EP0116496B1 - Procédé de réglage du refroidissement secondaire d'une machine de coulée continue - Google Patents

Procédé de réglage du refroidissement secondaire d'une machine de coulée continue Download PDF

Info

Publication number
EP0116496B1
EP0116496B1 EP84400162A EP84400162A EP0116496B1 EP 0116496 B1 EP0116496 B1 EP 0116496B1 EP 84400162 A EP84400162 A EP 84400162A EP 84400162 A EP84400162 A EP 84400162A EP 0116496 B1 EP0116496 B1 EP 0116496B1
Authority
EP
European Patent Office
Prior art keywords
speed
product
temperature
cooling
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400162A
Other languages
German (de)
English (en)
Other versions
EP0116496A1 (fr
Inventor
Michel Larrecq
Denis Tromp
Jean-Pierre Birat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut de Recherches de la Siderurgie Francaise IRSID
Original Assignee
Institut de Recherches de la Siderurgie Francaise IRSID
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut de Recherches de la Siderurgie Francaise IRSID filed Critical Institut de Recherches de la Siderurgie Francaise IRSID
Priority to AT84400162T priority Critical patent/ATE27560T1/de
Publication of EP0116496A1 publication Critical patent/EP0116496A1/fr
Application granted granted Critical
Publication of EP0116496B1 publication Critical patent/EP0116496B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the invention relates to a method of adjusting the secondary cooling of a machine for continuously casting a metallurgical product, of the type according to which the current speed and the past speed of the metallurgical product are taken into account, as known per se.
  • finding the optimal secondary cooling setting amounts to finding a distribution of water along the product poured into the different cooling zones of the machine which ensures these conditions by optimizing another parameter directly related to the productivity of the machine: the casting speed. This optimization is currently well under control.
  • optimizing means finding a method of managing the water flows allowing the above conditions to be satisfied at all times.
  • the different models in this group differ from each other by the choice of watering curves and the cooling criteria to which they obey, and the method of calculating the average age.
  • the watering curves are chosen to best achieve the objectives of cooling, in particular to maintain the surface temperature in the decintration zone above the pocket of poor forgeability of the cast product (i.e. above 900 ° C. approximately as a rule) to avoid the formation of transverse cracks on the lower surface.
  • gravity can be systematic in the event of slowing down (or stopping) of the product, because, in this case, the temperature drops irresistibly and can be found in the region of bad forgeability and this even if one stops cooling, by simple game of radiation loss.
  • the object of the invention is to propose a method for adjusting the cooling which is free from the drawbacks mentioned.
  • This object is achieved, within the framework of a process of the aforementioned type at the head of this thesis, because one takes into account not only the present and past speeds of the product but also its future speed so as to compensate by anticipation a change in the temperature of the product in the decoupling zone due to a planned change in its speed.
  • the temperature change at the declinering point is compensated by anticipation by temporarily introducing into the regulation system instead of the real speed a fictitious speed between the current speed and the future speed whose effects on temperature are to be compensated for.
  • a “decoy” is introduced into the regulatory system.
  • the invention is based in part on the analysis of the situations encountered in the continuous casting process, this analysis showing that approximately 90% of the events are foreseeable: it is thus possible to provide for a change of the distributor basket, or a feed delay with , for example, half an hour in advance. It is therefore possible to intervene in advance and compensate for the subsequent cooling of the product in the final zone following the slowdown, by prior overheating (with respect to the normal regime) by means of an anticipated reduction in the cooling regime.
  • FIG. 1 is shown the evolution of the casting speed V as a function of time t.
  • the solid curve represents the actual casting speed: the speed remains constant for a certain time (part a), then, an event, for example a change of distributor, imposes a modification of speed, according to a profile b, going up to l 'possible stopping of the casting.
  • an anticipated dummy setpoint such as c, d or e
  • c, d or e is introduced into the regulating system according to the degree of anticipation chosen or possible.
  • Events are not all predictable with the same advance.
  • the anticipated speed profile is not necessarily identical to the actual speed profile at the time of the event, especially since, if the event is in itself predictable, the exact speed profile is not necessarily known with accuracy in advance, and this is all the more so since one generally has poor control over speed drops in practice.
  • FIG. 2 represents, as a function of the position L of an element of the product poured over the metallurgical height, the evolution of the temperature T of said element.
  • the discontinuous curve f represents the ideal temperature profile where the temperature is seen to decrease from the maximum temperature at the outlet of the ingot mold to the temperature corresponding to the forgeability threshold M, generally around 900 ° C. at the level of the Declining zone N.
  • Curve g represents the temperature profile during an event characterized by a drop in casting speed. This event disturbs the regulation and causes the surface temperature to drop below the forgeability threshold, in particular at the level of the drop zone. This problem arises in particular from the fact that the heat regulation operates fairly well for liquid steel, but is more difficult to control for solid steel, therefore, essentially at the level of the last elements, below the liquid well of the product. .
  • the curve h represents the temperature curve obtained thanks to the invention, where, having introduced into the regulation management system, an anticipated dummy speed profile, it was possible to maintain the temperature profile above the threshold of forgeability M.
  • FIG. 3 represents the curve for the evolution of the surface temperature at the level of the decinking zone, for elements taken out of the ingot mold at times S.
  • curve w corresponds to the evolution constant in a conventional regulation management system configured on the real speed curve ab
  • the curves x, y, z correspond to the evolution observed in the context of the invention by anticipating the event according to the respective speed profiles c, d, e of FIG. 1.
  • the threshold of bad forgingability is set at 1000 ° C. (represented by the line k)
  • the change of distributor distributes each curve w, x, y, z below said threshold, from the point A.
  • the curve w only goes back above the threshold at point B
  • the regulation according to the invention according to the curve z we are above the threshold from the point C, located approximately halfway between A and B.
  • the length of the cast product reaching decinking is substantially divided by two at a temperature below the threshold of good forgeability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Soil Working Implements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

