EP0114298B1 - Heating chamber for running yarns - Google Patents

Heating chamber for running yarns Download PDF

Info

Publication number
EP0114298B1
EP0114298B1 EP83112564A EP83112564A EP0114298B1 EP 0114298 B1 EP0114298 B1 EP 0114298B1 EP 83112564 A EP83112564 A EP 83112564A EP 83112564 A EP83112564 A EP 83112564A EP 0114298 B1 EP0114298 B1 EP 0114298B1
Authority
EP
European Patent Office
Prior art keywords
thread
heating chamber
chamber according
groove
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83112564A
Other languages
German (de)
French (fr)
Other versions
EP0114298A1 (en
Inventor
Walter Dr. Runkel
Erich Dr. Lenk
Karl Dr. Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19833308251 external-priority patent/DE3308251A1/en
Application filed by Barmag AG filed Critical Barmag AG
Publication of EP0114298A1 publication Critical patent/EP0114298A1/en
Application granted granted Critical
Publication of EP0114298B1 publication Critical patent/EP0114298B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/001Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass in a tube or vessel
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/005Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one rotating roll

Definitions

  • the invention relates to a heating chamber for running threads.
  • This heating chamber is suitable for the treatment of a thread with saturated water vapor (saturated steam) under increased pressure.
  • Labyrinth seals and gap seals at the thread inlet and thread outlet are already known.
  • Labyrinth seals which consist of plates stacked on top of each other with diaphragm openings, which form a wide opening due to the relative movement of the plates in the threading position and a labyrinth in the operating position (DE-A-2643787, US-A-2,529,563, US-A-2,351,110) suitable for threading, but have proven to be fundamentally unsuitable in operation, since the need for undisturbed thread running cannot be reconciled with the need to provide a tortuous outlet path to avoid loss of heating medium.
  • Gap seals are indeed suitable. With them, a large gap length results in a sufficiently large reduction in losses.
  • the known heating chamber threading is readily possible by removing the bolts from the end regions, but when the bolts are inserted, the thread is easily damaged, since the thread does not run at a defined point, and it is a very significant disadvantage that When threading the thread, cool the bolts to such an extent that a steady operating state can only be reached after threading in after a long time and with a correspondingly high thread drop.
  • the known heating chamber is complex in terms of production technology and poor in terms of operation.
  • the present invention solves these disadvantages of the prior art and the problems presented in that the two bodies that make up the heating chamber at least in the end regions lie on one another with their flat or curved surfaces (closing surfaces) and slide relative to one another on these surfaces and are movable transversely to the surface distortion (surface deformation) introduced in at least one of the closing surfaces.
  • the closing surfaces are adapted to one another in such a way that the pressure medium, i.e. the saturated water vapor does not escape even at high pressure.
  • the thread channel serving for thread guidance is formed in that the surface of the first body perpendicular or transverse to the direction of movement has at least one recess in the form of a groove, step or similar warp (surface deformation) which extends along the thread path and is straight or curved.
  • This surface deformation is covered in the one relative position of the two bodies (operating position) by the closing surfaces of the second body, so that a narrow thread guiding gap (thread channel) is created in this relative position, which is narrow enough to avoid impermissible pressure losses of the heating chamber, and which is shaped in this way is that there is a targeted pressure reduction along the gap with targeted cooling of the thread.
  • the closing surface of the second body in one embodiment of the invention also has a groove (threading groove), the other Relative position (threading position) of the two bodies covers the thread-guiding groove of the first body and forms with it a wide gap suitable for the axial threading of the thread, in particular the pneumatic threading.
  • This only the threading groove of the second body (threading groove) is preferably larger in cross section than the thread groove of the first body and has bevelled flanks at least on one side, on which the thread when the body is retracted into the relative position in the direction of the thread groove of the first body is distracted.
  • the surface deformation of the closing surface of the second body is carried out as an end edge of the closing surface or slot in the closing surface of the second body, which in the threading position of the body releases the thread groove in an insertion plane and thereby the insertion of a running thread transverse to it Running direction allowed.
  • the surfaces can be flat or curved in the thread running direction and / or slightly curved transversely to the thread running direction.
  • the closing surfaces of a body can also lie in two planes that intersect in the area of the surface deformation, so that the surface deformations form steps of equal size in both bodies.
  • the steps in the operating position of the two bodies form a narrow gap and, depending on the size of the relative movement in the threading position, either an extended gap suitable for axial threading or a thread insertion slot for inserting the running thread if the step of one's own body is the front edge of the dominated other body in the threading position.
  • the thread heating chamber according to the invention can be in the operating position of the two bodies, in particular at the thread entrance and / or thread exit, to a small width of the thread channel of e.g. 0.2 to 0.5 mm width can be set so that a running thread can be guided undisturbed, but the losses of the heating medium are low.
  • the gap width, in particular in the thread outlet area, can be different over the gap length.
  • Relaxation chambers or vacuum chambers can also be connected to the gap in order to obtain a targeted pressure relaxation gradient along the course of the thread.
  • the heating chamber according to the invention can have, for sealing in the end regions only, the bodies which are movable towards one another with surface deformations, one of the bodies being fixed in place on an end flange of the heating chamber and the other being able to perform a relative movement.
  • the bodies are preferably designed as inner cylinders and outer cylinders which can be rotated relative to one another. Because an axial movement is forced on one body at the same time, it can be achieved that this body lies sealingly against the end flange.
  • the bodies are preferably provided with a thread pairing, the groove of the inner cylinder being cut down to the thread base. In this version, the thread forms a labyrinth with an additional sealing effect in the operating position.
  • the two-part filament heating chamber can also be provided with recesses in its closing surfaces in the central region of its gap length, so that the clear width of the gap widens here.
  • this can be useful in order to allow a certain ballooning of the thread and / or to avoid or reduce wall friction of the thread.
  • this ensures that the pressure of the saddle steam is constant over the central area of the heating chamber.
  • the central area provided with recesses can e.g. extend over 300 mm and less.
  • the heating chamber according to the invention also proves particularly useful when one of the bodies, and preferably the stationary body, is provided with a so-called preheating channel - also referred to in this application as a “detour channel”.
  • This preheating duct can simultaneously have stub lines in the thread guiding duct and thus be part of the steam feed line.
  • the preheating channel has the advantage of heating the body into which it is inserted.
  • the movable body remains in contact with the heated body even in the threading position and the heat is also transferred to this body.
  • the preheating duct therefore leads only in connection with the invention to a decisive improvement in the heat management and the stability of the operating behavior of the heating chamber.
  • the joints between the closing surfaces can be made so tight both by suitable manufacturing techniques and by applying large clamping forces that no unacceptable losses of the heating medium have to be feared.
  • Sealing by means of a sealing plate placed between the closing surfaces of the two bodies is out of the question, since such a sealing plate generally also has a heat-insulating effect and therefore impedes the temperature balance between the two bodies.
  • two sealing strips are used to seal the heating chambers, which extend along and on both sides of the thread channel at a certain distance (e.g. 5 mm). Sealing strips or other transverse seals can also be provided in the inlet and outlet area of the heating chamber transversely to the thread channel. Without these sealing strips, the two bodies would have to be pressed very firmly against one another with their closing surfaces in order to seal the thread channel. This is disadvantageous in itself, but has the particular disadvantage that, if the thread channel is completely sealed, the amount of heat for heating the two bodies - apart from a possibly existing preheating channel - would have to be transported exclusively via the narrow thread channel.
  • these sealing strips have the advantage that a separating joint of defined and predeterminable area is formed on both sides of the thread channel, into which the heating gas, in particular saturated steam, can penetrate without being able to escape.
  • the delimiting closing surfaces on both sides of the thread channel are also heated. Therefore, this measure also serves for the uniform and rapid heating of the two bodies forming the heating chamber and for the stability of the operating behavior.
  • Pneumatic pressure can be used to seal the heating chamber, in particular the parting line, by means of which one or both bodies, on their rear side facing away from the heating chamber, are subjected to the pressure of a gas on a defined surface directly or by means of pressurized expansion bodies.
  • the pressurization can be carried out with a foreign medium, e.g. Compressed air, happen.
  • the pressurization is preferably carried out with the saturated steam itself.
  • the area exposed to saturated steam in the area of the heating duct is smaller than the area exposed to saturated steam on the rear.
  • sealing strips can also be provided on the rear side with saturated steam, which enclose an area which is larger than the area enclosed between the sealing strips in the area of the thread channel.
  • the pressurization of a body with a pressure cushion of the saturated steam itself in addition to the pressure, has the particular advantage that at least one of the bodies forming the heating chamber, preferably the one that is movable and not provided with a preheating channel, also on that of its closing surface opposite side is heated, so that a possibly low temperature gradient occurs across the cross section of this body.
  • the advantage of the heating chamber according to the invention is, in particular, that the thread can be threaded easily, quickly and safely and that the sealing system, in particular sealing strips and pressing on the body of the heating chamber, brings about a complete seal.
  • the problem-free threading on the other hand made it possible to make the narrow, gap-shaped end regions very narrow - limited only by the thread titer - and for any length. This almost completely prevents steam from escaping.
  • Steam pressures of saturated water steam with temperatures up to over 200 ° C as well as a steady increase of the steam pressure from atmospheric pressure up to operating pressure and the steam temperature for the incoming thread and a steady decrease of the pressure up to atmospheric pressure and the temperature for the outgoing thread are made possible.
  • the steady decrease in steam pressure also eliminates the risk of steam flow damaging the thread.
  • the width of the thread channel formed by the surface deformations is adapted to the thread titer, specifically in the end regions of the thread channel to a length of 100 to 300 mm, in order to achieve a good sealing effect.
  • the width of the thread channel it is possible to guide several threads in one thread channel.
  • a plurality of surface faults forming the thread channel can be provided on a body, one thread or several threads then being guided in each thread channel.
  • the heating chamber according to the invention is therefore also suitable for heating thread sheets, e.g. in coulter drafters.
  • the advantage of heat treatment of a running thread, in particular multifilament chemical thread, with saturated water vapor instead of strongly overheated water vapor or hot air is that the saturated water vapor has a large latent heat content (heat of vaporization) and because of the very high heat transfer coefficients Condensation - in contrast to convection, radiation or direct heat conduction - enables a strong heating of the thread at high thread speeds and short dwell times.
  • Saturated steam treatment also results in a uniform temperature distribution and good temperature stability over the entire length of the treatment route.
  • the treatment section can also be specified as desired by connecting several treatment chambers in series, since the required uniformity and constancy of the treatment temperature for several treatment chambers can be ensured by adjusting the pressure and by pressure equalization between the treatment chambers - with simultaneous removal of inert components.
  • the losses at the entrance and exit of the treatment section can be kept low and lower than with comparable air heating sections if the thread entry and thread exit locks are designed accordingly.
  • the saturated steam treatment chambers according to the invention are particularly suitable for those thread treatments in which a large amount of heat has to be transferred to the thread at a high thread speed within a relatively short dwell time, as e.g. is the case with synthetic fibers in spinning processes, spin-stretching processes, spin-texturing or spin-stretch texturing processes and stretch texturing, draw twist, stretch winding and other stretching processes.
  • the saturated steam treatment chamber can advantageously be used to apply the drawing temperature in a localized thread area between two godet units, the second godet unit usually being referred to as the drawing godet and being heated to approximately 120 ° C.
  • the heating chamber according to this invention can also be used for fixing, tempering and / or shrinking the thread after the actual drawing.
  • the saturated steam treatment chamber according to the invention can also be used to spin a thread in a continuous process, in particular also polyester or polyamide threads, and then immediately - optionally with the interposition of a stretching zone or with simultaneous stretching - to be subjected to false twist treatment in the saturated steam treatment zone.
  • saturated steam treatment is also that in saturated steam treatment, the thread is moistened due to the condensation of the steam into water. When leaving the filament heating chamber, there is therefore a very sudden evaporation of water as a result of the pressure relief, and thus the filament cools down to the boiling point of the water.
  • Saturated steam treatment is therefore suitable for all processes in which thread heating and forced cooling follow one another directly, in particular for false twist texturing, in which case, according to the invention, by shaping the outlet gap and other measures already mentioned with the targeted pressure release, a temperature gradient in the sense of targeted cooling of the Thread is achieved.
  • the saturated steam treatment chamber is also suitable for thread heating in a customary texturing or sequential or simultaneous stretch texturing process or for post-treatment of the thread textured by air jet treatment.
  • the heating chamber 2 is shown with the thread end 1 in section. It should be mentioned that the thread outlet end of the heating chamber can be designed accordingly.
  • the steam feed channel into the heating chamber 2 is not shown. Saturated steam is produced under a pressure of e.g. 20 bar supplied so that a saturated steam temperature of approx. 210 ° C exists.
  • An outer body 4 (outer cylinder) is placed on the end flange 3 of the heating chamber 2.
  • the outer body 4 is tightly clamped to the end flange 3, but - as will be explained later - a certain relative movement is possible.
  • a seal (not shown here) can be placed between the end flange 3 and the outer body 4.
  • An inner body 6 is located in the inner bore 5 of the outer body 4.
  • This inner body 6 is designed as a cylinder (inner cylinder) with a trapezoidal thread 7.
  • the inner bore 5 of the outer cylinder has a meshing thread.
  • the inner cylinder 6 with its thread is adapted to the inner bore 5 with its thread as tightly as possible.
  • At the bottom of the bore 5 there is the sealing plate 8. It can be the same sealing plate that is also placed between the end flange 3 and the outer body 4 for the purpose of sealing.
  • the end flange 3 has a hole 9 through which the thread emerges from the heating chamber.
  • a corresponding hole is in the sealing plate 8.
  • the jacket of the bore 5 in the outer body 4 cuts - seen in the projection onto a plane - this hole and has a groove 10 which - in the radial direction - through the Ge winch through the hole extends into the core and is aligned in the longitudinal direction with the hole 9 of the end flange.
  • This groove 10 is provided as a thread guide groove (thread groove).
  • the inner cylinder 6 has - as can be seen in FIG. 1 - a corresponding groove 11. This groove 11 only extends to the core of the inner cylinder 6. However, it can also extend into the core.
  • the flanks 12 of the groove 11 are flared in the circumferential direction.
  • the inner cylinder has a handle 13 with which the inner cylinder 6 can be rotated relative to the outer cylinder 4.
  • the thread groove 10 in the inner jacket of the outer body 4 and the groove 11 in the thread and possibly the core of the inner body 6 form a wide threading slot through which the thread can be threaded.
  • the inner wall of the heating chamber 2 runs in a funnel shape towards the hole 9 in the end flange 3.
  • the threading groove 11 in the inner cylinder 6 is rotated into the position (operating position) shown in FIG. 6.
  • the thread groove 10 used for thread guidance is reduced to a narrow gap, the width of which is so small that the heating gas or saturated steam losses and pressure losses are small.
  • the flanks 14 of the thread groove 10 which are cut into the thread of the outer body, run essentially radially and because the flanks 12 of the threading groove 11 in the inner cylinder are flared, the thread is twisted along the flanks when the inner cylinder 6 is rotated 14 transported into the thread groove 10 serving the thread guide.
  • the outer body 4 is divided in a plane which lies between the center 15 of the inner cylinder 6 and the thread groove 10 in the outer body.
  • a seal 16 is inserted into the parting plane, which is elastic and thicker than the spacers in the relaxed state.
  • the two halves of the outer body are clamped together by screws 18 after the seal 16 and the spacers 17 have been inserted beforehand. Only then is the thread cut into the bore 5 of the outer body 4. This also provides the seal 16 with a thread. This causes the seal to seal the thread with the core and flanks on both sides of the thread groove 10 as a sealing strip.
  • the flange screws can be moved slightly in the elongated holes of the end flange 3.
  • the spacers 17 can be made of a relatively soft metal, so that it is also possible to readjust the seal by pressing the spacers together.
  • the spacers can also be missing. Your advantage is initially that the seal is set independently of the fitter during assembly.
  • the sealing strips have the effect that the separating joint between the inner and outer cylinders in the area of the sealing strips is heated up by the heating gas / saturated steam spreading there, so that no temperature drop occurs in the area of the thread groove 10.
  • the exemplary embodiment according to FIGS. 4 to 6 has the inner cylinder 6, which is firmly connected to the flange 3, and the outer body 4 (outer cylinder) with a handle 13, which is rotatable around it.
  • the inner cylinder 6 has the groove 10 (thread groove) serving for thread guiding over its entire length.
  • This thread groove 10 is expanded in the central region 19 in the circumferential direction and in depth, so that the actual heating chamber is created there, in which the thread can move, oscillate, balloon, without touching the walls, but in which, in particular, the saturated steam under a uniform pressure stands and therefore has a uniform temperature.
  • the outer cylinder 4 has a groove 11, which is made in the inner casing and the flanks 12 of which run gently from the bottom of the groove onto the inner casing.
  • the flange 3 has a hole 20, the front region 21 of which in the top view according to FIG. 5 covers the thread guide groove 10.
  • the flanks 22 of the hole 20 are therefore flush with the flanks of the thread guide groove 10 in the top view according to FIGS. 5 and 6.
  • the outer cylinder 4 is divided and is clamped by the flanges 23 and screws 24 in such a way that the inner jacket closes tightly around the outer jacket of the inner body 6.
  • an elastic spacer plate 26 e.g. Sealing plate.
  • Longitudinal seals 25 designed as sealing strips are provided on both sides of the thread groove 10 in the inner cylinder 6, which seal the thread groove 10 and also its central region 19 in the circumferential direction.
  • the inner cylinder 6 has a central bore 27 serving as a preheating channel, which is closed at the top and communicates with the connecting pipe 28 at the bottom. Through the connection pipe 28, the bore 27 is charged with a pressurized heating gas, in particular saturated steam.
  • the preheating channel 27 is connected to the thread groove 10, in particular its central region 19 through holes 29.
  • the groove 11 of the outer cylinder is brought into a position in which it covers the hole 20 in the flange 3 in the vertical direction and the thread groove 10 in the radial direction . This creates a large threading opening through which the thread can be threaded pneumatically or by means of a bristle or similar means.
  • the exemplary embodiment according to FIGS. 7 to 9 largely corresponds to that shown in FIGS. 4 to 6.
  • the heating chamber consists of a tubular inner cylinder 6 with thread groove 10.
  • the thread groove 10 is narrow in the thread inlet part 1 and in the thread outlet part and widens in the central region 19.
  • the inner cylinder 6 is fixed in place on the flange 3. Its central bore, which serves as a preheating channel 27, is connected to steam line 28 with saturated water vapor. The water vapor can escape through the holes 29 into the enlarged central region 19 of the thread groove 10.
  • the inner cylinder 6 is surrounded by an outer cylinder 4, which has an insertion gap 32 (slot) for the thread.
  • the outer cylinder 4 is surrounded by bandages 33 to increase the strength.
  • the outer cylinder 4 can be rotated by means of a handle 13.
  • the insertion gap 32 opens radially on the thread groove 10. It should be mentioned that the insertion gap 32 can also be directed secantial to tangential.
  • the jacket In the second rotational position (operating position) shown in FIG. 9, the jacket is rotated such that the thread groove 10 is covered by the inner circumference (closing surface) of the outer cylinder 4.
  • the inner cylinder 6 also has the transverse seals 34 at the thread inlet and thread outlet in addition to the longitudinal seals 25.
  • These cross seals can be O-shaped sealing strips that extend from one longitudinal seal to another. However, it can also be an O-ring which surrounds the entire inner part 6.
  • the sealing strips 25 and transverse seals 34 can be formed in one piece as a ring or rectangular window. The sealing strips and cross seals are placed in the grooves of the inner cylinder (or the outer cylinder) so that they do not slip due to the relative movement of the cylinders. The grooves are only so deep that the sealing strips protrude beyond the closing surface of one body and lie in the operating position of the two bodies in a sealing manner on the closing surface of the other body (applies to all exemplary embodiments).
  • transverse seals 34 By using the transverse seals 34 according to the exemplary embodiment 7 or 10, it becomes superfluous to press the outer jacket 4 against the sealing plate 8 by axial force, as is shown in FIG. 4.
  • the inner cylinder 6 has on its rear side the longitudinal seals 35 shown in FIGS. 8 and 9 and, in each case at the thread inlet and thread outlet, a transverse seal that is not visible here (corresponding to the transverse seals 34 on the front side).
