den Block 5, wo aus diesem Vergleichsspannungsverlauf mit Hilfe der Rainflow- bzw. Reservoir-Algorithmus der zugehörige Teilausnutzungsgrad berechnet wird. Die Berechnung des Teilausnutzungsgrades im Block 5 auf dem Wege über die Blöcke 7 bis 10, also aufgrund der Lastfallidentifikation und der für identifizierte Lastfälle aufgrund früherer Abläufe und/oder Berechnungen ermittelten Spannungsdaten läuft also parallel zu der Ermittlung des Ausnutzungsgrades über die direkt am zu überwachenden Bauteil gemessenen Temperatur- und sonstigen mechanischen Daten und ihre Verarbeitung in den Blöcken 2 bis 5.
  • Sowohl von der Meßwerterfassung im Block 2 als auch von der Lastfallidentifikation im Block 8 her werden die Betriebsdaten in einem Block 11 erfaßt und in einem Datenspeicher, einem sogenannten Logbuch, angedeutet durch Block 12 in Fig. 1, abgespeichert. Ergänzend kann man vorsehen (nicht gezeigt), daß die Ergebnisse der Berechnung der Spannungsverteilung in Block 4 und der Bildung des Spannungsverlaufs in Block 10 auf der Grundlage der Lastfallidentifikation in Block 8 laufend abgeglichen werden und der Ermittlung des Ausnutzungsgrades der jeweils ungünstigste Wert zugrunde gelegt wird, um maximale Sicherheit zu gewährleisten. Hierdurch wird es möglich, die während bestimmter, der Lastfallidentifikation entnehmbarer Lastfälle auftretende Überlagerungen von Spannungen für die überwachten Bausteine zu ermitteln.
  • Aus den so ermittelten Daten lassen sich Daten für bausteinbezogene, lebensdauerverlängernde Betriebsweisen der Anlage gewinnen.
  • Fig. 10 zeigt die schaltungsmäßige Realisierung der Erfindung.
  • Die für den Anmeldungsgegenstand relevanten Meßwerte stammen bei einem Kernkraftwerk aus drei verschiedenen Quellen, nämlich den Temperaturfühlern 13, 20, den mechanischen Sensoren 15, 21 sowie den Sensoren 22, der Warte 7, von der aus das Kernkraftwerk 1 gesteuert wird.
  • Die Temperaturfühler 13, 20 liefern die Meßwerte, die für die oben beschriebene Temperatur-Rückwärts-Analyse benötigt werden. Die mechanischen Sensoren 15, 21 stehen für solche Signalgeber oder Meßfühler, die Aufschlüsse über mechanische Beanspruchungen gestatten, wie z. B. Meßinstumente für Innendruck, Strömungsgeschwindigkeit, Füllstandsanzeigen etc. Die von den Sensoren 22 der Warte 7 ausgehenden Bedienungssignale können zur Feststellung des augenblicklichen Betriebszustandes (Lastfall) des Betriebssystems 1 bzw. Kraftwerkes herangezogen werden.
  • Von diesen in Fig. 10 mit 20, 21, 22 bezeichneten drei Einheiten gehen jeweils Leitungen an den Prozeßrechner 33, und zwar nach evtl. erforderlicher A/D-Wandlung an die Einheit zur Meßwerterfassung MWE 34. In der Einheit zur Meßwerterfassung MWE 34 werden die von den Temperatursensoren 13, 20 und den mechanischen Sensoren 15, 21 übermittelten Meßwerte bzw. die von den Sensoren 22 der Warte 7 abgegebenen Betriebssignale aufbereitet, geglättet, klassiert, auf Plausibilität untersucht. In beispielsweise bei der Plausibilitätskontrolle erfaßten unklaren oder kritischen Fällen werden von dort direkt Meldungen an eine sogenannte Konsole CO 35, die in der Warte 7 stehen kann, ausgegeben.
  • Innerhalb der in Fig. 10 dargestellten Prozeßrechnereinheit sind auf der linken Seite ROM (Read Only . Memory) 'Daten- und Programmspeicher und auf der rechten Seite RAM (Random Access Memory) Arbeitsspeicher eingezeichnet. Mit der Einheit zur Meßwerterfassung MWE 34 sind über einen Datenbus 36 ein erster Speicher FIFO I 37 (First In/First Out) und ein, zweiter Speicher FIFO II 38 verbunden. Die jeweils zeitlich zuerst eingelesenen Daten werden auch zeitlich zuerst ausgelesen. Die Speicher 37, 38 sind Pufferspeicher. Der erste Speicher 37 steht in Wechselverbindung mit der Recheneinheit LCID 39 (Load-Case-Identifikation), die zur Identifizierung der einzelnen Lastfälle dient.