  • L'invention concerne un procédé de réglage du refroidissement secondaire d'une machine de coulée continue d'un produit métallurgique, du type selon lequel on prend en compte, comme connu en soi, la vitesse acteulle et la vitesse passée du produit métallurgique.
  • L'importance du refroidissement secondaire, tant sur la qualité des produits coulés que sur la productivité de la machine de coulée n'est plus à démontrer. Un bon réglage du refroidissement secondaire permet notamment:
    • - d'assurer la solidification complète du produit avant un certain niveau dans la machine (redres- sage/oxycoupage),
    • - d'assurer une bonne tenue mécanique de la peau solidifiée le long de la machine et, en particulier, d'éviter les problèmes de gonflement dus à une température de surface trop élevée et générateurs de criques internes et de ségrégation centrales marquées,
    • - d'assurer une certaine régularité dans le refroidissement du produit et d'éviter par suite les brusques réchauffements ou refroidissements susceptibles de créer des criques au front de solidification (criques médianes),
    • - de maintenir la température de surface au décintrage dans la zone de bonne forgeabilité du métal et d'éviter ainsi la formation de criques transversales sur l'intrados.
  • En régime permanent, trouver le réglage optimal du refroidissement secondaire revient à trouver une répartition de l'eau le long du produit coulé dans les différentes zones de refroidissement de la machine qui assure ces conditions en optimisant un autre paramètre en relation directe avec la productivité de la machine: la vitesse de coulée. Cette optimisation est à l'heure actuelle bien maîtrisée.
  • En régime variable où l'évolution de la vitesse de coulée est imposée, optimiser revient à trouver un mode de gestion des débits d'eau permettant à chaque instant de satisfaire au mieux les conditions précitées.
  • Différents modèles de gestion du refroidissement secondaire ont déjà été proposés. Ils utilisent tous la vitesse de coulée comme paramètre actif pour le calcul des débits d'eau, mais peuvent se répartir en différents groupes suivant la méthode adoptée: on trouve notamment un premier groupe de modèles selon lesquels on détermine les débits d'eau dans les différentes zones d'arrosage en fonction uniquement de la vitesse de coulée instantanée (modèles ne tenant compte que du présent). Ces modèles sont en général mal adaptés à la coulée de brames pour tôles fortes, par exemple ils ne permettent généralement pas, lors de brusques ralentissements de la coulée, de maintenir la température de surface de la brame hors de la zone de mauvaise forgeabilité de la nuance coulée.
  • Dans un deuxième groupe de modèles, un détermine ces débits d'eau en fonction d'une vitesse moyenne définie à partir de l'histoire passée et présente de la vitesse de coulée (modèles tenant compte du passé et du présent).
  • Ces modèles sont donc basés sur:
    • 1. La définition d'un paramètre caractérisant dans chaque zone d'arrosage l'histoire passée et présente du produit coulé. Dans la plupart des cas, il s'agira de l'âge moyen des éléments de produit présents à chaque instant dans une zone déterminée; l'âge d'un élément de produit est défini comme le temps passé par cet élément dans la machine depuis sa création en lingotière (le produit étant, pour les besoins du modèle, virtuellement considéré comme une suite de tronçons élémentaires ou «éléments»).
    • 2. Le choix d'une courbe d'arrosage basée sur des critères métallurgiques et indiquant pour chaque zone le débit d'eau à pulvériser en fonction de la valeur du paramètre précédemment décrit.
  • Ils sont caractérisés par une répartition d'eau non constante entre les différentes zones, et la nécessité d'utiliser un ordinateur par suite des nombreux calculs à effectuer pour déterminer, à intervalles de temps réguliers, l'âge moyen des éléments dans les différentes zones.
  • Les différents modèles de ce groupe se différencient entre eux par le choix des courbes d'arrosage et les critères de refroidissement auxquels elles obéissent, et la méthode de calcul de l'âge moyen.
  • On se reportera en particulier à la demande de brevet français no 80/05592 (FCB) ou au brevet belge BE-A-827 040, servant de base pour l'élaboration du préambule de la revendication 1 indépendante, ou au modèle décrit par J. Faussai dans une publication de la Revue de Métallurgie - Juin 1978, p. 404-415, et dont l'organigramm en vue de l'écriture du programme informatique est donné dans les trois dernières pages du présent mémoire.
  • Les courbes d'arrosage sont choisies pour réaliser au mieux les objectifs du refroidissement, en particulier maintenir la température de surface dans la zone de décintrage au-dessus de la poche de mauvaise forgeabilité du produit coulé (à savoir au-dessus de 900°C environ en règle générale) pour éviter la formation de criques transversales sur l'intrados.
  • Les systèmes de gestion du refroidissement secondaire même les plus perfectionnés, ont encore des difficultés à atteindre à coup sûr cet objectif, en raison des importants régimes transitoires propres à la coulée continue, comme le changement de nuance d'acier, le remplacement du répartiteur ou plus simplement les démarrages et fins de coulées.
  • Ceci est d'autant plus vrai que les dernières zones de refroidissement sont très limitées en plage de réglage du refroidissement. En général, d'ailleurs, la dernière zone.juste en amont du point de décintrage est souvent démunie de moyens de refroidissement. Aussi, en cas de variations sensibles de la vitesse, on ne peut plus faire grand chose pour corriger le profil thermique de la partie du produit située dans ces zones terminales. Ceci n'est pas très grave, si la transition consiste en une augmentation de la vitesse, car, dans ce cas, la température augmente. Mais il ne fait pas aller trop loin dans cette voie, en raison des risques de gonflement ou de découpe du produit sur coeur liquide.
  • Par contre, la gravité peut être systématique en cas de ralentissement (ou arrêt) du produit, car, dans ce cas, la température chute irrésistiblement et peut se retrouver dans la région de mauvaise forgeabilité et ceci même si on stoppe le refroidissement, par le simple jeu de la perte par rayonnement.
  • Le but d'invention est de proposer un procédé de réglage du refroidissement qui soit exempt des inconvénients mentionnés.