  • the area between these longitudinal seals 35 and their transverse seals is charged via line 36 with the heating medium, here the saturated steam from tube 27. Since the secantial distance between the longitudinal seals 35 on the back of the inner cylinder 6 is greater than the secantial distance of the sealing strips 25 on the front of the inner part 6, in the operating position according to FIG. 9 the vapor pressure presses the movable outer cylinder 4 in the direction of arrow 37 against the longitudinal seals 25 on the front.
  • the cylindrical inner part 6 (inner cylinder) is in turn firmly attached to the flange 3.
  • the outer part 4 is in turn designed as a rotatable jacket 4 (outer cylinder) provided with an insertion gap 32.
  • the insertion gap 32 opens into the thread groove 10 in the one rotational position (threading position) (not shown). In the other rotational position shown in FIGS. 11 and 12 (operating position), the jacket 4 covers the thread groove 10.
  • a through-going groove 38 is made, which preferably has the same width and depth over its entire length (insert groove).
  • Insert pieces 39 and 40 are inserted into the groove 38.
  • the inserts 39 form the thread entry part and thread exit part and have a narrow thread groove 10, as shown in FIG. 11.
  • the insert part 40 forms the central region 19 of the thread guide groove and can accordingly have a thread guide groove with an enlarged cross section, as shown in FIG. 11.
  • the inserts 39 and 40 are sealed along their entire length by longitudinal seals 25 on both sides of the groove.
  • the Flanks of the insert pieces are sealed on both sides by sealing strips 41 with respect to the insert groove 38.
  • the flanks of the insert groove and the insert parts are aligned parallel to one another.
  • the insert 40 of the central area 19 has on its rear side a longitudinal groove 42 which is penetrated by the holes 29 through which the thread groove 10 of the central area 29 is connected to the central bore 27 serving as a preheating channel for steam supply. Since the secantial distance of the sealing strips 25 on the thread groove side of the insert parts 40 is smaller than the secantial distance of the sealing strips 41, the insert piece 40 is pressed against the inner circumference of the jacket by the vapor pressure.
  • the inserts 39 have - as already described for the exemplary embodiment according to FIG. 7 - the transverse seals 34.
  • the inserts 39 at the thread inlet and thread outlet can, but do not have to, be provided with a longitudinal groove 43 on their rear side which is acted upon by steam pressure. Likewise, it is not absolutely necessary to provide a separate steam duct for steaming the longitudinal groove 43. Rather, the vapor pressure from the longitudinal groove 42 of the insert 40 will provide sufficient vapor pressure also on the back of the insert 39. Even if the longitudinal groove 43 is not present or extends over only a short area from the insert 40 to the thread inlet or thread outlet, the vapor pressure forming behind the insert 39 is sufficient for the sealing lips 25 to be pressed sufficiently against the inner circumference of the jacket 4 to worry.
  • the end faces of the insert groove 38 are sealed by the sealing plates 44 which are firmly fitted and sealed into the insert groove 38 at the ends. Sealing plates can also be used which lie tightly on the end faces of the inner cylinder.
  • the thread inlet part and the thread outlet part of the heating chamber are formed by a plurality of relatively thin insert pieces 45.
  • the inner part 6, as is also shown in FIGS. 7 and 10 has an insert groove 38.
  • the flanks of this insert groove 38, as can be seen in FIG. 14, are shaped convergingly in such a way that they provide support on both sides of a sealing lip 25 .
  • the heating chamber can also consist of an insert 40 in its central region. It can be seen that this insert 40 is also missing or can be replaced by individual shorter inserts.
  • the insert pieces 45 and 40 have flanks which are also adapted to the sealing lips 25. As a result, the inserts can be clamped between the sealing lips 25. Since there is a distance between the sealing lips, a static pressure will occur below the sealing lip, while a flow will arise above the sealing lips with a corresponding reduction in the static pressure. As a result, the sealing lips in this exemplary embodiment are also pressed forward against the inner circumference of the jacket 4.
  • the insert parts can consist of particularly wear-resistant materials, such as Ceramics, especially sintered ceramics or sintered metal.
  • Ceramics especially sintered ceramics or sintered metal.
  • FIGS. 15a, 15b are characterized in that the pressing force of the inner cylinder 6 against the inner wall of the outer cylinder 4 does not take place directly as in FIGS. 8, 9, but instead by insert pieces 46, which are located on the rear side of the inner part 6 in an insert groove 47 are inserted.
  • This insert groove 47 is pressurized from the bore 27 via bore 48 with steam pressure.
  • the longitudinal seals 49 and transverse seals are again provided, which seal the insert 46 against the groove flanks. It should be mentioned that there are also corresponding transverse seals, which, however, cannot be represented in the given views.
  • the insert pieces 46 can be more or less extend less great length of the inner part 6. 16 shows that the insert extends over a partial length and has a feather-shaped cross section. Here, an annular O-ring can be used as a longitudinal and transverse seal. In the further partial illustration according to FIG. 16, the insert groove 47 with the insert 46 is cylindrical.
  • the insert pieces can also be rubber plugs, as shown in FIG. 15b, which are inserted sealingly into the insert groove 47.
  • the insert 46 consists of a hose or expansion body which extends over an at least certain length in the insert groove 47 and which also a pressure medium, preferably saturated steam, is pressurized via a suitable connecting line, not shown here.
  • a double filament heating chamber is shown in FIG.
  • the filament heating chambers consist of the plates 51, 52 and 53.
  • the plate pair 51 and 53 and the plate pair 52 and 53 each form a filament heating chamber.
  • Each plate 51 and 52 has the two planes 73 and 74 which are plane-parallel to one another and are connected to one another by a step 54.
  • the plate 53 is displaceable between the plates 51 and 52.
  • the plate 53 also has the plane-parallel planes 75 and 76, which are connected to one another by the steps 55.
  • the steps 54 and 55 of the plates 51, 52 and 53 are each of the same size. In the exemplary embodiment it is shown that the steps form a plane. However, a different level training is also possible. In particular, it is possible to make the steps concave - in the cross section shown. It is also possible to slightly bend the steps in the thread running direction so that the thread is guided in contact with a step. Likewise, curved surfaces can be provided instead of the planes in the thread running direction, so that the thread is guided in contact with a surface. In both cases, a curved thread channel is created.
  • the plate 53 is slidably guided with its levels 75, 76 between the mutually facing levels 73, 74 of the plates 51 and 52.
  • a longitudinal slit is created on the front of the plates 51 and 52 in the area of the steps 55 of the plate 53, since this step 55 slightly projects above the front of the plates 51, 52.
  • a thread running parallel to the longitudinal slots can be inserted transversely to its running direction into the gap between the plates 51 and 53 or 52 and 53.
  • the plate 53 is then pushed back into a position which is indicated in FIG. 18a (operating position). In this position, two narrow, parallel, straight or possibly curved thread channels are created.
  • Each thread channel is formed by the plane 74 and the step 54 of the plate 51 and 52 and by the plane 75 and the step 55 of the plate 53.
  • the two thread channels are fed with saturated water vapor through steam connection 61 and channel 58 and intermediate channel 60.
  • a recess 77 is machined into the plane 74 and the step 54 of the plates 51 and 52, respectively. This recess causes an expansion of the thread channel. In this case, this expansion serves to allow the steam flowing through steam channel 58 to flow unthrottled into channel 60, so that the same pressure and temperature conditions exist in the two adjacent thread channels.
  • the recess 77 over a greater length, so that the narrow gap only remains in the inlet and outlet region of the thread 59. It should be mentioned that the gap width there is approximately 0.2 to 0.3 mm with a length of the end regions of 60 mm and more. This means that a thread of 167 dtex can be treated with saturated water vapor without damaging wall friction with only slight steam losses at temperatures of 220 ° C, corresponding to a pressure of 24 bar.
  • the plate pack consisting of plates 51, 52 and 53 is surrounded on all sides by insulating material 62.
  • This plate package is enclosed in a solid block (housing), which is screwed together from the plates 64, 65, 66 and is stable enough to absorb the pressures generated in the interior of the thread channel and the forces caused thereby.
  • the hose / expansion body 68 is nestled into a chamber 67 of the plate 66, which extends essentially over the entire length of the heating chamber.
  • the hose preferably has an elongated cross section, so that the width with which the hose rests on the side surface of the plate 52 is greater than the width of the thread channel in the operating position.
  • the hose 68 can therefore be subjected to a pressure that is approximately lower by the area ratio in order to compress the plate pack 51, 52, 53 in a vapor-tight manner.
  • the hose 68 is either connected to the company compressed air network. However, it is preferred to connect the hose 18 to the saturated steam line network. For this you can e.g. fill the hose 68 with a liquid which in turn is pressurized by the saturated steam. In order to achieve the previously described advantages of additional heating, especially of the plate, which has no preheating channel, the saturated steam itself is preferably applied to the hose.
  • the balls 63 transmit the forces applied to the plate pack 51, 52, 53 by the hose to the plate 64 of the solid block (housing).
  • each sealing strip 56 or 57 on each pair of levels, which is flexible within limits.
  • these sealing strips which extend along the step, it is avoided that the surface pairing 73, 74 of the plate 51 and the surface pairing 75, 76 of the plate 53 have to be manufactured with absolutely precise dimensional accuracy.
  • these sealing strips also allow a defined surface area to be created between the levels, into which the heating gas / saturated steam can penetrate for the purpose of additional heating.
  • transverse seals can also be provided at the thread entrance and thread exit, which extend between the longitudinal seals. This transverse seal is also achieved in that the longitudinal seals have extensions at their ends that extend to or close to the thread channel or the respective step.
  • the middle plate 53 is adjusted by cylinder-piston unit 70, 71 by means of piston rod 69. With 72 a stop screw is designated, through which the gap width of the thread treatment chamber can be adjusted during operation.
  • FIGS. 19, 20 and 20a shows the left plate 51, the right plate 52 and the middle plate 53 in longitudinal and cross section.
  • the structure largely corresponds to that of the embodiment according to FIGS. 17, 18.
  • the outer plates 51 and 52 are designed as flat plates.
  • An intermediate plate 78 is placed on each of these plates, which corresponds in thickness to the step in the inner plate 53. This results in manufacturing simplifications.
  • the steam supply duct (intermediate duct) 60 which penetrates the middle plate 53 between the two stages 54, 55, is connected to a steam duct 79, which penetrates the parting plane between the plates 51, 52, 53 and intermediate plates 78, and which extends from the steam connection 61 is fed via a detour channel 80.
  • Detour channel 80 extends along step 54.
  • a further detour channel 81 is provided in the other plate 52, which extends along step 55 and is connected to steam channels 79.
  • the detour channels serve as preheating channels for the plates 51, 52.
  • the detour channel 80 is connected to the steam connection 61 at the top.
  • the detour channels 80, 81 are connected at their lower end to condensate drain lines 82.
  • the condensed water which collects at the bottom of the detour channels 80, 81, reaches a collection container via throttles 82.1, in particular adjustable throttles, and is returned to the steam generator by a pump.
  • Automatic, preferably thermostatically controlled, condensate drain valves are preferably connected to the outlet of the detour channels 81, 82 and ensure constant condensate drainage. They are not shown in the drawing, as are the condensate collector and the condensate pump in the feed line to the steam generator.
  • the described steam supply system has the advantage that the steam supply is automatically interrupted when the middle plate 53 is pulled out of its operating position. Furthermore, there is the advantage that - in the exemplary embodiment shown - at least the detour channel 80 is also acted upon with the saturated water vapor in the thread insertion position of the middle plate 53, with the advantage that the side plate 51 does not cool down, particularly in the area of the step 54.
  • the supply of the detour channel 81 with the saturated steam can also take place in the threading position of the middle plate 53 via an additional channel 83 shown in broken lines, which in the thread insertion position of the middle plate 53 is aligned with the part of the steam channel 79 in the right plate 52 which leads to the detour channel 81 .
  • This additional duct 83 would also ensure that the detour duct 81 is supplied with saturated steam in the thread insertion position of the middle plate 53.
  • the supply of saturated steam to the detour channels in the threading position offers the advantage in connection with this invention that all the bodies / plates forming the heating chambers are heated further by the continuous surface contact. This also applies to the other exemplary embodiments.
  • the plate pack is held together by external forces. These external forces are indicated here by arrow 84. These external forces must be so great that the frictional force between the plates 51, 52 on the one hand and 53 on the other hand exceeds the steam force acting on the plate 53.
  • the heating chamber has the crossbeams 85.
  • FIG. 21 shows schematically how the preheating channels 27 of the heating chamber described above can be connected.
  • the preheating ducts 27 of a plurality of heating chambers of the same type are connected at the bottom by means of connecting pipes 28 to a common steam generator 86 with suitable heating devices 94, for example electrical resistance heating pipes.
  • the connecting pipes 87 serve both the steam supply and the condensate return. For this purpose, they are laid on a slope and have a large cross-section.
  • a shut-off device designed as a needle valve 90 is now installed at the upper end of the steam supply pipe 88, in such a way that on the one hand the preheating duct 27 is constantly fed with saturated steam and heated to the temperature of the saturated steam, but this steam is only via the valve 90 gets into the thread channel.
  • the connecting pipe 29 is connected to the valve seat 92 of the housing 93 in a pressure-tight manner. Connecting channel 29 corresponds to holes 29 and 79 in FIGS. 4 to 20.
  • the valve can be operated from the outside.
  • valve seat 92 is only released or opened by the axially movable, concentrically arranged valve needle 91 when the thread channel 10 is closed radially by relative rotation of the two cylinders 4 and 6, i.e. the thread heating chamber is brought into the operating position.
  • the needle valve 90 is completely sealed, so that steam cannot escape.
  • valve stem is led out from the heating chamber in a pressure-tight manner via control cams of a logic circuit, not shown in detail. This results in a coupling or synchronization of the two movements, taking into account the design required dead paths, for example from the distance of the sealing strips 25 on both sides of the thread guide channel 10.
  • the connecting pipe 29, which is bent upwards in the manner of a siphon and begins at the top in the preheating channel, has the advantage that through this connecting pipe Inert, non-condensable gases that collect in blind holes and other areas without flow are constantly removed.
  • shut-off element in the steam supply pipe 88 at the bottom.
  • this has the disadvantage that possibly non-condensable, inert components of the heating medium, such as air or the like, collect at the top in the steam supply pipe 88 and lead to temperature differences from one pipe 88 to the other over time, unless a separate exhaust duct for inert gases is provided .
  • the common steam generator 86 can also be connected to the steam supply pipes 88 at the top. However, this requires the attachment of separate condensate return lines at the lower end of the preheating duct, possibly with a condensate pump to the steam generator.
  • the common steam generator in addition to the refluxing condensate, the common steam generator must constantly be supplied with a certain amount of feed water in order to replace the heating medium which is dragged out of the thread heating chamber by the treated thread (humidification). This is preferably done by a feed water pump (pressure booster pump), not shown, which is controlled by a high pressure float or the like.
  • FIG. 22a shows a heating chamber in cross section, which likewise consists of two flat plates 51 and 53. These plates are displaceable relative to one another parallel to their surface by cylinder-piston unit 69-71.
  • the front edge 105 of the plate 53 recedes behind the thread groove 10, so that an opening is created in which the thread can be inserted.
  • the thread groove 10 in the plate 51 is closed by the closing surface of the plate 53.
  • the thread channel thus formed is fed with saturated steam by opening a valve (not shown here) via preheating channel 80 and bore 58.
  • the back of plate 52 is also charged with steam through bore 103.
  • the plate 52 which is sealed off from the housing 104 by circumferential seals 49, is pressed against the other plate 53, so that these plates, at least with their seals 56, lie on one another in a vapor-tight manner. It is particularly important that the surface area circumscribed by the surrounding seals 49 is larger than the surface area formed by the longitudinal seals 56, 57 and the associated transverse seals. This type of pressure also heats the housing 104, which in turn helps to standardize the temperature of all parts of the heating chamber.
  • FIG. 24d shows a similar embodiment, which differs from that in FIG. 24a in principle only in that the front of the plate 51 is provided with a step 108.
  • the exemplary embodiment according to FIG. 24c is also essentially similar. Its main difference from the explanations according to FIGS. 24a and 24d is that the plate 53 does not open a threading slot above the thread guide groove in the one threading position, but rather has an enlarged longitudinal groove 109 (threading groove), which in the threading position shown, in which the heating chamber except Operation is with the thread groove 10 aligned and forms an extended threading gap through which the thread can be easily threaded pneumatically or by means of bristles.
  • the threading groove 109 is provided on one side with a bevel so that the thread is pressed into the thread guide groove 10 by the bevel when the plate 51 is moved into its operating position shown in dashed lines.
  • the housing 104 which surrounds the plates 51, 52 forming the heating chamber on at least two opposite sides in the case of the exemplary embodiment according to FIG. 24c, is designed to be stable and rigid enough to withstand the steam forces and to ensure, even when loaded with the steam pressure, that the plates lie close together in their contact surfaces and with their longitudinal and transverse seals.
  • the steam connection 61 is shown in the left plate, which opens into the upper region of the preheating duct 80.
  • the condensate drain line is designated 82 and starts from the lower part of the preheating duct 80.
  • An orifice or throttle 82.1 is provided, through which condensates and inert gases, which collect in the lower sack-shaped part of the preheating chamber 80, can slowly escape.
  • 20a shows that the preheating duct 80 extends to the end of the side plates 51, 52 and is closed there with a stopper, which has a narrow slot-shaped groove 82.2 with blind holes 82.3 along its length.
  • FIG. 23 A preferred exemplary embodiment of a condensate separator is shown in FIG. 23.
  • the heating chamber shown there like the exemplary embodiments according to FIGS. 4 to 16, consists of the stationary, tubular inner cylinder 6 and the outer cylinder 4 which can be rotated around it.
  • the preheating duct 27 formed in the interior of the inner cylinder 6 is charged with steam at its upper end via steam connection 61.
  • the condensates, in particular the condensed water and the inert gases, have a temperature which is below the temperature of the saturated steam.
  • the preheating duct has an opening 106 at the bottom, which opens into a separation chamber 107.
  • Another opening 110 of the separation chamber 107 leads to the outside or to a condensate collector, which is not shown here.
  • the opening 106 and the opening 110 both lie in a common plane.
  • the plate On its underside, the plate has spacers 112, which have the effect that the static pressure of the separation chamber 107 also acts on the underside of the plate.
  • the plate is vertically movable against its gravity. It is also possible to guide the plate horizontally or pivotably and / or the effect of gravity by e.g. To replace spring force.
  • FIGS. 25a, 25b largely corresponds to the heating chamber according to FIGS. 7 and 8 or 9. It consists of a tubular inner cylinder 6 with thread groove 10.
  • the thread groove 10 is in the thread inlet part and in the thread outlet part narrow and widening in the middle region 19.
  • the inner cylinder 6 is fixed between the flange 3 and the flange 113.
  • the inner cylinder 6 has a central preheating channel 114 in its lower region, which is only indicated by dashed lines here. This central heating channel is permanently connected to the steam supply line 115. This has the effect that the inner cylinder 6 is constantly heated in its middle and lower part.
  • the inner part 6 has a steam supply duct 27, which also serves as a preheating duct and communicates via hole 29 with the central region 19 of the thread groove 10.
  • the steam supply channel 27 preferably communicates with a steam pressure zone, which is formed between the outer cylinder 4 and the inner cylinder 8 - as also shown in FIGS. 8 and 9 - between the sealing lips 35.
  • This pressure zone which is fed with the pressurized heating gas, in particular saturated steam, during operation, causes the outer part 4 and the inner part 6 in the area of the thread guide groove and the sealing strips 25 to be pressed tightly against one another, so that a sealing lip 25 is used sufficiently tight sealing of the heating area is given.
  • this pressing zone between the sealing lips 35 the outer part 4 is heated, which comes into direct contact with the heating gas or saturated steam in this zone.
  • the layout of the steam duct 27 and the hole 29, i.e. the saturated steam flow from top to bottom means that no condensate can accumulate in the steam supply channel 27.
  • the steam supply to the steam supply duct 27 takes place via the steam connection line 28 and the 3-way valve 116.
  • the steam supply duct 27 is optionally supplied with or relieved of steam by this valve. Through the discharge also relieves the pressure on the back of the inner part 6 at the same time, so that the outer part 4 can be easily rotated relative to the inner part 6 into the threading position according to FIG. 25a. Even in this threading position, however, the steam supply to the lower central preheating channel 114 is maintained.
  • a discharge pipe is designated, which sits concentrically in the central preheating channel 114 and extends to its upper region.
  • the discharge pipe is led out of the bend of the supply line 115 and closed by a narrow throttle 118, which serves as a condensate separator.
  • a small amount of steam or condensate or inert gases can constantly escape through the throttle 118, so that the discharge pipe 117 prevents inert, non-condensable gases from collecting in the upper region of the central heating duct 114.
  • the condensates themselves collecting at the bottom of the preheating duct can run back to the steam generator in line 115.
  • a condensate separator can also be arranged in line 115, e.g. of the type described in connection with FIG. 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