  • Grundlage für die Identifizierung der einzelnen Lastfälle sind die von den Sensoren 22 der Warte 7 eingehenden Betriebssignale. Die Recheneinheit LCID 39 ermittelt aufgrund der so identifizierten Lastfälle aus der Spannungsdatei für spezifizierte Lastfälle LCL 9 Vergleichsspannungswerte zu identifizierten Lastfällen, und bauteilabhängige sowie durch diverse Sensoren bestimmte Gewichtungsfaktoren für diese Vergleichsspannungswerte und legt diese für die spätere Superposition in einen der Recheneinheit HSP/VSP 40 zugeordneten nicht dargestellen Arbeitsspeicher ab.
  • Die von der Meßwerterfassung MWE 34 aufbereiteten Temperatur- und Spannungsmeßwerte gelangen direkt in den zweiten Speicher FIFO II 38 und von dort an die Spannungsdatei für Einheitslastfälle 3, die die Speicher TLL (Thermal Load Library) 41 für thermische Lastfälle und den Speicher MLL 42 (Mechanical Load Library) für mechanische Lastfälle beinhaltet. Im Speicher TLL 41 sind diejenigen Vergleichsspannungsverläufe gespeichert, die den einzelnen thermischen Elementartransienten zugeordnet sind. In dem Speicher MLL 42 sind diejenigen Vergleichsspannungsverläufe gespeichert, die den mechanischen Elementartrasienten zugeordnet sind. Unter Benutzung der von der Recheneinheit LCID 39 abgelegten Daten und der für mechanische und thermische Einheitslastfälle in den Speichern MLL bzw. TLL stehenden Spannungswerte ermittelt dann die Recheneinheit VSP 40 (für die Haupt- und Vergleichsspannungen) den resultierenden Spannungsverlauf durch Überlagerung und speichert ihn in dem Speicher STACK HSP VSP 43 ab. Dieser ist in zwei Speichereinheiten 44 und 45 für die Hauptspannungen (HSP) und die ermittelten Vergleichsspannungen (VSP) unterteilt.
  • Der in der Speichereinheit 44 des Arbeitsspeichers STACK HSP VSP 43 gespeicherte resultierende Vergleichsspannungsverlauf wird in der dritten Recheneinheit RFL (Rainflow) 46 mit Hilfe der im Speicher FAT (Fatigue) 47 abgespeicherten materialbahängigen Ermüdungskurven (vgl. Fig. 2) mit dem oben erwähnten Rainflow- oder Reservoir-Algorithmus abgearbeitet. Die dabei anfallenden Teilausnutzungsgrade werden zu dem im Speicher RAM USE I 48 bereits gespeicherten Ausnutzungsgrad aufaddiert.
  • Darüber hinaus kann, ausgehend von einer anderweitig, etwa durch Ultraschallprüfung, gemessenen Rißtiefe an der Innenwand, oder ausgehend von einer etwa aus Erfahrungswerten angenommenen oder postulierten Rißtiefe unter Zugrundelegung der in der Recheneinheit HSP/VSP 40 während des Betriebes des Betriebssystems anfallenden Hauptspannungen, d. h. der in den drei Koordinatenachsen anfallenden Spannungen, das Rißwachstum ausgerechnet werden. Hierzu werden diese in der Recheneinheit HSP/VSP anfallenden Hauptspannungen in der Speichereinheit STACK HSP 44 des Speichers STACK HSP/VSP 43 abgespeichert und von dort von einer zweiten Recheneinheit RFL 11 abgerufen und unter Zugrundelegung der im Speicher RWK 50 abgespeicherten, spannungsabhängigen Rißwachstumskurven abgearbeitet. Das Rechenergebnis, der Rißzuwachs je Belastungseinheit wird den bisher im Speicher RAM USE II 51 gespeicherten Rißlängen hinzuaddiert.
  • Der Prozeßrechner 30 steht mit der Konsole CO 35 in Verbindung, die die üblichen Peripheriegeräte (Drucker, Schreiber etc.) aufweist und in der Ausnutzungsgrad sowie die aufgelaufenen Rißlängen ablesbar sind. Die meist in der Warte 7 stehende Konsole 35 erlaubt es, rechtzeitig den Ersatz in vohersehbaren Zeiträumen ausgenutzter Bauteile zu planen. Sie ermöglicht es auch, das Betriebssystem so zu fahren, wie das für die am gefährdesten, bzw. am meisten abgenützten Bauteile am schonensten ist.