  • Ce but est atteint, dans le cadre d'un procédé du type précité en tête de ce mémoire, du fait que l'on prend en compte non seulement les vitesses présentes et passées du produit mais également sa vitesse future de façon à compenser par anticipation un changement de la tmpérature du produit dans la zone de décintrage dû à une modification prévue de sa vitesse.
  • De façon plus spécifique, le refroidissement secondaire étant géré par un système de régulation paramétré sur la vitesse de coulée réelle du produit, on compense par anticipation le changement de température au point de décintrage en introduisant temporairement dans le système de régulation à la place de la vitesse réelle une vitesse fictive comprise entre la vitesse actuelle et la vitesse future dont on veut compenser les effets sur la température.
  • Autrement dit, on introduit un «leurre» dans le système de régulation.
  • L'invention repose en partie sur l'analyse des situations rencontrées dans le processus de coulée continue, cette analyse montrant qu'environ 90% des événements sont prévisibles: on peut ainsi prévoir un changement du panier répartiteur, ou un retard d'alimentation avec, par exemple, une demi-heure d'avance. On peut donc intervenir par anticipation et compenser le refroidissement ultérieur du produit dans la zone finale suite au ralentissement, par une surchauffe préalable (par rapport au régime normal) grâce à un abaissement par anticipation du régime de refroidissement.
  • L'invention sera mieux comprise grâce à la description qui va en être faite et se référant aux dessins annexés sur lesquels:
    • - la figure 1 est un graphique des profils de vitesse de coulée réelle ou factice,
    • - la figure 2 est un graphique de l'évolution de température en fonction de la progression d'un élément donné du produit, dans trois cas respectivement idéal, modifié par un événement, et corrigé par anticipation selon l'invention,
    • - la figure 3 est un graphique de l'évolution de température du produit au niveau du décintrage pour les éléments successifs qui y parviennent.
  • Sur la figure 1 est représenté l'évolution de la vitesse de coulée V en fonction du temps t. La courbe pleine représente la vitesse réelle de coulée: la vitesse reste constante un certain temps (partie a), puis, un événement, par exemple un changement de répartiteur, impose une modification de vitesse, selon un profil b, allant jusqu'à l'arrêt éventuel de la coulée.
  • Alors que dans le système de régulation connu on prend cette vitesse réelle comme paramètre de régulation, selon l'invention on introduit dans le système régulateur une consigne factice anticipée, telle que c, d ou e selon le degré d'anticipation choisi ou possible. Les événements ne sont en effet pas tous prévisibles avec la même avance. De plus, quand bien même ils sont prévisibles avec und grande avance, on n'anticipe pas obligatoirement leur venue avec l'avance totale: en règle générale (mais non critique) on adopte l'anticipation maximale compatible avec l'ensemble des contraintes métallurgiques de la coulée. C'est ainsi qu'on évite une anticipation trop grande qui peut entraîner une température au-delà du seuil acceptable à la surface du produit au niveau du décintrage ou le long du produit.
  • Le profil de vitesse anticipé n'est pas nécessairement identique au profil réel de vitesse au moment de l'événement, d'autant que, si l'événement est en lui-même prévisible, le profil exact de vitesse n'est pas obligatoirement connu avec exactitude à l'avance, et ce, d'autant plus que l'on maîtrise en général assez mal en pratique les chutes de vitesse.
  • La figure 2 représente en fonction de la position L d'un élément du produit coulé sur la hauteur métallurgique, l'évolution de la température T dudit élément. La courbe discontinue f représente le profil idéal de température où l'on voit la température décroître depuis la température maximale à la sortie de la lingotière jusqu'à la température correspondant au seuil de forgeabilité M, généralement autour de 900°C au niveau de la zone de décintrage N.
  • La courbe g représente le profil de la température lors d'un événement caractérisé par une chute de vitesse de coulée. Cet événement perturbe la régulation et fait descendre la température de surface au-dessous du seuil de forgeabilité, notamment au niveau de la zone de décrintra- ge. Ce problème intervient notamment du fait que la régulation de chaleur s'opère assez bien pour l'acier liquide, mais se maîtrise plus difficilement pour l'acier solide, donc, essentiellement au niveau des derniers éléments, en-dessous du puits liquide du produit.
  • La courbe h représente la courbe de température obtenue grâce à l'invention, où, ayant introduit dans le système de gestion de la régulation, un profil de vitesse factice anticipé, il a été possible de maintenir le profil de température au-dessus du seuil de forgeabilité M.
  • La figure 3 représente la courbe d'évolution de la température de surface au niveau de la zone de décintrage, pour des éléments sortis de la lingotière à des instants S. On a représenté quatre courbes: la courbe w correspond à l'évolution constante dans un système classique de gestion de la régulation paramétré sur la courbe de vitesse réelle ab; les courbes x, y, z correspondent à l'évolution constatée dans le cadre de l'invention en anticipant l'événement selon les profils de vitesse respectifs c, d, e de la figure 1.
  • Si l'on fixe par exemple à 1000°C le seuil de mauvaise forgéabilité (représenté par la ligne k), on voit que le changement de répartiteur entraîne chaque courbe w, x, y, z en-dessous dudit seuil, à partir du point A. Mais alors que pour un système classique, la courbe w ne remonte au-dessus du seuil qu'au point B, pour la régulation conforme à l'invention selon la courbe z, on se trouve au-dessus du seuil dès le point C, situé à mi-distance environ entre A et B. Autrement dit, grâce à la régulation z, on divise sensiblement par deux la longueur du produit coulé atteignant le décintrage à une température en-dessous du seuil de bonne forgeabilité.
  • La réalisation du programme d'ordinateur pour la mise en oeuvre de l'invention ne posera aucune difficulté majeure à partir de l'enseignement contenu dans la publication mentionnée au début et de l'organigramme donné dans les pages suivantes et qu'il suffira de compléter en insérant une procédure d'anticipation définissant une vitesse fictive de coulée qui permet d'intervenir sur le refroidissement du produit avant que l'événement perturbateur ne se produise réellement.