Die Erfindung betrifft eine Heizkammer für laufende Fäden. Diese Heizkammer ist zur Behandlung eines Fadens mit unter erhöhtem Druck stehendem, gesättigtem Wasserdampf (Sattdampf) geeignet.The invention relates to a heating chamber for running threads. This heating chamber is suitable for the treatment of a thread with saturated water vapor (saturated steam) under increased pressure.

Das besondere Problem bei solchen Heizkammern besteht darin, dass durch den Fadeneinlass und -auslass der Sattdampf in so grossen Mengen entweicht, dass der Betrieb der Heizkammer unwirtschaftlich ist.The particular problem with such heating chambers is that the saturated steam escapes through the thread inlet and outlet in such large quantities that the operation of the heating chamber is uneconomical.

Zur Abhilfe sind bereits Labyrinthdichtungen und Spaltdichtungen am Fadeneinlass und Fadenauslass bekannt. Labyrinthdichtungen, die aus aufeinander gestapelten Platten mit Blendenöffnungen bestehen, die durch Relativbewegung der Platten in der Einfädelstellung eine weite Öffnung und in der Betriebsstellung ein Labyrinth bilden (DE-A-2643787, US-A-2,529,563, US-A-2,351,110) sind zwar zum Einfädeln geeignet, haben sich jedoch im Betrieb als grundsätzlich ungeeignet erwiesen, da hierbei die Notwendigkeit eines ungestörten Fadenlaufs nicht in Einklang zu bringen ist mit der Notwendigkeit, zur Vermeidung von Verlusten an Heizmedium einen stark gewundenen Auslassweg vorzusehen. Spaltdichtungen sind zwar geeignet. Bei ihnen bewirkt eine grosse Spaltlänge eine ausreichend starke Verminderung der Verluste. Allerdings wird mit zunehmender Spaltlänge und geringer Spaltweite das Einfädeln, insbesondere das pneumatische Einfädeln des Fadens zum unüberwindlichen Problem. Durch die DE-A-2703991 und 2855640 sind Heizkammern für Sattdampf bekannt, bei denen die Dichtung der Heizkammer in den Endbereichen durch Bolzen mit einer längs der Mantellinie verlaufenden Nut erfolgt, welche Bolzen in eine Buchse dichtend axial eingeschoben werden. Bei der bekannten Heizkammer ist das Einfädeln durch Herausnehmen der Bolzen aus den Endbereichen ohne weiteres möglich, bei dem Einsetzen der Bolzen kommt es jedoch leicht zu Beschädigungen des Fadens, da dieser nicht an einer definierten Stelle läuft, und es ist von ganz entscheidendem Nachteil, dass während des Fadenanlegens die Bolzen so weit abkühlen, dass ein stationärer Betriebszustand nach dem Einfädeln erst nach geraumer Zeit und mit entsprechend hohem Fadenabfall erreicht wird. Darüberhinaus ist die bekannte Heizkammer fertigungstechnisch aufwendig und bedienungstechnisch schlecht.To remedy this, labyrinth seals and gap seals at the thread inlet and thread outlet are already known. Labyrinth seals, which consist of plates stacked on top of each other with diaphragm openings, which form a wide opening due to the relative movement of the plates in the threading position and a labyrinth in the operating position (DE-A-2643787, US-A-2,529,563, US-A-2,351,110) suitable for threading, but have proven to be fundamentally unsuitable in operation, since the need for undisturbed thread running cannot be reconciled with the need to provide a tortuous outlet path to avoid loss of heating medium. Gap seals are indeed suitable. With them, a large gap length results in a sufficiently large reduction in losses. However, as the gap length and the gap width increase, threading, in particular pneumatic threading, becomes an insurmountable problem. From DE-A-2703991 and 2855640 heating chambers for saturated steam are known, in which the sealing of the heating chamber in the end regions is carried out by bolts with a groove running along the surface line, which bolts are inserted axially into a bushing in a sealing manner. In the known heating chamber, threading is readily possible by removing the bolts from the end regions, but when the bolts are inserted, the thread is easily damaged, since the thread does not run at a defined point, and it is a very significant disadvantage that When threading the thread, cool the bolts to such an extent that a steady operating state can only be reached after threading in after a long time and with a correspondingly high thread drop. In addition, the known heating chamber is complex in terms of production technology and poor in terms of operation.