Claims (8)

1. Verfahren zur Überwachung der Ermüdung von vorzugsweise thermisch und/oder mechanisch belasteten Bauteilen, wie z. B. solchen in Kernkraftwerken oder. Flugzeugen mit außen an den zu überwachenden Bauteilen angebrachten Sensoren, dadurch gekennzeichnet, daß die von den Sensoren (13, 15, 20, 21, 22) an den zu überwachenden Bauteilen (14) in einem bestimmten Zeittakt gemessenen Meßwerte an einen Prozeßrechner (33) gelangen, der eine erste Recheneinheit (LCID) (39) enthält, die aus den Meßwerten und anhand einer Spannungsdatei (LCL) (9) spezifizierter Einheitslastfälle Gewichtungsfaktoren zur Beaufschlagung der mechanischen Einheitslastfälle oder/und direkt lastfallspezifische Vergleichsspannungen ermittelt und in einem ersten Arbeitsspeicher ablegt, daß ferner eine zweite Recheneinheit (HSP VSP)(40) nach Maßgabe der durch die erste Recheneinheit (LCID) (39) bestimmten Vergleichsspannungen und/oder auf Grund der von einer Meßdatenerfassungsdatei (MWE) (34) in einem zweiten Arbeitsspeicher (FIFO II) (38) abgelegten Meßdaten nach Auflösung derselben in entsprechend gewichtete Einheitswerte diesen unter Benutzung zweier Einheitslastfall-Bibliotheken (TLL, MLL) (3, 41, 42) Vergleichsspannungswerte zuordnet und gewichtet und im Zeittakt in einem dritten Speicher (STACK VSP) (43, 45) ablegt, daß weiter eine dritte Recheneinheit (RFL) (46) den dritten Speicher (STACK VSP) steuert und aus dem Vergleichsspannungsverlauf unter Verwendung von in einem Speicher (FAT) (47) stehenden Ermüdungskurven den sich während eines Auswertungszyklus ergebenden Teilausnutzungsgrad des Bauteils errechnet, und dieser Wert dem in einem vierten Arbeitsspeicher (RAM USE I) (48) stehenden bisherigen Ausnutzungsgrad hinzuaddiert wird, woraus sich der aktuelle Gesamtnutzungsgrad (Uges) ergibt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Sensoren (13, 20) Temperaturfühler sind, die auf der Außenseite des zu überwachenden und im Bereich der Temperaturfühler isolierten Bauteils (14) angeordnet sind und daß die in einem fünften Speicher (TLL) (41) gespeicherten elementaren Spannungsverläufe solche sind, die thermischen Einheitsverläufen entsprechen.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Sensoren (15, 21) mechanische Sensoren sind und daß die in einem sechsten Speicher (MLL) (42) gespeicherten elementaren Spannungsverläufe solche sind, die mechanischen Einheitslastfällen entsprechen.
4. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß ferner die genannte erste Recheneinheit (LCID) (39) aus den Betriebssignalen, die von einer Warte (7) an das Betriebssystem (1), dessen Bestandteil das zu überwachende Bauteil ist, abgegeben werden, den jeweils bestimmten Lastfall des Betriebssystems identifiziert, daß ferner der genannten ersten Recheneinheit ein weiterer (siebter) Speicher (LCL) (9) zugeordnet ist, in dem der diesem identifizierte Lastfall zuordenbare Spannungsverlauf bauteilspezifisch gespeichert ist und daß die den identifizierten Lastfällen bauteilspezifisch zuordenbaren Spannungsverläufe über einen Pufferspeicher an die zweite Recheneinheit (HSP VSP) (40) gelangen und daß diese daraus durch Überlagerung den tatsächlichen Vergleichsspannungsverlauf annähert, der in dem genannten dritten Speicher (STACK HSP VSP) (43) abgespeichert wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die während bestimmter, durch die Warte (22) ermittelter Lastfälle den durch die Meßdaten der Sensoren (13, 15, 20, 21) bauteilspezifisch ermittelten und über die zweite Recheneinheit (HSP VSP) (40) errechneten überlagerten Spannungsverteilungen ermittelt und zusammen mit dem Lastfall gespeichert werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die bauteilspezifisch für bestimmte Lastfälle errechneten überlagerten Spannungsverteilungen über die dritte Recheneinheit (RFL 1)(46) in bauteilspezifische Teilnutzungsgrade umgerechnet und im Rahmen einer Betriebsdatenerfassung (11) dokumentiert werden.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die in der Betriebsdatenerfassung (11) dokumentierten für bestimmte Lastfälle bauteilspezifisch ermittelten überlagerten Spannungsverteilungen als solche und in ihrer Häufigkeit in einer separaten Datei für spezifizierte Lastfälle eingespeichert werden.
8. Verfahren nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß die in der zweiten Recheneinheit (HSP VSP) (40) anfallenden gewichteten Hauptspannungen in einem achten Speicher (STACK HSP VSP) (43, 44) abgespeichert und von einer vierten Recheneinheit (RFL II) (49) unter Verwendung von in einem neunten Speicher (RWK) (50) abgespeicherten spannungsabhängigen Rißwachstumskurven in sich während eines Auswertezyklus ergebenen Rißwachstumswerten umgerechnet werden und diese Rißwachstumswerte den in einem zehnten Speicher (RAM USE 11) (51) abgespeicherten Rißlängen hinzuaddiert werden.
EP84103962A 1983-04-19 1984-04-09 Verfahren zur Überwachung der Ermüdung von Bauteilen z.B. in Kernkraftwerken Expired EP0122578B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3314181 1983-04-19
DE19833314181 DE3314181A1 (de) 1983-04-19 1983-04-19 Verfahren zur ueberwachung der ermuedung von bauteilen, z.b. in kernkraftwerken