Claims (2)

1. Procédé de réglage du refroidissement secondaire d'une machine de coulée continue, d'un produit métallurgique soumis à une opération de décintrage, selon lequel le refroidissement secondaire est géré par un système de régulation paramétré sur la vitesse de coulée du produit, procédé du type selon lequel on prend en compte, comme connu en soi, les vitesses actuelle et passée du produit, caractérisé en ce qu'on compense par anticipation, un changement de température du produit dans la zone de décintrage, dû à une modification prévue de sa vitesse, en introduisant dans le système de régulation, à la place de la vitesse réelle, une vitesse fictive comprise entre la vitesse actuelle et la vitesse future dont on veut compenser les effets sur la tempé-rature.
2. Procédé selon la revendication 1, caractérisé en ce que l'on compense un ralentissement de la vitesse de coulée par une diminution anticipé du refroidissement.
EP84400162A 1983-01-28 1984-01-25 Procédé de réglage du refroidissement secondaire d'une machine de coulée continue Expired EP0116496B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84400162T ATE27560T1 (de) 1983-01-28 1984-01-25 Verfahren zur regelung der sekundaerkuehlung einer stranggiessmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8301404A FR2540016B1 (fr) 1983-01-28 1983-01-28 Procede de reglage du refroidissement secondaire d'une machine de coulee continue
FR8301404 1983-01-28