Einer schnellen Aufheizung nach einer stetigen und steilen Temperaturkurve über die Zeit und einem Betrieb ohne Temperaturschwankungen dienen nach dieser Erfindung mehrere Eigenschaften der Heizkammer allein oder in Kombination. Durch diese Massnahme können vor allem örtliche Ansammlungen von Kondensat vermieden werden. Durch Versuche konnte die Theorie aufgestellt werden, dass jede örtliche Kondensatbildung, z.B. in Tropfenform, sich beim Aufheizen und beim Betrieb der Heizkammer durch erhebliche Temperatursprünge bemerkbar machen.According to this invention, several properties of the heating chamber serve alone or in combination for rapid heating after a steady and steep temperature curve over time and operation without temperature fluctuations. This measure above all prevents local accumulation of condensate. The theory could be established through experiments that any local condensate formation, e.g. in the form of drops, noticeable during the heating and operation of the heating chamber by significant temperature jumps.

Die vorliegende Erfindung löst diese Nachteile des Standes der Technik und die aufgezeigten Probleme dadurch, dass die beiden Körper, aus denen die Heizkammer zumindest in den Endbereichen besteht, mit ihren ebenen oder gewölbten Oberflächen (Schliessflächen) aufeinander liegen und auf diesen Oberflächen gleitend relativ zueinander und quer zur in zumindest einer der Schliessflächen eingebrachten Oberflächenverwerfung (Oberflächendeformation) beweglich sind. Die Schliessflächen sind einander derart angepasst, dass durch die zwischen ihnen gebildete Fuge das Druckmedium, d.h. der gesättigte Wasserdampf auch bei hohem Druck nicht entweicht. Der der Fadenführung dienende Fadenkanal wird dadurch gebildet, dass die Oberfläche des ersten Körpers senkrecht oder quer zu der Bewegungsrichtung mindestens eine Aussparung in Form einer Nut, Stufe oder ähnlichen Verwerfung (Oberflächendeformation) aufweist, die sich längs des Fadenweges erstreckt und geradlinig oder gekrümmt ist. Diese Oberflächendeformation wird in der einen Relativlage der beiden Körper (Betriebsstellung) von den Schliessflächen des zweiten Körpers überdeckt, so dass in dieser Relativlage ein enger Fadenführungsspalt (Fadenkanal) entsteht, der eng genug ist, unzulässige Druckverluste der Heizkammer zu vermeiden, und der so geformt ist, dass längs des Spaltes ein gezielter Druckabbau mit gezielter Abkühlung des Fadens entsteht.The present invention solves these disadvantages of the prior art and the problems presented in that the two bodies that make up the heating chamber at least in the end regions lie on one another with their flat or curved surfaces (closing surfaces) and slide relative to one another on these surfaces and are movable transversely to the surface distortion (surface deformation) introduced in at least one of the closing surfaces. The closing surfaces are adapted to one another in such a way that the pressure medium, i.e. the saturated water vapor does not escape even at high pressure. The thread channel serving for thread guidance is formed in that the surface of the first body perpendicular or transverse to the direction of movement has at least one recess in the form of a groove, step or similar warp (surface deformation) which extends along the thread path and is straight or curved. This surface deformation is covered in the one relative position of the two bodies (operating position) by the closing surfaces of the second body, so that a narrow thread guiding gap (thread channel) is created in this relative position, which is narrow enough to avoid impermissible pressure losses of the heating chamber, and which is shaped in this way is that there is a targeted pressure reduction along the gap with targeted cooling of the thread.

Ist die Oberflächendeformation in dem ersten Körper eine fadenführende Nut, die in der einen Relativlage von der Schliessfläche des anderen Körpers überdeckt ist, so weist die Schliessfläche des zweiten Körpers in der einen Ausführung der Erfindung ebenfalls eine Nut auf (Einfädelnut), die in der anderen Relativlage (Einfädelstellung) der beiden Körper die fadenführende Nut des ersten Körpers überdeckt und mit ihr einen für das axiale Einfädeln des Fadens, inbesondere das pneumatische Einfädeln, geeigneten weiten Spalt bildet. Diese nur dem Einfädeln dienende Nut des zweiten Körpers (Einfädelnut) ist in ihrem Querschnitt vorzugsweise grösser als die Fadennut des ersten Körpers und weist zumindest an einer Seite geschrägte Flanken auf, an denen der Faden beim Einfahren der Körper in die Relativstellung in Richtung auf die Fadennut des ersten Körpers abgelenkt wird.If the surface deformation in the first body is a thread-guiding groove, which in one relative position is covered by the closing surface of the other body, the closing surface of the second body in one embodiment of the invention also has a groove (threading groove), the other Relative position (threading position) of the two bodies covers the thread-guiding groove of the first body and forms with it a wide gap suitable for the axial threading of the thread, in particular the pneumatic threading. This only the threading groove of the second body (threading groove) is preferably larger in cross section than the thread groove of the first body and has bevelled flanks at least on one side, on which the thread when the body is retracted into the relative position in the direction of the thread groove of the first body is distracted.

Die Oberflächendeformation der Schliessfläche des zweiten Körpers wird in einer anderen Ausführung der Erfindung als Endkante der Schliessfläche oder Schlitz in der Schliessfläche des zweiten Körpers ausgeführt, welche in der Einfädelstellung der Körper die Fadennut in einer Einlegebene freigeben und dadurch das Einlegen eines laufenden Fadens quer zu seiner Laufrichtung ermöglicht. Die Oberflächen können dabei eben oder in Fadenlaufrichtung gekrümmt und/ oder quer zur Fadenlaufrichtung schwach gekrümmt sein.In another embodiment of the invention, the surface deformation of the closing surface of the second body is carried out as an end edge of the closing surface or slot in the closing surface of the second body, which in the threading position of the body releases the thread groove in an insertion plane and thereby the insertion of a running thread transverse to it Running direction allowed. The surfaces can be flat or curved in the thread running direction and / or slightly curved transversely to the thread running direction.

Wenn die Körper als ebene oder gewölbte Platten ausgeführt sind, so können die Schliessflächen eines Körpers auch in zwei Ebenen liegen, die sich im Bereich der Oberflächendeformation schneiden, so dass die Oberflächendeformationen in beiden Körpern gleich grosse Stufen bilden. In dieser Ausführung bilden die Stufen in der Betriebsstellung der beiden Körper einen engen Spalt und je nach Grösse der Relativbewegung in der Einfädelstellung entweder einen zum axialen Einfädeln geeigneten erweiterten Spalt oder einen Fadeneinlegschlitz zum Einlegen des laufenden Fadens, wenn die Stufe des eigenen Körpers die Vorderkante des anderen Körpers in der Einfädelstellung überragt.If the body as a flat or curved plat ten, the closing surfaces of a body can also lie in two planes that intersect in the area of the surface deformation, so that the surface deformations form steps of equal size in both bodies. In this version, the steps in the operating position of the two bodies form a narrow gap and, depending on the size of the relative movement in the threading position, either an extended gap suitable for axial threading or a thread insertion slot for inserting the running thread if the step of one's own body is the front edge of the dominated other body in the threading position.

Die erfindungsgemässe Fadenheizkammer kann in der Betriebsstellung der beiden Körper insbesondere am Fadeneingang und/oder Fadenausgang auf eine geringe Weite des Fadenkanals von z.B. 0,2 bis 0,5 mm Weite eingestellt werden, so dass zwar ein laufender Faden ungestört geführt werden kann, die Verluste des Heizmediums jedoch gering sind. Die Spaltweite insbesondere im Fadenauslassbereich kann über die Spaltlänge unterschiedlich sein. Es können auch Entspannungskammern oder Vakuumkammern an den Spalt angeschlossen sein, um einen gezielten Druckentspannungsgradienten längs des Fadenlaufs zu erhalten.The thread heating chamber according to the invention can be in the operating position of the two bodies, in particular at the thread entrance and / or thread exit, to a small width of the thread channel of e.g. 0.2 to 0.5 mm width can be set so that a running thread can be guided undisturbed, but the losses of the heating medium are low. The gap width, in particular in the thread outlet area, can be different over the gap length. Relaxation chambers or vacuum chambers can also be connected to the gap in order to obtain a targeted pressure relaxation gradient along the course of the thread.

Die erfindungsgemässe Heizkammer kann in der einen Ausführungsform der Erfindung lediglich zur Abdichtung in den Endbereichen die aufeinander beweglichen Körper mit Oberflächendeformationen aufweisen, wobei einer der Körper ortsfest auf einem Endflansch der Heizkammer befestigt ist und der andere eine Relativbewegung ausführen kann. Vorzugsweise werden in dieser Ausführung die Körper als Innenzylinder und Aussenzylinder ausgeführt, die relativ zueinander verdrehbar sind. Dadurch, dass dem einen Körper gleichzeitig eine Axialbewegung aufgezwungen wird, kann erreicht werden, dass sich dieser Körper dichtend gegen den Endflansch legt. Hierzu werden die Körper vorzugsweise mit einer Gewindepaarung versehen, wobei die Nut des Innenzylinders bis auf den Gewindegrund eingeschnitten ist. In dieser Ausführung bildet das Gewinde in der Betriebsstellung ein Labyrinth mit zusätzlicher Dichtwirkung.In one embodiment of the invention, the heating chamber according to the invention can have, for sealing in the end regions only, the bodies which are movable towards one another with surface deformations, one of the bodies being fixed in place on an end flange of the heating chamber and the other being able to perform a relative movement. In this embodiment, the bodies are preferably designed as inner cylinders and outer cylinders which can be rotated relative to one another. Because an axial movement is forced on one body at the same time, it can be achieved that this body lies sealingly against the end flange. For this purpose, the bodies are preferably provided with a thread pairing, the groove of the inner cylinder being cut down to the thread base. In this version, the thread forms a labyrinth with an additional sealing effect in the operating position.

Der Vorteil der Erfindung, dass beide Körper auch in der Einfädelstellung in wärmeleitendem Kontakt bleiben und dass daher auch zu Betriebsbeginn ein stabiler Betriebszustand in Sekundenschnelle erreicht wird, wirkt sich insbesondere dann aus, wenn die gesamt Heizkammer entsprechend der Erfindung über ihre gesamte Länge aus den zwei Körpern besteht und von dem zwischen den Schliessflächen entstehenden engen Spalt der Oberflächendeformation gebildet wird. Denn hierdruch wird erreicht, dass die beiden Hälften der Heizkammer auch in der Einfädelstellung im wesentlichen die gleiche Temperatur behalten, dass die Temperatur in der Einfädelstellung nur geringfügig oder gar nicht abfällt und die Betriebstemperatur gleichzeitig wieder erreichtwird.The advantage of the invention that both bodies remain in heat-conducting contact even in the threading position and that a stable operating state is therefore reached in a matter of seconds even at the start of operation has an effect in particular if the entire heating chamber according to the invention over its entire length consists of the two Bodies exists and is formed by the narrow gap of the surface deformation that arises between the closing surfaces. This ensures that the two halves of the heating chamber maintain essentially the same temperature even in the threading position, that the temperature in the threading position drops only slightly or not at all, and that the operating temperature is reached again at the same time.

Die zweiteilige Fadenheizkammer kann dabei im mittleren Bereich ihrer Spaltlänge auch mit Ausnehmungen ihrer Schliessflächen versehen sein, so dass sich die lichte Weite des Spaltes hier erweitert. Das kann zum einen nützlich sein, um ein gewisses Ballonieren des Fadens zu ermöglichen und/oder Wandreibung des Fadens zu vermeiden oder zu verringern. Zum anderen wird hierdurch erreicht, dass der Druck des Satteldampfes über den mittleren Bereich der Heizkammer hin konstant ist. Der mittlere, mit Ausnehmungen versehene Bereich kann sich z.B. über 300 mm und weniger erstrecken. Dabei bewährt sich die erfindungsgemässe Heizkammer vor allem auch dann, wenn einer der Körper, und zwar vorzugsweise der ortsfeste Körper mit einem sog. Vorheizkanal - in dieser Anmeldung auch «Umwegkanal» genannt - versehen wird. Dabei handelt es sich um einen Kanal, der im wesentlichen parallel zu der Oberflächendeformation in den Körper eingebracht ist und der mit dem Sattdampf beschickt wird. Dieser Vorheizkanal kann gleichzeitig Stichleitungen in den Fadenführungskanal aufweisen und damit Teil der Dampfzuleitung sein. Der Vorheizkanal hat zwar den Vorteil, die Aufheizung des Körpers zu bewirken, in den er eingebracht ist. Er bewährt sich jedoch nur dadurch, dass nach der Erfindung der bewegliche Körper auch in der Einfädelstellung in Kontakt mit dem aufgeheizten Körper bleibt und die Wärme auch auf diesen Körper übertragen wird. Der Vorheizkanal führt daher nur im Zusammenhang mit der Erfindung zu einer entscheidenden Verbesserung der Wärmeführung und der Stabilität des Betriebsverhaltens der Heizkammer.The two-part filament heating chamber can also be provided with recesses in its closing surfaces in the central region of its gap length, so that the clear width of the gap widens here. On the one hand, this can be useful in order to allow a certain ballooning of the thread and / or to avoid or reduce wall friction of the thread. On the other hand, this ensures that the pressure of the saddle steam is constant over the central area of the heating chamber. The central area provided with recesses can e.g. extend over 300 mm and less. The heating chamber according to the invention also proves particularly useful when one of the bodies, and preferably the stationary body, is provided with a so-called preheating channel - also referred to in this application as a “detour channel”. This is a channel which is introduced into the body essentially parallel to the surface deformation and which is fed with saturated steam. This preheating duct can simultaneously have stub lines in the thread guiding duct and thus be part of the steam feed line. The preheating channel has the advantage of heating the body into which it is inserted. However, it only proves its worth in that, according to the invention, the movable body remains in contact with the heated body even in the threading position and the heat is also transferred to this body. The preheating duct therefore leads only in connection with the invention to a decisive improvement in the heat management and the stability of the operating behavior of the heating chamber.