Publications (3)

Publication Number Publication Date
EP0122578A2 EP0122578A2 (de) 1984-10-24
EP0122578A3 EP0122578A3 (en) 1987-04-01
EP0122578B1 true EP0122578B1 (de) 1989-07-19

Family

ID=6196794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84103962A Expired EP0122578B1 (de) 1983-04-19 1984-04-09 Verfahren zur Überwachung der Ermüdung von Bauteilen z.B. in Kernkraftwerken

Country Status (6)

Country Link
US (1) US4764882A (de)
EP (1) EP0122578B1 (de)
JP (1) JPS59206751A (de)
BR (1) BR8401842A (de)
DE (2) DE3314181A1 (de)
ES (1) ES8703028A1 (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505818A1 (de) * 1985-02-20 1986-08-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Ueberwachungs- und kontrolleinrichtung fuer schaltgeraete
US4801421A (en) * 1985-06-04 1989-01-31 Westinghouse Electric Corp. On-line monitoring and analysis of reactor vessel integrity
US4876058A (en) * 1987-10-05 1989-10-24 Westinghouse Electric Corp. Nuclear power generating station equipment qualification method and apparatus
US4926342A (en) * 1987-12-31 1990-05-15 Westinghouse Electric Corp. High pressure rotor stress damage accumulating method
US4852397A (en) * 1988-01-15 1989-08-01 Haggag Fahmy M Field indentation microprobe for structural integrity evaluation
US4864867A (en) * 1988-01-19 1989-09-12 Battelle Development Corporation Determining fracture mode transition behavior of solid materials using miniature specimens
US4894787A (en) * 1988-04-28 1990-01-16 Kaman Aerospace Corporation Automatic load monitoring system with remote sensing
US5140528A (en) * 1988-06-13 1992-08-18 Westinghouse Electric Corp. Method for evaluating relationship between the size of discontinuity indications from non-destructive examination of a turbine rotor, stress applied to the rotor and remaining life of the rotor
GB2220280B (en) * 1988-07-04 1992-10-21 Rolls Royce & Ass A control system for industrial plant
US4935195A (en) * 1988-08-29 1990-06-19 Westinghouse Electric Corp. Corrosion-erosion trend monitoring and diagnostic system
US5157619A (en) * 1988-10-31 1992-10-20 Westinghouse Electric Corp. Abnormal thermal loading effects monitoring system
DE4008560C2 (de) * 1989-03-17 1995-11-02 Hitachi Ltd Verfahren und Vorrichtung zum Bestimmen einer Restlebensdauer eines Aggregats
US5163011A (en) * 1990-09-27 1992-11-10 Kaman Aerospace Corporation Real time load monitoring system with remote sensing
SE468024B (sv) * 1991-02-19 1992-10-19 Asea Atom Ab Anordning foer materialprovning i kaernreaktor
KR100318330B1 (ko) 1991-04-08 2002-04-22 가나이 쓰도무 감시장치
CH686378A5 (de) * 1992-10-12 1996-03-15 Rieter Ag Maschf Maschinenverwaltungssystem.
US5359516A (en) * 1993-09-16 1994-10-25 Schwing America, Inc. Load monitoring system for booms
BR9509446A (pt) * 1994-10-26 1997-12-23 Siemens Ag Processo para a análise de um valor medido como também de um analisador de valor medido para a execução do processo
US5616866A (en) * 1995-09-19 1997-04-01 Jeol Ltd. Method of finding stress distribution from temperature variation pattern on surface of elastic body
US5761086A (en) * 1996-02-13 1998-06-02 Westinghouse Electric Corporation Apparatus and method for monitoring pressure-temperature margins