Publications (2)

Publication Number Publication Date
EP0116496A1 EP0116496A1 (fr) 1984-08-22
EP0116496B1 true EP0116496B1 (fr) 1987-06-03

Family

ID=9285413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400162A Expired EP0116496B1 (fr) 1983-01-28 1984-01-25 Procédé de réglage du refroidissement secondaire d'une machine de coulée continue

Country Status (10)

Country Link
US (1) US4562880A (fr)
EP (1) EP0116496B1 (fr)
JP (1) JPS59141356A (fr)
AT (1) ATE27560T1 (fr)
AU (1) AU569486B2 (fr)
CA (1) CA1219729A (fr)
DE (1) DE3464018D1 (fr)
ES (1) ES8500104A1 (fr)
FR (1) FR2540016B1 (fr)
ZA (1) ZA84511B (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699202A (en) * 1986-10-02 1987-10-13 Bethlehem Steel Corporation System and method for controlling secondary spray cooling in continuous casting
FR2643580B1 (fr) * 1989-02-27 1991-05-10 Siderurgie Fse Inst Rech Procede de reglage du refroidissement secondaire d'une machine de coulee continue de produits metalliques
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
AU4596899A (en) 1998-07-10 2000-02-01 Ipsco Inc. Method and apparatus for producing martensite- or bainite-rich steel using steckel mill and controlled cooling
JP4813645B2 (ja) * 1999-11-16 2011-11-09 日立金属株式会社 磁極ユニット、その組立方法および磁界発生装置
US20090084517A1 (en) 2007-05-07 2009-04-02 Thomas Brian G Cooling control system for continuous casting of metal
AT512214B1 (de) 2011-12-05 2015-04-15 Siemens Vai Metals Tech Gmbh Prozesstechnische massnahmen in einer stranggiessmaschine bei giessstart, bei giessende und bei der herstellung eines übergangsstücks
ES2443842B1 (es) * 2012-08-16 2015-02-10 Gerdau Investigacion Y Desarrollo Europa, S.A. Procedimiento de control de un sistema de refrigeración secundaria en el proceso de colada continua.
EP3318342A1 (fr) 2016-11-07 2018-05-09 Primetals Technologies Austria GmbH Procédé de fonctionnement d'un ensemble de coulée-laminage
CN106735034B (zh) * 2016-12-20 2019-03-05 中冶连铸技术工程有限责任公司 板坯二冷水幅切控制方法
CN112355265B (zh) * 2020-11-23 2021-07-30 福建三宝钢铁有限公司 连铸板坯三角区裂纹控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4073332A (en) * 1974-09-26 1978-02-14 Centre De Recherches Metallurgiques Centrum Voor Research In De Metallurgie Method of controlling continuous casting of a metal
BE827040A (fr) * 1975-03-21 1975-09-22 Procede pour controler la coulee continue de metaux
JPS6016300B2 (ja) * 1977-02-22 1985-04-24 日本鋼管株式会社 連続鋳造設備における2次冷却水制御方法及びその装置
JPS5633157A (en) * 1979-08-28 1981-04-03 Sumitomo Metal Ind Ltd Controlling method for secondary cooling water in continuous casting machine
FR2477925A1 (fr) * 1980-03-13 1981-09-18 Fives Cail Babcock Procede de controle du refroidissement du produit coule dans une installation de coulee continue