Die Trennfugen zwischen den Schliessflächen können sowohl durch geeignete Fertigungstechniken als auch durch Aufbringung grosser Einspannkräfte so dicht ausgeführt werden, dass keine unzulässigen Verluste des Heizmediums zu befürchten sind.The joints between the closing surfaces can be made so tight both by suitable manufacturing techniques and by applying large clamping forces that no unacceptable losses of the heating medium have to be feared.

Die Abdichtung durch eine zwischen die Schliessflächen der beiden Körper gelegte Dichtplatte kommt nicht in Frage, da eine solche Dichtplatte im allgemeinen auch wärmeisolierende Wirkung hat und daher den Temperaturausgleich zwischen beiden Körpern behindert.Sealing by means of a sealing plate placed between the closing surfaces of the two bodies is out of the question, since such a sealing plate generally also has a heat-insulating effect and therefore impedes the temperature balance between the two bodies.

Zur Abdichtung der Heizkammern werden erfindungsgemäss zwei Dichtleisten verwandt, die sich längs und beidseits des Fadenkanals in einem gewissen Abstand (von z.B. 5 mm) erstrekken. Ebenso können Dichtleisten oder sonstige Querdichtungen im Ein- und Auslassbereich der Heizkammer quer zum Fadenkanal vorgesehen sein. Ohne diese Dichtleisten müssten die beiden Körper zur Abdichtung des Fadenkanals mit ihren Schliessflächen sehr fest aufeinander gedrückt werden. Das ist an sich schon nachteilig, hat aber den besonderen Nachteil, dass bei absoluter Abdichtung des Fadenkanals die Wärmemenge zur Aufheizung der beiden Körper - ausser über einen evtl. vorhandenen Vorheizkanal - ausschliesslich über den engen Fädenkanal transportiert werden müsste.According to the invention, two sealing strips are used to seal the heating chambers, which extend along and on both sides of the thread channel at a certain distance (e.g. 5 mm). Sealing strips or other transverse seals can also be provided in the inlet and outlet area of the heating chamber transversely to the thread channel. Without these sealing strips, the two bodies would have to be pressed very firmly against one another with their closing surfaces in order to seal the thread channel. This is disadvantageous in itself, but has the particular disadvantage that, if the thread channel is completely sealed, the amount of heat for heating the two bodies - apart from a possibly existing preheating channel - would have to be transported exclusively via the narrow thread channel.

Diese Dichtleisten haben demgegenüber den Vorteil, dass beidseits des Fadenkanals eine Trennfuge von definierter und vorbestimmbarer Fläche entsteht, in die das Heizgas, insbesondere Sattdampf, eindringen kann, ohne entweichen zu können. Dadurch werden die begrenzenden Schliessflächen beidseits des Fadenkanals mitaufgeheizt. Daher dient auch diese Massnahme zur gleichmässigen und schnellen Aufheizung der beiden die Heizkammer bildenden Körper und zur Stabilität des Betriebsverhaltens.In contrast, these sealing strips have the advantage that a separating joint of defined and predeterminable area is formed on both sides of the thread channel, into which the heating gas, in particular saturated steam, can penetrate without being able to escape. As a result, the delimiting closing surfaces on both sides of the thread channel are also heated. Therefore, this measure also serves for the uniform and rapid heating of the two bodies forming the heating chamber and for the stability of the operating behavior.

Zur Abdichtung der Heizkammer, insbesondere der Trennfuge kann eine pneumatische Andrückung dienen, durch welche einer oder beide Körper auf ihrer von der Heizkammer abgewandten Rückseite mit dem Druck eines Gases auf einer definierten Fläche direkt oder mittels druckbeaufschlagter Dehnkörper beaufschlagt werden. Die Druckbeaufschlagung kann mit einem fremden Medium, z.B. Druckluft, geschehen. Bevorzugt geschieht die Druckbeaufschlagung mit dem Sattdampf selbst. Dabei ist erfindungsgemäss vorgesehen, dass die Sattdampf-beaufschlagte Fläche im Bereich des Heizkanals kleiner ist als die Sattdampf-beaufschlagte Fläche auf der Rückseite. Hierzu können auch auf der mit Sattdampf beaufschlagten Rückseite Dichtleisten vorgesehen werden, die eine Fläche einschliessen, die grösser ist als die zwischen den Dichtleisten im Bereich des Fadenkanals eingeschlossene Fläche.Pneumatic pressure can be used to seal the heating chamber, in particular the parting line, by means of which one or both bodies, on their rear side facing away from the heating chamber, are subjected to the pressure of a gas on a defined surface directly or by means of pressurized expansion bodies. The pressurization can be carried out with a foreign medium, e.g. Compressed air, happen. The pressurization is preferably carried out with the saturated steam itself. According to the invention, the area exposed to saturated steam in the area of the heating duct is smaller than the area exposed to saturated steam on the rear. For this purpose, sealing strips can also be provided on the rear side with saturated steam, which enclose an area which is larger than the area enclosed between the sealing strips in the area of the thread channel.

Die Druckbeaufschlagung eines Körpers mit einem Druckpolster des Sattdampfes selbst hat neben der Andrückung den besonderen Vorteil, dass dadurch zumindest der eine der die Heizkammer bildenden Körper, und zwar vorzugsweise derjenige, der beweglich und nicht mit einem Vorheizkanal versehen ist, auch auf der von seiner Schliessfläche abgewandten Seite aufgeheizt wird, so dass über den Querschnitt dieses Körpers ein allenfalls geringer Temperaturgradient auftritt.The pressurization of a body with a pressure cushion of the saturated steam itself, in addition to the pressure, has the particular advantage that at least one of the bodies forming the heating chamber, preferably the one that is movable and not provided with a preheating channel, also on that of its closing surface opposite side is heated, so that a possibly low temperature gradient occurs across the cross section of this body.

Der Vorteil der erfindungsgemässen Heizkammer liegt insbesondere darin, dass der Faden einfach, schnell und sicher einfädelbar ist und dass das Dichtsystem, insbesondere Dichtleisten und Andrückung der Körper der Heizkammer, eine vollständige Abdichtung bewirkt. Die problemlose Einfädelbarkeit hates andererseits ermöglicht, die engen, spaltförmigen Endbereiche sehr eng - begrenzt lediglich durch den Fadentiter - und beliebig lang auszuführen. Dadurch wird ein Dampfaustritt fast völlig vermieden. Dampfdrükke des Wasser-Sattdampfes mit Temperaturen bis über 200°C sowie eine stetige Zunahme des Dampfdruckes von Atmosphärendruck bis auf Betriebsdruck und der Dampftemperatur für den einlaufenden Faden und eine stetige Abnahme des Druckes bis auf Atmosphärendruck und der Temperatur für den auslaufenden Faden werden ermöglicht. Die stetige Abnahme des Dampfdruckes beseitigt gleichzeitig die Gefahr einer den Faden schädigenden Dampfströmung.The advantage of the heating chamber according to the invention is, in particular, that the thread can be threaded easily, quickly and safely and that the sealing system, in particular sealing strips and pressing on the body of the heating chamber, brings about a complete seal. The problem-free threading on the other hand made it possible to make the narrow, gap-shaped end regions very narrow - limited only by the thread titer - and for any length. This almost completely prevents steam from escaping. Steam pressures of saturated water steam with temperatures up to over 200 ° C as well as a steady increase of the steam pressure from atmospheric pressure up to operating pressure and the steam temperature for the incoming thread and a steady decrease of the pressure up to atmospheric pressure and the temperature for the outgoing thread are made possible. The steady decrease in steam pressure also eliminates the risk of steam flow damaging the thread.

Die Weite des durch die Oberflächendeformationen gebildeten Fadenkanals wird dem Fadentiter angepasst, und zwar in den Endbereichen des Fadenkanats auf eine Länge von 100 bis 300 mm eng angepasst, um eine gute Dichtwirkung zu erzielen. Dabei ist es bei entsprechender Auslegung der Weite des Fadenkanals möglich, in einem Fadenkanal mehrere Fäden zu führen. Ebenso können auf einem Körper mehrere, den Fadenkanal bildende Oberflächenverwerfungen vorgesehen sein, wobei sodann in jedem Fadenkanal ein Faden oder mehrere Fäden geführt werden. Damit eignet sich die erfindungsgemässe Heizkammer auch zum Erhitzen von Fadenscharen, z.B. in Scharenstreckwerken.The width of the thread channel formed by the surface deformations is adapted to the thread titer, specifically in the end regions of the thread channel to a length of 100 to 300 mm, in order to achieve a good sealing effect. With an appropriate design of the width of the thread channel, it is possible to guide several threads in one thread channel. Likewise, a plurality of surface faults forming the thread channel can be provided on a body, one thread or several threads then being guided in each thread channel. The heating chamber according to the invention is therefore also suitable for heating thread sheets, e.g. in coulter drafters.

Es ist aber auch möglich, mehrere derartige Fadenheizkammern parallel zueinander auszurichten und durch eine einzige Leitung für das Heizmedium, insbesondere den Sattdampf miteinander zu verbinden. Hierbei werden Drosselverluste zwischen den Fadenkanälen weitgehend vermieden und eine gute Konstanz der erzielten Fadentemperaturen von einem Fadenlauf zum anderen gewährleistet.However, it is also possible to align a plurality of such filament heating chambers parallel to one another and to connect them to one another by means of a single line for the heating medium, in particular the saturated steam. Throttle losses between the thread channels are largely avoided and a good consistency of the thread temperatures achieved is guaranteed from one thread run to the other.

Bei Aufheizung über 100°C besteht der Vorteil der Wärmebehandlung eines laufenden Fadens, insbesondere multifilen Chemiefadens, mit gesättigtem Wasserdampf anstatt mit stark überhitztem Wasserdampf oder Heissluft darin, dass der gesättigte Wasserdampf einen grossen latenten Wärmeinhalt (Verdampfungswärme) hat und wegen der sehr hohen Wärmeübergangszahlen bei Kondensation - im Gegensatz zur Konvektion, Strahlung oder direkten Wärmeleitung - eine starke Aufheizung des Fadens bei hohen Fadengeschwindigkeiten und kurzen Verweilzeiten ermöglicht wird. Die Sattdampfbehandlung bewirkt aber auch eine gleichmässige Temperaturverteilung und eine gute Temperaturkonstanz über die gesamte Länge der Behandlungsstrekke. Auch kann die Behandlungsstrecke durch Hintereinanderschalten mehrere Behandlungskammern beliebig vorgegeben werden, da die erforderliche Gleichmässigkeit und Konstanz der Behandlungstemperatur für mehrere Behandlungskammern durch Einstellen des Drucks und durch Druckausgleich zwischen den Behandlungskammern - bei gleichzeitiger Entfernung von Inertanteilen - gewährleistet werden kann. Die Verluste am Eingang und am Ausgang der Behandlungsstrecke können bei entsprechender Gestaltung der Fadeneingangs- und Fadenausgangsschleusen gering und geringer als bei vergleichbaren Luftheizstrecken gehalten werden.When heating above 100 ° C, the advantage of heat treatment of a running thread, in particular multifilament chemical thread, with saturated water vapor instead of strongly overheated water vapor or hot air is that the saturated water vapor has a large latent heat content (heat of vaporization) and because of the very high heat transfer coefficients Condensation - in contrast to convection, radiation or direct heat conduction - enables a strong heating of the thread at high thread speeds and short dwell times. Saturated steam treatment also results in a uniform temperature distribution and good temperature stability over the entire length of the treatment route. The treatment section can also be specified as desired by connecting several treatment chambers in series, since the required uniformity and constancy of the treatment temperature for several treatment chambers can be ensured by adjusting the pressure and by pressure equalization between the treatment chambers - with simultaneous removal of inert components. The losses at the entrance and exit of the treatment section can be kept low and lower than with comparable air heating sections if the thread entry and thread exit locks are designed accordingly.

Daher eignen sich die erfindungsgemässen Sattdampfbehandlungskammern bei der erfindungsgemäss gegebenen, einfachen Einfädelbarkeit laufender Fäden insbesondere für solche Fadenbehandlungen, bei denen bei hoher Fadengeschwindigkeit innerhalb einer relativ kurzen Verweilzeit eine grosse Wärmemenge auf den Faden übertragen werden muss, wie es z.B. bei Synthesefasern in Spinnprozessen, Spinnstreckprozessen, Spinn-Texturier- oder Spinnstreck-Texturierprozessen und Streckexturier-, Streckzwirn-, Streckwickel- und sonstigen Streckprozessen der Fall ist.Therefore, the saturated steam treatment chambers according to the invention, given the simple threading ability of running threads according to the invention, are particularly suitable for those thread treatments in which a large amount of heat has to be transferred to the thread at a high thread speed within a relatively short dwell time, as e.g. is the case with synthetic fibers in spinning processes, spin-stretching processes, spin-texturing or spin-stretch texturing processes and stretch texturing, draw twist, stretch winding and other stretching processes.

So ist es z.B. möglich, frischgesponnene Fasern, die mit hoher Geschwindigkeit von z.B. mehr als 3000 m/min von der Spinndüse abgezogen worden sind, unterhalb des Spinnschachtes einer Sattdampfbehandlung zum Tempern und/ oder - ggf. nach Zwischenschaltung einer Streckpunktfixierung z.B. durch Fadenbremse - zum örtlichen Verstrecken des laufenden Fadens zu unterwerfen. Da Temperaturen über 100°C und mehr als 220°C erzielbar sind, lässt sich auch die Länge der Behandlungsstrecke in weiten Bereichen beeinflussen.So it is e.g. possible, freshly spun fibers, which move at high speed e.g. more than 3000 m / min have been withdrawn from the spinneret, below the spinning shaft of a saturated steam treatment for tempering and / or - if necessary after the interposition of a stretch point fixation e.g. by thread brake - to subject to local stretching of the running thread. Since temperatures above 100 ° C and more than 220 ° C can be achieved, the length of the treatment section can also be influenced over a wide range.