DE19711107C2 (de) * 1997-03-06 2003-12-18 Vattenfall Europe Generation Verfahren zur Ermittlung von Werkstoffschädigungen an einem rotierenden thermisch und dynamisch hochbeanspruchten Maschinenteil
US6449565B1 (en) * 1999-04-05 2002-09-10 United Technologies Corporation Method and apparatus for determining in real-time the fatigue life of a structure
FI107193B (fi) * 1999-06-03 2001-06-15 Rouvari Oy R Mittausanturi
DE19944435B4 (de) * 1999-09-16 2009-12-24 Volkswagen Ag Auswertungsverfahren zur Bestimmung des Schädigungsgrades einer Maschine oder Maschinenkomponente
FI20000325A0 (fi) * 2000-02-15 2000-02-15 Koivisto Marja Liisa Menetelmä rakenteen rasituksen määrittämiseksi
DE10060706A1 (de) * 2000-12-07 2002-06-13 Flowtec Ag Verfahren und eine Vorrichtung zur System- und/oder Prozeßüberwachung
TWI225836B (en) * 2002-02-20 2005-01-01 Sanyo Electric Co Medicine supply apparatus
US20030171879A1 (en) * 2002-03-08 2003-09-11 Pittalwala Shabbir H. System and method to accomplish pipeline reliability
US20050102668A1 (en) * 2002-03-18 2005-05-12 Siemens Aktiengesellschaft Method and device for representing the dependencies of components of a technical installation
US6694742B2 (en) * 2002-06-26 2004-02-24 General Electric Company Gas turbine system operation based on estimated stress
JP3778886B2 (ja) * 2002-10-24 2006-05-24 本田技研工業株式会社 疲労安全率検査装置及び疲労安全率検査方法
WO2005038613A2 (en) * 2003-10-17 2005-04-28 Hydralift Amclyde, Inc. Equipment component monitoring and replacement management system
US20050273277A1 (en) * 2004-01-14 2005-12-08 University Of Tennessee Research Foundation, Inc. Vehicle fatigue life and durability monitoring system and methodology
US7171314B2 (en) * 2004-09-30 2007-01-30 The Boeing Company Methods and systems for analyzing structural test data
US7467070B2 (en) * 2004-10-26 2008-12-16 Meyer Eric S Methods and systems for modeling stress intensity solutions for integrally stiffened panels
EP1653050A1 (de) * 2004-10-29 2006-05-03 Siemens Aktiengesellschaft Verfahren zur Ermittlung eines für den Ermüdungszustand eines Bauteils charakteristischen Kennwert
CN1329689C (zh) * 2004-10-31 2007-08-01 浙江大学 压力容器疲劳寿命安全预测方法
EP1906273A1 (de) * 2006-09-29 2008-04-02 Siemens Aktiengesellschaft Verfahren zum Betreiben einer grosstechnischen Anlage sowie Leitsystem für eine grosstechnische Anlage
WO2008115320A1 (en) * 2007-03-20 2008-09-25 Exxonmobil Upstream Research Company Method to measure tearing resistance
JP4202400B1 (ja) * 2007-07-27 2008-12-24 三菱重工業株式会社 き裂進展予測方法及びプログラム
CN101373495B (zh) * 2007-08-24 2010-09-29 西门子公司 使用寿命终点判定及当前历史使用寿命估计的方法和系统
US9645041B2 (en) 2012-02-06 2017-05-09 Endurica Llc Interpolation engine for analysis of time-varying load data signals
CN104464851B (zh) * 2014-12-19 2016-08-17 大连理工大学 一种用于核电站一回路高温管道热疲劳原型的监测方法
CN109979622B (zh) * 2017-12-27 2021-02-09 核动力运行研究所 核电厂稳压器疲劳寿命在线监测评估系统与方法
JP7272785B2 (ja) * 2018-12-05 2023-05-12 ナブテスコ株式会社 疲労度算出装置、疲労度算出方法、アクチュエータ、アクチュエータ制御装置および航空機
CN111578984B (zh) * 2020-04-17 2022-07-29 中铁建工集团有限公司 一种严寒地区站房全生命周期钢结构受力状态监测系统
EP4231192A4 (de) * 2020-10-26 2024-08-07 Siemens Energy Global Gmbh & Co Kg Verfahren und vorrichtung zur bestimmung der niederzyklischen ermüdung einer mechanischen komponente und speichermedium