Also Published As

Publication number Publication date
AU569486B2 (en) 1988-02-04
ZA84511B (en) 1984-09-26
ES529239A0 (es) 1984-10-01
FR2540016A1 (fr) 1984-08-03
CA1219729A (fr) 1987-03-31
US4562880A (en) 1986-01-07
EP0116496A1 (fr) 1984-08-22
AU2364084A (en) 1984-08-02
FR2540016B1 (fr) 1985-06-07
ES8500104A1 (es) 1984-10-01
JPS59141356A (ja) 1984-08-14
DE3464018D1 (en) 1987-07-09
ATE27560T1 (de) 1987-06-15

Similar Documents

Publication Publication Date Title
EP0116496B1 (fr) Procédé de réglage du refroidissement secondaire d'une machine de coulée continue
EP0036342B1 (fr) Procédé de contrôle du refroidissement du produit coulé dans une installation de coulée continue
CN101983800B (zh) 方坯连铸机二冷配水控制方法
RU2510782C1 (ru) Способ отливки составного слитка с компенсацией изменения температуры металла
FR2668097A1 (fr) Procede de regulation de temperature pour une machine de moulage par injection.
CN109865810B (zh) 一种冶金连铸冷却水的智能控制方法
US6793006B1 (en) Automation of a high-speed continuous casting plant
EP0776708B1 (fr) Procédé et dispositif pour le prélaminage controlé de brames minces sortant d'une installation de coulée continue
CN1054558C (zh) 金属特别是方钢坯的连续铸造法
EP3733323B1 (fr) Procédé et installation de coulée en continu d'une barre de coulée
CN106001479B (zh) 一种连铸机冷却区的动态水量控制方法及系统
JP2019140954A (ja) 配水制御システム
MX2014004229A (es) Metodo para controlar una planta de fundicion.
CN113134587B (zh) 一种通过塞棒开口度变化趋势判断水口堵塞和溶损的方法
JPH02307652A (ja) 薄物連続鋳造におけるクラウン制御方法
JPH09103851A (ja) 連続圧延鋳造機を始動するための方法および装置
JPS6049850A (ja) 連続鋳造設備における二次冷却材流量制御方法
CN102756105A (zh) 根据铸坯的凝固历程实现在线动态配水的方法
FR2554026A2 (fr) Procede de controle du refroidissement du produit coule dans une installation de coulee continue
FR2643580A1 (fr) Procede de reglage du refroidissement secondaire d'une machine de coulee continue de produits metalliques
EP0382702B1 (fr) Procédé de fabrication d'une brame mince en acier par coulée continue
JPS606737B2 (ja) 連続鋳造における2次冷却水制御方法
SU1197771A1 (ru) Способ автоматического регулирования режима охлаждения непрерывного слитка и устройство для его осуществления.
JPH04344862A (ja) 連続鋳造設備のモールド湯面制御方法
CN116408442A (zh) 普通重熔用铝锭的智能化控制系统及方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850207

17Q First examination report despatched

Effective date: 19860219

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 27560

Country of ref document: AT

Date of ref document: 19870615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 3464018

Country of ref document: DE

Date of ref document: 19870709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910124

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910227

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920125

Ref country code: GB

Effective date: 19920125

Ref country code: AT

Effective date: 19920125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

Ref country code: BE

Effective date: 19920131

BERE Be: lapsed

Owner name: INSTITUT DE RECHERCHES DE LA SIDERURGIE FRANCAISE

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

EUG Se: european patent has lapsed

Ref document number: 84400162.8

Effective date: 19920806