In einem kontinuierlichen Spinn-Streckprozess mit Verstreckung zwischen zwei Galetten kann die Sattdampfbehandlungskammer mit Vorteil zur Aufbringung der Strecktemperatur in einem örtlich begrenzten Fadenbereich zwischen zwei Galettenwerken verwandt werden, wobei das zweite Galettenwerk üblicherweise als Streckgalette bezeichnet, auf ca. 120°C beheizt sein kann. Die Heizkammer nach dieser Erfindung kann aber auch zum Fixieren, Tempern und/oder Schrumpfbehandeln des Fadens nach der eigentlichen Verstreckung dienen.In a continuous spinning-drawing process with drawing between two godets, the saturated steam treatment chamber can advantageously be used to apply the drawing temperature in a localized thread area between two godet units, the second godet unit usually being referred to as the drawing godet and being heated to approximately 120 ° C. The heating chamber according to this invention can also be used for fixing, tempering and / or shrinking the thread after the actual drawing.

Da inzwischen Friktionsfalschdraller für höchste Fadengeschwindigkeiten zur Verfügung stehen (US-PS 4,339,915), ist die erfindungsgemässe Sattdampfbehandlungskammer auch anwendbar, um in einem kontinuierlichen Verfahren einen Faden, insbesondere auch Polyester-oder Polyamidfäden, zu spinnen und sodann unmittelbar - ggf. unter Zwischenschaltung einer Streckzone oder unter gleichzeitiger Verstrekkung - einer Falschzwirnbehandlung in der Sattdampfbehandlungszone zu unterwerfen.Since friction false twists are now available for the highest thread speeds (US Pat. No. 4,339,915), the saturated steam treatment chamber according to the invention can also be used to spin a thread in a continuous process, in particular also polyester or polyamide threads, and then immediately - optionally with the interposition of a stretching zone or with simultaneous stretching - to be subjected to false twist treatment in the saturated steam treatment zone.

Der Vorteil der Sattdampfbehandlung liegt weiterhin darin, dass bei der Sattdampfbehandlung infolge der Kondensation des Dampfes zu Wasser eine Befeuchtung des Fadens erfolgt. Beim Verlassen der Fadenheizkammer kommt es daher infolge der Druckentlastung zu einem sehr plötzlichen Verdampfen von Wasser und damit zu einer Abkühlung des Fadens auf die Siedetemperatur des Wassers. Daher eignet sich die Sattdampfbehandlung für alle Prozesse, bei denen Fadenerhitzung und Zwangskühlung unmittelbar aufeinanderfolgen, insbesondere also für das Falschzwirntexturieren, wobei in diesem Falle erfindungsgemäss durch Formgebung des Auslassspaltes und sonstige bereits erwähnte Massnahmen mit der gezielten Druckentspannung auch ein Temperaturgradient im Sinne einer gezielten Abkühlung des Fadens erreicht wird.The advantage of saturated steam treatment is also that in saturated steam treatment, the thread is moistened due to the condensation of the steam into water. When leaving the filament heating chamber, there is therefore a very sudden evaporation of water as a result of the pressure relief, and thus the filament cools down to the boiling point of the water. Saturated steam treatment is therefore suitable for all processes in which thread heating and forced cooling follow one another directly, in particular for false twist texturing, in which case, according to the invention, by shaping the outlet gap and other measures already mentioned with the targeted pressure release, a temperature gradient in the sense of targeted cooling of the Thread is achieved.

Zum Restkühlen des Fadens auf unter 100°C kann nach der Verdampfungskühlung durch Entspannung des Kondenswassers auch eine Kühlung durch Auftragen einer Fadenpräparationsflüssigkeit oder durch Auftragen von Wasser, z.B. mittels Düse, erfolgen. Ebenso kann Wasser in den Spalt unter Druck eingeführt werden, um genügend Wasser zur Kondensation bereitzustellen.To cool the thread to below 100 ° C after evaporation cooling by releasing the condensate, cooling by applying a thread preparation liquid or by applying water, e.g. by means of a nozzle. Water can also be introduced into the gap under pressure to provide enough water for condensation.

Schliesslich eignet sich die Sattdampfbehandlungskammer aus den genannten Gründen auch zur Fadenheizung in einem üblichen Texturier-oder sequentialen oder simultanen Strecktexturierprozess oder zum Nachbehandeln des durch Luftstrahlbehandeln texturierten Fadens.Finally, for the reasons mentioned, the saturated steam treatment chamber is also suitable for thread heating in a customary texturing or sequential or simultaneous stretch texturing process or for post-treatment of the thread textured by air jet treatment.

Im folgenden werden Ausführungsbeispiele der Erfindung beschrieben. Es zeigen:

  • Fig. 1-3 ein erstes Ausführungsbeispiel in zylindrischer Bauweise;
  • Fig. 4-6 ein zweites Ausführungsbeispiel in zylindrischer Bauweise;
  • Fig. 7-9 ein drittes Ausführungsbeispiel in zylindrischer Bauweise;
  • Fig. 10-12 ein viertes Ausführungsbeispiel in zylindrischer Bauweise;
  • Fig. 13, 14 ein fünftes Ausführungsbeispiel in zylindrischer Bauweise mit Einsätzen;
  • Fig. 15a-15c, 16 ein sechstes Ausführungsbeispiel in zylindrischer Bauweise mit Druckabdichtungen;
  • Fig. 17-20 Ausführungsbeispiele in Plattenbauweise;
  • Fig. 21 die Anordnung einer Ventileinrichtung im Verbindungskanal von Vorheizkanal und Fadenkanal;
  • Fig. 22 Ausführungsbeispiele in Plattenbauweise;
  • Fig. 23, 24 bis 25 Ausführungsbeispiele mit Vorheizkanal, Kondensatabscheider und Inertgasabführung.
Exemplary embodiments of the invention are described below. Show it:
  • Fig. 1-3 a first embodiment in a cylindrical design;
  • Fig. 4-6 a second embodiment in a cylindrical design;
  • Fig. 7-9 a third embodiment in a cylindrical design;
  • Fig. 10-12 a fourth embodiment in a cylindrical design;
  • 13, 14 a fifth embodiment in a cylindrical design with inserts;
  • 15a-15c, 16 a sixth embodiment in a cylindrical design with pressure seals;
  • Fig. 17-20 embodiments in plate construction;
  • 21 shows the arrangement of a valve device in the connecting channel of preheating channel and thread channel;
  • Fig. 22 embodiments in plate construction;
  • 23, 24 to 25 exemplary embodiments with a preheating duct, condensate separator and inert gas discharge.

In Fig. 1 ist im Schnitt die Heizkammer 2 mit dem Fadeneinlaufende 1 dargestellt. Es sei erwähnt, dass das Fadenauslaufende der Heizkammer entsprechend ausgebildet sein kann. Nicht dargestellt ist der Dampfzufuhrkanal in die Heizkammer 2. Es wird Wasser-Sattdampf unter einem Druck von z.B. 20 bar zugeführt, so dass eine Sattdampftemperatur von ca. 210°C besteht.In Fig. 1, the heating chamber 2 is shown with the thread end 1 in section. It should be mentioned that the thread outlet end of the heating chamber can be designed accordingly. The steam feed channel into the heating chamber 2 is not shown. Saturated steam is produced under a pressure of e.g. 20 bar supplied so that a saturated steam temperature of approx. 210 ° C exists.

Auf den Endflansch 3 der Heizkammer 2 ist ein Aussenkörper 4 (Aussenzylinder) gesetzt. Der Aussenkörper 4 ist mit dem Endflansch 3 dichtend verspannt, wobei jedoch - wie später noch auszuführen - eine gewisse Relativbewegung möglich ist. Zwischen Endflansch 3 und Aussenkörper 4 kann eine - hier nicht dargestellte - Dichtung gelegt werden.An outer body 4 (outer cylinder) is placed on the end flange 3 of the heating chamber 2. The outer body 4 is tightly clamped to the end flange 3, but - as will be explained later - a certain relative movement is possible. A seal (not shown here) can be placed between the end flange 3 and the outer body 4.

In der Innenbohrung 5 des Aussenkörpers 4 befindet sich ein Innenkörper 6. Dieser Innenkörper 6 ist als Zylinder (Innenzylinder) mit Trapezgewinde 7 ausgeführt. Die Innenbohrung 5 des Aussenzylinders besitzt ein damit kämmendes Gewinde. Der Innenzylinder 6 mit seinem Gewinde ist der Innenbohrung 5 mit ihrem Gewinde möglichst dichtend angepasst. Auf dem Grunde der Bohrung 5 befindet sich die Dichtplatte 8. Es kann sich dabei um dieselbe Dichtplatte handeln, die auch zwischen den Endflansch 3 und den Aussenkörper 4 zum Zwecke der Dichtung gelegt ist.An inner body 6 is located in the inner bore 5 of the outer body 4. This inner body 6 is designed as a cylinder (inner cylinder) with a trapezoidal thread 7. The inner bore 5 of the outer cylinder has a meshing thread. The inner cylinder 6 with its thread is adapted to the inner bore 5 with its thread as tightly as possible. At the bottom of the bore 5 there is the sealing plate 8. It can be the same sealing plate that is also placed between the end flange 3 and the outer body 4 for the purpose of sealing.

Wie insbesondere aus den Fig. 2 und 3 ersichtlich, besitzt der Endflansch 3 ein Loch 9, durch welches der Faden aus der Heizkammer austritt. Ein entsprechendes Loch ist in der Dichtplatte 8. Der Mantel der Bohrung 5 im Aussenkörper 4 schneidet - in der Projektion auf eine Ebene gesehen - dieses Loch und besitzt eine Nut 10, welche sich - in radialer Richtung - durch das Gewinde der Bohrung hindurch bis in den Kern erstreckt und in Längsrichtung mit dem Loch 9 des Endflansches fluchtet. Diese Nut 10 ist als Fadenführungsnut vorgesehen (Fadennut). Der Innenzylinder 6 besitzt - wie aus Fig. 1 in der Ansicht ersichtlich - eine entsprechende Nut 11. Diese Nut 11 erstreckt sich lediglich bis auf den Kern des Innenzylinders 6. Sie kann jedoch auch in den Kern hineinreichen. Die Flanken 12 der Nut 11 sind in Umfangsrichtung trichterförmig erweitert. Der Innenzylinder weist einen Handgriff 13 auf, mit dem der Innenzylinder 6 relativ zu dem Aussenzylinder 4 drehbar ist.As can be seen in particular from FIGS. 2 and 3, the end flange 3 has a hole 9 through which the thread emerges from the heating chamber. A corresponding hole is in the sealing plate 8. The jacket of the bore 5 in the outer body 4 cuts - seen in the projection onto a plane - this hole and has a groove 10 which - in the radial direction - through the Ge winch through the hole extends into the core and is aligned in the longitudinal direction with the hole 9 of the end flange. This groove 10 is provided as a thread guide groove (thread groove). The inner cylinder 6 has - as can be seen in FIG. 1 - a corresponding groove 11. This groove 11 only extends to the core of the inner cylinder 6. However, it can also extend into the core. The flanks 12 of the groove 11 are flared in the circumferential direction. The inner cylinder has a handle 13 with which the inner cylinder 6 can be rotated relative to the outer cylinder 4.

In der Drehstellung, die in Fig. 2 dargestellt ist (Einfädelstellung), bilden die Fadennut 10 in dem Innenmantel des Aussenkörpers 4 sowie die Nut 11 in dem Gewinde und evtl. Kern des Innenkörpers 6 (Einfädelnut) einen weiten Einfädelschlitz, durch welchen der Faden eingefädelt werden kann. Zum pneumatischen Einfädeln läuft die Innenwandung der Heizkammer 2 trichterförmig auf das Loch 9 im Endflansch 3 zu.In the rotational position shown in Fig. 2 (threading position), the thread groove 10 in the inner jacket of the outer body 4 and the groove 11 in the thread and possibly the core of the inner body 6 (threading groove) form a wide threading slot through which the thread can be threaded. For pneumatic threading, the inner wall of the heating chamber 2 runs in a funnel shape towards the hole 9 in the end flange 3.

Durch Verdrehen des Innenkörpers 6 in Pfeilrichtung wird die Einfädelnut 11 im Innenzylinder 6 in die in Fig. 6 dargestellte Position (Betriebsstellung) gedreht. Dadurch wird die zur Fadenführung dienende Fadennut 10 auf einen engen Spalt verkleinert, dessen Weite so gering ist, dass die Heizgas- bzw. Sattdampfverluste und Druckverluste gering sind. Dadurch, dass die Flanken 14 der Fadennut 10, welche in das Gewinde des Aussenkörpers eingeschnitten sind, im wesentlichen radial verlaufen und dadurch, dass die Flanken 12 der Einfädelnut 11 im Innenzylinder trichterförmig erweitert sind, wird der Faden beim Verdrehen des Innenzylinders 6 entlang den Flanken 14 in die der Fadenführung dienende Fadennut 10 befördert.By turning the inner body 6 in the direction of the arrow, the threading groove 11 in the inner cylinder 6 is rotated into the position (operating position) shown in FIG. 6. As a result, the thread groove 10 used for thread guidance is reduced to a narrow gap, the width of which is so small that the heating gas or saturated steam losses and pressure losses are small. Because the flanks 14 of the thread groove 10, which are cut into the thread of the outer body, run essentially radially and because the flanks 12 of the threading groove 11 in the inner cylinder are flared, the thread is twisted along the flanks when the inner cylinder 6 is rotated 14 transported into the thread groove 10 serving the thread guide.