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1404453U (de) *
US31750A (en) * 1861-03-19 Fastening fob
DE1025898B (de) * 1956-03-03 1958-03-13 Bbc Brown Boveri & Cie Einrichtung zur UEberwachung der Gehaeusewandtemperatur beim Anfahren von Dampf- oder Gasturbinen
DE1698476B1 (de) * 1961-02-16 1969-12-11 Bbc Brown Boveri & Cie Verfahren und Einrichtung zur UEberwachung der Zustandsaenderungen von Waermekraftmaschinen
DE1901226A1 (de) * 1968-01-15 1969-09-04 Smiths Industries Ltd Geraet zur Lebensdaueranzeige fuer ein Triebwerk
US3588265A (en) * 1968-04-19 1971-06-28 Westinghouse Electric Corp System and method for providing steam turbine operation with improved dynamics
DE1958257C3 (de) * 1969-11-20 1974-08-15 Pietzsch, Ludwig, Dr.-Ing., 7500 Karlsruhe Verfahren zur Lebensdauerüberwachung von dauerwechselbeanspruchten Maschinenoder Bauteilen und Vorrichtung zur Durchführung des Verfahrens
DE2151661B2 (de) * 1971-10-16 1975-10-09 Kraftwerk Union Ag, 4330 Muelheim Einrichtung zur Ermittlung der thermischen Beanspruchung einer Turbinenwelle
DE2314954C3 (de) * 1973-03-26 1982-08-26 Brown, Boveri & Cie Ag, 6800 Mannheim Anordnung zur laufenden Ermittlung und Überwachung der Lebensdauer von thermisch belasteten dickwandigen Bauelementen
US4330367A (en) * 1973-05-22 1982-05-18 Combustion Engineering, Inc. System and process for the control of a nuclear power system
GB1513428A (en) * 1975-06-18 1978-06-07 Rolls Royce Device for indicating the expended life of a rotating machine
FR2363095A1 (fr) * 1976-08-24 1978-03-24 Sfim Appareil de mesure de l'etat de fatigue d'une piece
US4046002A (en) * 1976-11-02 1977-09-06 General Electric Company Method and apparatus for determining rotor life expended
US4184205A (en) * 1977-11-25 1980-01-15 Ird Mechanalysis, Inc. Data acquisition system
SE413438B (sv) * 1978-08-30 1980-05-27 Stangakonsult Sett och anordning for utforande av settet att bestemma ett materials minsta belastningsomfang for spricktillvext, det vill sega dess troskelverde vid utmattning
US4179940A (en) * 1978-10-02 1979-12-25 Conoco, Inc. Structural failure detection method
US4213183A (en) * 1979-03-22 1980-07-15 Adaptronics, Inc. System for nondestructive evaluation of material flaw characteristics
DE2936882C2 (de) * 1979-09-12 1985-03-21 Kraftwerk Union AG, 4330 Mülheim Prüfeinrichtung zur Feststellung und Analyse von Materialfehlern
JPS5764141A (en) * 1980-10-07 1982-04-19 Hitachi Ltd Method and device for foreseening life of apparatus consisting of metallic structure
JPS5794627A (en) * 1980-12-05 1982-06-12 Komatsu Ltd Stress distribution measuring instrument
US4421716A (en) * 1980-12-29 1983-12-20 S. Levy, Inc. Safety monitoring and reactor transient interpreter
US4411858A (en) * 1981-01-30 1983-10-25 Scandpower, Inc. Power performance monitoring system for nuclear reactor fuel core
JPS57166541A (en) * 1981-04-08 1982-10-14 Hitachi Ltd Method and device estimating life of fluid receptacle at high temperature
GB2103801B (en) * 1981-08-04 1985-05-22 British Gas Corp Assessing lifetime of duct by measuring fluid pressure and temperature within the duct
DE3133222A1 (de) * 1981-08-21 1983-03-03 Kraftwerk Union AG, 4330 Mülheim Verfahren zur ermittlung des augenblicklichen und des zukuenftigen zustandes eines technischen prozesses mit hilfe von nichtlinearen prozessmodellen
DE3276265D1 (en) * 1981-09-10 1987-06-11 Hoesch Ag Method for determining defects in welds
FR2519464A1 (fr) * 1981-12-31 1983-07-08 Framatome Sa Procede de surveillance d'une centrale de production d'electricite equipee d'un reacteur nucleaire
US4459259A (en) * 1982-06-29 1984-07-10 The United States Of America As Represented By The United States Department Of Energy Digital computer operation of a nuclear reactor
US4524622A (en) * 1982-07-20 1985-06-25 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus of ultrasonic flaw detection