Wie aus Fig. 2 und 3 ersichtlich, ist der Aussenkörper 4 geteilt, und zwar in einer Ebene, welche zwischen dem Mittelpunkt 15 des Innenzylinders 6 und der Fadennut 10 im Aussenkörper liegt. In die Trennebene ist eine Dichtung 16 eingelegt, die elastisch und im entspannten Zustand dicker als die Distanzstücke ist. Durch Schrauben 18 werden die beiden Hälften des Aussenkörpers miteinander verspannt, nachdem zuvor die Dichtung 16 und die Distanzstücke 17 eingelegt worden sind. Sodann erst wird das Gewinde in die Bohrung 5 des Aussenkörpers 4 eingeschnitten. Dadurch wird auch die Dichtung 16 mit Gewinde versehen. Hierdruch wird bewirkt, dass die Dichtung das Gewinde mit Kern und Flanken beidseits der Fadennut 10 als Dichtleiste abdichtet. Um die durch Nachspannen erforderliche Relativbewegung der beiden Hälften des Aussenkörpers 4 auf dem Endflansch zuzulassen, sind die Flanschschrauben in Langlöchern des Endflansches 3 geringfügig bewegbar. Die Distanzstücke 17 können aus einem verhältnismässig weichen Metall hergestellt sein, so dass auch ein Nachstellen der Dichtung durch Zusammenpressen der Distanzstücke möglich ist. Die Distanzstücke können auch fehlen. Ihr Vorteil liegt zunächst lediglich darin, dass bei der Montage eine von dem Monteur unabhängige Einstellung der Dichtung erfolgt. Durch die Dichtleisten wird bewirkt, dass die Trennfuge zwischen Innen- und Aussenzylinder im Bereich der Dichtleisten durch das sich dort ausbreitende Heizgas/Sattdampf aufgeheizt wird, so dass im Bereich der Fadennut 10 kein Temperaturabfall auftritt.As can be seen from FIGS. 2 and 3, the outer body 4 is divided in a plane which lies between the center 15 of the inner cylinder 6 and the thread groove 10 in the outer body. A seal 16 is inserted into the parting plane, which is elastic and thicker than the spacers in the relaxed state. The two halves of the outer body are clamped together by screws 18 after the seal 16 and the spacers 17 have been inserted beforehand. Only then is the thread cut into the bore 5 of the outer body 4. This also provides the seal 16 with a thread. This causes the seal to seal the thread with the core and flanks on both sides of the thread groove 10 as a sealing strip. In order to allow the relative movement of the two halves of the outer body 4 on the end flange required by retensioning, the flange screws can be moved slightly in the elongated holes of the end flange 3. The spacers 17 can be made of a relatively soft metal, so that it is also possible to readjust the seal by pressing the spacers together. The spacers can also be missing. Your advantage is initially that the seal is set independently of the fitter during assembly. The sealing strips have the effect that the separating joint between the inner and outer cylinders in the area of the sealing strips is heated up by the heating gas / saturated steam spreading there, so that no temperature drop occurs in the area of the thread groove 10.

Durch das Verdrehen des Innenzylinders 6 gegenüber dem Aussenkörper 4 wird zum einen die Überdeckung der Nuten 10 bzw. 11 beseitigt, wobei die Nut 11 so weit verdreht wird, dass sie auf der anderen Seite der Dichtungsplatte 16 liegt. Zum anderen wird durch diese Drehung der Innenkörper 6 in den Aussenkörper 4 hineingeschraubt, und zwar derart, dass er sich mit einer Axialkraft dichtend an die Dichtplatte 8 anlegt.By rotating the inner cylinder 6 relative to the outer body 4, on the one hand, the overlap of the grooves 10 and 11 is eliminated, the groove 11 being rotated so far that it lies on the other side of the sealing plate 16. On the other hand, this rotation causes the inner body 6 to be screwed into the outer body 4 in such a way that it lies against the sealing plate 8 in a sealing manner with an axial force.

Das Ausführungsbeispiel nach den Fig. 4 bis 6 weist den Innenzylinder 6 auf, der fest mit dem Flansch 3 verbunden ist, sowie den darum herum drehbar angeordneten Aussenkörper 4 (Aussenzylinder) mit Handgriff 13.The exemplary embodiment according to FIGS. 4 to 6 has the inner cylinder 6, which is firmly connected to the flange 3, and the outer body 4 (outer cylinder) with a handle 13, which is rotatable around it.

Der Innenzylinder 6 weist über seine gesamte Länge die zum Fadenführen dienende Nut 10 (Fadennut) auf. Diese Fadennut 10 ist im mittleren Bereich 19 in Umfangsrichtung und in der Tiefe erweitert, so dass dort die eigentliche Heizkammer entsteht, in der der Faden sich ohne Berührung der Wandungen bewegen, schwingen, ballonieren kann, in der aber insbesondere der Sattdampf unter einem einheitlichen Druck steht und daher auch eine einheitliche Temperatur aufweist.The inner cylinder 6 has the groove 10 (thread groove) serving for thread guiding over its entire length. This thread groove 10 is expanded in the central region 19 in the circumferential direction and in depth, so that the actual heating chamber is created there, in which the thread can move, oscillate, balloon, without touching the walls, but in which, in particular, the saturated steam under a uniform pressure stands and therefore has a uniform temperature.

Der Aussenzylinder 4 weist eine Nut 11 auf, die in dessen Innenmantel eingebracht ist und deren Flanken 12 sanft vom Nutengrund auf den Innenmantel auslaufen.The outer cylinder 4 has a groove 11, which is made in the inner casing and the flanks 12 of which run gently from the bottom of the groove onto the inner casing.

Der Flansch 3 weist ein Loch 20 auf, dessen vorderer Bereich 21 in der Aufsicht nach Fig. 5 die Fadenführungsnut 10 überdeckt. Die Flanken 22 des Loches 20 fluchten demnach mit den Flanken der Fadenführungsnut 10 in der Aufsicht nach Fig. 5 bzw. Fig. 6.The flange 3 has a hole 20, the front region 21 of which in the top view according to FIG. 5 covers the thread guide groove 10. The flanks 22 of the hole 20 are therefore flush with the flanks of the thread guide groove 10 in the top view according to FIGS. 5 and 6.

Der Aussenzylinder 4 ist geteilt und wird durch die Flansche 23 und Schrauben 24 derart verspannt, dass der Innenmantel sich fest um den Aussenmantel des Innenkörpers 6 schliesst. In die Trennebene der geteilten Aussenkörper 4 kann eine elastische Distanzplatte 26, z.B. Dichtungsplatte, eingelegt werden.The outer cylinder 4 is divided and is clamped by the flanges 23 and screws 24 in such a way that the inner jacket closes tightly around the outer jacket of the inner body 6. In the parting plane of the split outer body 4, an elastic spacer plate 26, e.g. Sealing plate.

Es sind als Dichtleisten ausgeführte Längsdichtungen 25 beidseits der Fadennut 10 im Innenzylinder 6 vorgesehen, die eine Abdichtung der Fadennut 10 bzw. auch ihres mittleren Bereiches 19 in Umfangsrichtung bewirken.Longitudinal seals 25 designed as sealing strips are provided on both sides of the thread groove 10 in the inner cylinder 6, which seal the thread groove 10 and also its central region 19 in the circumferential direction.

Der Innenzylinder 6 weist zentrisch eine als Vorheizkanal dienende Bohrung 27 auf, die nach oben hin verschlossen ist und nach unten hin mit dem Anschlussrohr 28 kommuniziert. Durch das Anschlussrohr 28 wird die Bohrung 27 mit einem unter Druck stehenden Heizgas, insbesondere Sattdampf, beschickt. Der Vorheizkanal 27 steht mit der Fadennut 10, insbesondere deren mittleren Bereich 19 durch Löcher 29 in Verbindung.The inner cylinder 6 has a central bore 27 serving as a preheating channel, which is closed at the top and communicates with the connecting pipe 28 at the bottom. Through the connection pipe 28, the bore 27 is charged with a pressurized heating gas, in particular saturated steam. The preheating channel 27 is connected to the thread groove 10, in particular its central region 19 through holes 29.

Im Betrieb wird auf den Aussenzylinder 4 eine Axialkraft in Richtung des Pfeiles 30 aufgebracht. Hierzu dient im dargestellten Fall ein Trapezgewinde 31, das im oberen Bereich von Aussenzylinder 4 und Innenzylinder 6 angebracht ist. Durch Drehen des Aussenzylinders 4 gegenüber dem Innenzylinder 6 mittels Handgriff 13 wird der Aussenkörper 4 gegen die Dichtplatte 8 auf Endflansch 3 dichtend gedrückt. In dieser Drehstellung (Betriebsstellung) hat die Nut 11 des Aussenkörpers 4 die in Fig. 6 dargestellte Stellung. Die Nut 11 liegt also hinter den Dichtlippen 25, so dass von der Fadennut 10 aus kein Druckmedium, Heizgas, Sattdampf in die Nut 11 gelangen kann. Die Fadennut 10 ist durch die Innenwandung des Aussenzylinders 4 auf einen sehr engen Spalt beschränkt, der den Austritt unwirtschaftlich grosser Mengen des Druckmediums verhindert. Spaltweiten liegen in der Grössenordnung von weniger als 0,5 mm.In operation, an axial force is applied to the outer cylinder 4 in the direction of arrow 30. In the case shown, a trapezoidal thread 31 is used for this purpose, which is attached in the upper region of the outer cylinder 4 and inner cylinder 6. By turning the outer cylinder 4 relative to the inner cylinder 6 by means of a handle 13, the outer body 4 is pressed against the sealing plate 8 on the end flange 3 in a sealing manner. In this rotational position (operating position), the groove 11 of the outer body 4 has the position shown in FIG. 6. The groove 11 is therefore located behind the sealing lips 25, so that no pressure medium, heating gas or saturated steam can get into the groove 11 from the thread groove 10. The thread groove 10 is limited by the inner wall of the outer cylinder 4 to a very narrow gap, which prevents the uneconomically large amounts of the pressure medium from escaping. Gap widths are on the order of less than 0.5 mm.

Durch Verdrehen des Aussenzylinders in die in Fig. 5 dargestellte Stellung (Einfädelstellung) wird die Nut 11 des Aussenzylinders in eine Position gebracht, in der sie - in senkrechter Richtung - das Loch 20 in Flansch 3 und - in radialer Richtung - die Fadennut 10 überdeckt. Es entsteht dadurch eine grosse Einfädelöffnung, durch welche der Faden pneumatisch oder aber auch mittels einer Borste oder ähnlichem Mittel eingefädelt werden kann.By turning the outer cylinder into the position shown in FIG. 5 (threading position), the groove 11 of the outer cylinder is brought into a position in which it covers the hole 20 in the flange 3 in the vertical direction and the thread groove 10 in the radial direction . This creates a large threading opening through which the thread can be threaded pneumatically or by means of a bristle or similar means.

Das Ausführungsbeispiel nach den Fig. 7 bis 9 entspricht weitgehend dem in den Fig. 4 bis 6 dargestellten. Die Heizkammer besteht aus einem rohrförmigen Innenzylinder 6 mit Fadennut 10. Die Fadennut 10 ist im Fadeneinlassteil 1 und im Fadenauslassteil eng und erweitert sich im mittleren Bereich 19. Der Innenzylinder 6 ist ortsfest auf dem Flansch 3 befestigt. Seine zentrale Bohrung, die als Vorheizkanal 27 dient, ist an Dampfleitung 28 mit gesättigtem Wasserdampf angeschlossen. Der Wasserdampf kann durch die Löcher 29 in den erweiterten mittleren Bereich 19 der Fadennut 10 austreten. Der Innenzylinder 6 wird von einem Aussenzylinder 4 eingefasst, welcher einen Einlegespalt 32 (Schlitz) für den Faden besitzt. Der Aussenzylinder 4 wird von Bandagen 33 zur Erhöhung der Festigkeit umfasst. Der Aussenzylinder 4 ist durch Handgriff 13 drehbar.The exemplary embodiment according to FIGS. 7 to 9 largely corresponds to that shown in FIGS. 4 to 6. The heating chamber consists of a tubular inner cylinder 6 with thread groove 10. The thread groove 10 is narrow in the thread inlet part 1 and in the thread outlet part and widens in the central region 19. The inner cylinder 6 is fixed in place on the flange 3. Its central bore, which serves as a preheating channel 27, is connected to steam line 28 with saturated water vapor. The water vapor can escape through the holes 29 into the enlarged central region 19 of the thread groove 10. The inner cylinder 6 is surrounded by an outer cylinder 4, which has an insertion gap 32 (slot) for the thread. The outer cylinder 4 is surrounded by bandages 33 to increase the strength. The outer cylinder 4 can be rotated by means of a handle 13.

In der in Fig. 8 dargestellten Position (Einfädelstellung) mündet der Einlegespalt 32 radial auf der Fadennut 10. Es sei erwähnt, dass der Einlegespalt 32 auch sekantial bis tangential gerichtet sein kann. In der zweiten, in Fig. 9 dargestellten Drehstellung (Betriebsstellung) wird der Mantel so verdreht, dass die Fadennut 10 vom Innenumfang (Schliessfläche) des Aussenzylinders 4 überdeckt wird.In the position shown in FIG. 8 (threading position), the insertion gap 32 opens radially on the thread groove 10. It should be mentioned that the insertion gap 32 can also be directed secantial to tangential. In the second rotational position (operating position) shown in FIG. 9, the jacket is rotated such that the thread groove 10 is covered by the inner circumference (closing surface) of the outer cylinder 4.

Eine weitere Besonderheit gegenüber dem Ausführungsbeispiel nach den Fig. 4 bis 6 besteht darin, dass der Innenzylinder 6 neben den Längsdichtungen 25 auch noch die Querdichtungen 34 am Fadeneinlass und Fadenauslass besitzt. Diese Querdichtungen können O-förmige Dichtleisten sein, die von einer Längsdichtung zur anderen reichen. Es kann sich jedoch auch um einen O-Ring handeln, welcher das gesamte Innenteil 6 umschliesst. Ebenso können die Dichtleisten 25 und Querdichtungen 34 aus einem Stück als Ring oder rechteckiges Fenster geformt sein. Die Dichtleisten und Querdichtungen werden in Nuten des Innenzylinders (oder auch des Aussenzylinders) eingelegt, so dass sie durch die Relativbewegung der Zylinder nicht verrutschen. Die Nuten sind nur so tief, dass die Dichtleisten die Schliessfläche des einen Körpers überragen und in der Betriebsstellung der beiden Körper dichtend auf der Schliessfläche des anderen Körpers liegen (gilt für alle Ausführungsbeispiele).A further special feature compared to the exemplary embodiment according to FIGS. 4 to 6 is that the inner cylinder 6 also has the transverse seals 34 at the thread inlet and thread outlet in addition to the longitudinal seals 25. These cross seals can be O-shaped sealing strips that extend from one longitudinal seal to another. However, it can also be an O-ring which surrounds the entire inner part 6. Likewise, the sealing strips 25 and transverse seals 34 can be formed in one piece as a ring or rectangular window. The sealing strips and cross seals are placed in the grooves of the inner cylinder (or the outer cylinder) so that they do not slip due to the relative movement of the cylinders. The grooves are only so deep that the sealing strips protrude beyond the closing surface of one body and lie in the operating position of the two bodies in a sealing manner on the closing surface of the other body (applies to all exemplary embodiments).

Durch die Verwendung der Querdichtungen 34 nach dem Ausführungsbeispiel 7 bzw. 10 wird es überflüssig, den Aussenmantel 4 durch Axialkraft gegen die Dichtplatte 8 zu drücken, wie dies in Fig. 4 dargestellt ist.By using the transverse seals 34 according to the exemplary embodiment 7 or 10, it becomes superfluous to press the outer jacket 4 against the sealing plate 8 by axial force, as is shown in FIG. 4.