Also Published As

Publication number Publication date
US4764882A (en) 1988-08-16
DE3314181A1 (de) 1984-10-25
DE3479064D1 (en) 1989-08-24
BR8401842A (pt) 1984-11-27
ES531767A0 (es) 1987-01-16
ES8703028A1 (es) 1987-01-16
EP0122578A2 (de) 1984-10-24
EP0122578A3 (en) 1987-04-01
JPS59206751A (ja) 1984-11-22

Similar Documents

Publication Publication Date Title
EP0122578B1 (de) Verfahren zur Überwachung der Ermüdung von Bauteilen z.B. in Kernkraftwerken
DE68906894T2 (de) Erfassung von verbrauchswerten.
DE69324296T2 (de) Verfahren zur Diagnose eines laufenden Prozesses
DE10297609B4 (de) Verfahren und System zum Senden von lokalisierungs- und identitätsabhängiger Information an mobile Endgeräte
DE69910800T2 (de) Verfahren und Vorrichtung zur Überwachung des Betriebszustandes einer einzelnen Maschine
DE2500086A1 (de) Diagnostisches verbindungssystem fuer computergesteuerte werkzeugmaschinen
EP0140174A1 (de) Verfahren zum Ermitteln einer Leckstelle an druckführenden Behältern und Einrichtung dazu
EP3538963A1 (de) Verfahren zum betrieb eines zustandsüberwachungssystems einer schwingmaschine und zustandsüberwachungssystem
DE112016006264T5 (de) Anomalie-Detektionseinrichtung und Anomalie-Detektionssystem
EP2901538B1 (de) Verfahren und system zum betreiben eines elektrischen energieversorgungsnetzes
DE2045114B2 (de) Vorrichtung zum erstellen eines die kontur eines modells beschreibenden datentraegers
DE102011054006A1 (de) Überwachung und Diagnostizierung des Betriebs eines Generators
DE2715246C3 (de) Vorrichtung zur gleichzeitigen Anzeige mehrerer Betriebsmeßgroßen
EP2067080B1 (de) Verfahren zum betreiben einer grosstechnischen anlage sowie leitsystem für eine grosstechnische anlage
DE68912992T2 (de) Verfahren und elektrisches System zum Aufnehmen und Verarbeiten von zeitbezogenen Daten.
DE102020125218A1 (de) Diagnosegerät
CH643674A5 (de) Sicherheits-einrichtung fuer einen kernreaktor.
EP2162810B1 (de) Verfahren zum ermitteln der lebensdauer einer kraftwerkskomponente
DE102019207059A1 (de) Verfahren zur Validierung von Systemparametern eines Energiesystems, Verfahren zum Betrieb eines Energiesystems sowie Energiemanagementsystem für ein Energiesystem
DE102018213705A1 (de) Verfahren zum Berechnen von elektrischen Leistungstransfers für einen lokalen Energiemarkt sowie lokaler Energiemarkt
EP1598717A2 (de) Verfahren zum Überwachen einer Mehrzahl von Gasanlagen
DE1539750B2 (de) Anordnung zum ermitteln einer von vielen leitungen mit einem ineiner eigenschaft von einem fuer alle leitungen gleichen nor malwert abweichenden stroemenden medium
EP3748660A1 (de) Verfahren zur zustandsbestimmung einer antriebseinheit für ein hoch- oder mittelspannungsschaltgerät und hoch- oder mittelspannungsschaltgerät
DE102018110044B4 (de) Verfahren und Vorrichtung zum aufeinander abgestimmten Betreiben von elektrischen Einrichtungen
DE102021203001B4 (de) Verfahren zum Betrieb einer Heizkostenverteilervorrichtung und Heizkostenverteilervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR IT SE

17P Request for examination filed

Effective date: 19870216

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN

17Q First examination report despatched

Effective date: 19880926

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR IT SE

REF Corresponds to:

Ref document number: 3479064

Country of ref document: DE

Date of ref document: 19890824

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920428

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EAL Se: european patent in force in sweden

Ref document number: 84103962.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970410

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970421

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970617

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19980430

EUG Se: european patent has lapsed

Ref document number: 84103962.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990202