Weiterhin besitzt der Innenzylinder 6 auf seiner Rückseite die in Fig.8 und Fig.9 ersichtlichen Längsdichtungen 35 sowie - jeweils am Fadeneingang und Fadenausgang - eine hier nicht sichtbare Querdichtung (entsprechend den Querdichtungen 34 auf der Vorderseite). Die Fläche zwischen diesen Längsdichtungen 35 und ihren Querdichtungen wird über Leitung 36 mit dem Heizmedium, hier also dem Sattdampf aus Rohr 27, beschickt. Da der sekantiale Abstand zwischen den Längsdichtungen 35 auf der Rückseite des Innenzylinders 6 grösser ist als der sekantiale Abstand der Dichtleisten 25 auf der Vorderseite des Innenteils 6, drückt in der Betriebsstellung nach Fig. 9 der Dampfdruck den beweglichen Aussenzylinder 4 in Pfeilrichtung 37 gegen die Längsdichtungen 25 auf der Vorderseite. Hierdurch entsteht zum einen eine sichere Abdichtung der Fadennut 10 und des von den Dichtleisten 25 und den Querdichtungen 34 umschriebenen Flächenbereichs. Vor allem aber dient das Heizgas-/Sattdampfpolster auf der Rückseite der zusätzlichen Heizung sowohl des Innen- als auch besonders des Aussenzylinders.Furthermore, the inner cylinder 6 has on its rear side the longitudinal seals 35 shown in FIGS. 8 and 9 and, in each case at the thread inlet and thread outlet, a transverse seal that is not visible here (corresponding to the transverse seals 34 on the front side). The area between these longitudinal seals 35 and their transverse seals is charged via line 36 with the heating medium, here the saturated steam from tube 27. Since the secantial distance between the longitudinal seals 35 on the back of the inner cylinder 6 is greater than the secantial distance of the sealing strips 25 on the front of the inner part 6, in the operating position according to FIG. 9 the vapor pressure presses the movable outer cylinder 4 in the direction of arrow 37 against the longitudinal seals 25 on the front. On the one hand, this results in a secure sealing of the thread groove 10 and the surface area circumscribed by the sealing strips 25 and the transverse seals 34. Above all, however, the heating gas / saturated steam cushion on the back serves for the additional heating of both the inner and especially the outer cylinder.

Bei den Ausführungsbeispielen nach Fig. 10 bis 12 ist wiederum auf dem Flansch 3 das zylindrische Innenteil 6 (Innenzylinder) fest angebracht. Das Aussenteil 4 ist wiederum als drehbarer, mit Einlegspalt 32 versehener Mantel 4 (Aussenzylinder) ausgebildet. Der Einlegspalt 32 mündet in der einen Drehstellung (Einfädelstellung) (nicht dargestellt) in die Fadennut 10. In der anderen dargestellten Drehstellung nach Fig. 11 und 12 (Betriebsstellung) überdeckt der Mantel 4 die Fadennut 10.10 to 12, the cylindrical inner part 6 (inner cylinder) is in turn firmly attached to the flange 3. The outer part 4 is in turn designed as a rotatable jacket 4 (outer cylinder) provided with an insertion gap 32. The insertion gap 32 opens into the thread groove 10 in the one rotational position (threading position) (not shown). In the other rotational position shown in FIGS. 11 and 12 (operating position), the jacket 4 covers the thread groove 10.

In den Innenzylinder 6 ist eine von oben bis unten durchlaufende Nut 38 eingebracht, die vorzugsweise über ihre ganze Länge gleiche Weite und Tiefe hat (Einsatznut). In die Nut 38 sind Einsatzstücke 39 und 40 eingelegt. Die Einsatzstücke 39 bilden den Fadeneingangsteil und Fadenausgangsteil und besitzen eine enge Fadennut 10, wie in Fig. 11 dargestellt. Das Einsatzteil 40 bildet den mittleren Bereich 19 der Fadenführungsnut und kann dementsprechend - wie in Fig. 11 dargestellt - eine Fadenführungsnut mit erweitertem Querschnitt besitzen. Die Einsatzstücke 39 und 40 sind auf ihrer gesamten Länge durch Längsdichtungen 25 beidseits der Nut abgedichtet. Die Flanken der Einsatzstücke werden beidseits durch Dichtleisten 41 gegenüber der Einsatznut 38 abgedichtet. Um eine gewisse dichtende Beweglichkeit zu erzielen, sind die Flanken der Einsatznut und der Einsatzteile parallel zueinander ausgerichtet.In the inner cylinder 6 a through-going groove 38 is made, which preferably has the same width and depth over its entire length (insert groove). Insert pieces 39 and 40 are inserted into the groove 38. The inserts 39 form the thread entry part and thread exit part and have a narrow thread groove 10, as shown in FIG. 11. The insert part 40 forms the central region 19 of the thread guide groove and can accordingly have a thread guide groove with an enlarged cross section, as shown in FIG. 11. The inserts 39 and 40 are sealed along their entire length by longitudinal seals 25 on both sides of the groove. The Flanks of the insert pieces are sealed on both sides by sealing strips 41 with respect to the insert groove 38. In order to achieve a certain degree of sealing mobility, the flanks of the insert groove and the insert parts are aligned parallel to one another.

Das Einsatzteil 40 des mittleren Bereiches 19 besitzt auf seiner Rückseite eine Längsnut 42, welche von den Löchern 29 durchdrungen wird, durch welche die Fadennut 10 des mittleren Bereiches 29 mit der zentralen, als Vorheizkanal dienenden Bohrung 27 zur Dampfzufuhr verbunden ist. Da der sekantiale Abstand der Dichtleisten 25 auf der Fadennutseite der Einsatzteile 40 kleiner ist als der sekantiale Abstand der Dichtleisten 41, wird das Einsatzstück 40 durch den Dampfdruck gegen den Innenumfang des Mantels gedrückt.The insert 40 of the central area 19 has on its rear side a longitudinal groove 42 which is penetrated by the holes 29 through which the thread groove 10 of the central area 29 is connected to the central bore 27 serving as a preheating channel for steam supply. Since the secantial distance of the sealing strips 25 on the thread groove side of the insert parts 40 is smaller than the secantial distance of the sealing strips 41, the insert piece 40 is pressed against the inner circumference of the jacket by the vapor pressure.

Die Einsatzstücke 39 weisen - wie bereits zu dem Ausführungsbeispiel nach Fig. 7 beschrieben - die Querdichtungen 34 auf. Die Einsatzstücke 39 am Fadeneingang und Fadenausgang können, müssen aber nicht, mit einer durch Dampfdruck beaufschlagten Längsnut 43 auf ihrer Rückseite versehen sein. Ebenso ist es nicht unbedingt erforderlich, zur Dampfbeaufschlagung der Längsnut 43 einen separaten Dampfkanal vorzusehen. Vielmehr wird der Dampfdruck aus der Längsnut 42 des Einsatzstückes 40 für ausreichenden Dampfdruck auch auf der Rückseite der Einsatzstücke 39 sorgen. Auch wenn die Längsnut 43 nicht vorhanden ist oder sich über nur einen kurzen Bereich vom Einsatzstück 40 aus zum Fadeneingang bzw. Fadenausgang hin erstreckt, reicht der sich hinter dem Einsatzstück 39 bildende Dampfdruck aus, für einen ausreichenden Andruck der Dichtlippen 25 an den Innenumfang des Mantels 4 zu sorgen. Dabei ist zu berücksichtigen, dass im Fadeneingang un Fadenausgang sich eine Strömung entsprechend dem Druckabfall einstellt, so dass der statische Druck auf der Rückseite des Einsatzstückes 39 grösser ist als der statische Druck auf der Vorderseite des Einsatzteiles. Im übrigen sorgen auch bei den Einsatzstücken 39 die Dichtleisten 41 dafür, dass die Rückseite dampfdicht abgeschlossen ist.The inserts 39 have - as already described for the exemplary embodiment according to FIG. 7 - the transverse seals 34. The inserts 39 at the thread inlet and thread outlet can, but do not have to, be provided with a longitudinal groove 43 on their rear side which is acted upon by steam pressure. Likewise, it is not absolutely necessary to provide a separate steam duct for steaming the longitudinal groove 43. Rather, the vapor pressure from the longitudinal groove 42 of the insert 40 will provide sufficient vapor pressure also on the back of the insert 39. Even if the longitudinal groove 43 is not present or extends over only a short area from the insert 40 to the thread inlet or thread outlet, the vapor pressure forming behind the insert 39 is sufficient for the sealing lips 25 to be pressed sufficiently against the inner circumference of the jacket 4 to worry. It should be taken into account that a flow corresponding to the pressure drop occurs in the thread inlet and thread outlet, so that the static pressure on the back of the insert 39 is greater than the static pressure on the front of the insert. In addition, the sealing strips 41 also ensure that the rear side is sealed in a vapor-tight manner in the case of the insert pieces 39.

Wie aus Fig. 10 ersichtlich, sind die Stirnflächen der Einsatznut 38 durch die in die Einsatznut 38 an den Enden fest eingepassten und abgedichteten Dichtplatten 44 abgedichtet. Es können auch Dichtplatten verwandt werden, die auf den Stirnflächen des Innenzylinders dicht aufliegen.As can be seen from FIG. 10, the end faces of the insert groove 38 are sealed by the sealing plates 44 which are firmly fitted and sealed into the insert groove 38 at the ends. Sealing plates can also be used which lie tightly on the end faces of the inner cylinder.

In dem Ausführungsbeispiel nach Fig. 13, 14 werden insbesondere der Fadeneinlassteil und der Fadenauslassteil der Heizkammer durch eine Mehrzahl von relativ dünnen Einsatzstücken 45 gebildet. Hierzu besitzt das Innenteil 6, wie es auch in den Fig. 7 und 10 dargestellt ist, eine Einsatznut 38. Die Flanken dieser Einsatznut 38 sind, wie sich aus Fig. 14 ergibt, derart konvergierend geformt, dass sie beidseits einer Dichtlippe 25 Halt geben.In the embodiment according to FIGS. 13, 14, in particular the thread inlet part and the thread outlet part of the heating chamber are formed by a plurality of relatively thin insert pieces 45. For this purpose, the inner part 6, as is also shown in FIGS. 7 and 10, has an insert groove 38. The flanks of this insert groove 38, as can be seen in FIG. 14, are shaped convergingly in such a way that they provide support on both sides of a sealing lip 25 .

Die Heizkammer kann in ihrem mittleren Bereich ebenfalls aus einem Einsatzstück 40 bestehen. Es ist ersichtlich, dass dieses Einsatzstück 40 auch fehlen oder aber durch einzelne kürzere Einsatzstücke ersetzt werden kann.The heating chamber can also consist of an insert 40 in its central region. It can be seen that this insert 40 is also missing or can be replaced by individual shorter inserts.

Die Einsatzstücke 45 wie auch 40 besitzen Flanken, die den Dichtlippen 25 ebenfalls angepasst sind. Dadurch können die Einsatzstücke zwischen die Dichtlippen 25 geklemmt werden. Da zwischen den Dichtlippen ein Abstand besteht, wird sich unterhalb der Dichtlippe ein statischer Druck einstellen, während oberhalb der Dichtlippen eine Strömung mit entsprechender Verminderung des statischen Drucks entsteht. Dadurch werden auch die Dichtlippen in diesem Ausführungsbeispiel nach vorne gegen den Innenumfang des Mantels 4 gedrückt.The insert pieces 45 and 40 have flanks which are also adapted to the sealing lips 25. As a result, the inserts can be clamped between the sealing lips 25. Since there is a distance between the sealing lips, a static pressure will occur below the sealing lip, while a flow will arise above the sealing lips with a corresponding reduction in the static pressure. As a result, the sealing lips in this exemplary embodiment are also pressed forward against the inner circumference of the jacket 4.

Die Einsatzteile können in den Ausführungsbeispielen nach Fig. 10 bis 14 aus besonders verschleissfesten Materialien bestehen, wie z.B. Keramik, insbesondere Sinterkeramik oder auch Sintermetall. Der Vorteil dieser Ausführung liegt darin, dass die Einsatzstücke leicht bei Verschleiss oder bei Umstellung des zu bearbeitenden Fadentiters ausgebaut werden können. Ferner sind die Einsatzstücke leicht als Massenware herzustellen, während die Herstellung einer breiten Nut in dem Innenzylinder 6 weniger fertigungstechnischen Aufwand erfordert als die Herstellung einer sehr feinen Fadennut.In the exemplary embodiments according to FIGS. 10 to 14, the insert parts can consist of particularly wear-resistant materials, such as Ceramics, especially sintered ceramics or sintered metal. The advantage of this design is that the inserts can be easily removed if the thread titer to be processed is worn or changed. Furthermore, the inserts are easy to manufacture in bulk, while the manufacture of a wide groove in the inner cylinder 6 requires less manufacturing effort than the manufacture of a very fine thread groove.

Die Ausführungsbeispiele nach den Fig. 15a, 15b zeichnen sich dadurch aus, dass die Andrückkraft des Innenzylinders 6 gegen die Innenwandung des Aussenzylinders 4 nicht direkt wie in Fig. 8, 9, sondern durch Einsatzstücke 46 erfolgt, die auf der Rückseite des Innenteils 6 in eine Einsatznut 47 eingelegt sind. Diese Einsatznut 47 wird von der Bohrung 27 aus über Bohrung 48 mit Dampfdruck beaufschlagt. In Fig. 15a sind wiederum die Längsdichtungen 49 und Querdichtungen vorgesehen, die das Einsatzstück 46 gegenüber den Nutflanken abdichten. Es sei erwähnt, dass auch entsprechende Querdichtungen vorhanden sind, die jedoch in den vorgegebenen Ansichten nicht darstellbar sind. Je nach dem Flächenverhältnis der Fläche, die auf der Vorderseite des Innenteils 6 durch die Dichtleisten 25 und die entsprechenden Querdichtungen vorgegeben ist, zu der Fläche, die durch die Dichtleisten 49 und die entsprechenden Querdichtungen vorgegeben ist, können sich die Einsatzstücke 46 über eine mehr oder weniger grosse Länge des Innenteils 6 erstrecken. In Fig. 16 ist dargestellt, dass sich das Einsatzstück über eine Teillänge erstreckt und einen passfederförmigen Querschnitt hat. Hierbei kann ein ringförmiger O-Ring als Längs- und Querdichtung verwandt werden. In der weiteren Teildarstellung nach Fig. 16 ist die Einsatznut 47 mit dem Einsatzstück 46 zylinderförmig.The exemplary embodiments according to FIGS. 15a, 15b are characterized in that the pressing force of the inner cylinder 6 against the inner wall of the outer cylinder 4 does not take place directly as in FIGS. 8, 9, but instead by insert pieces 46, which are located on the rear side of the inner part 6 in an insert groove 47 are inserted. This insert groove 47 is pressurized from the bore 27 via bore 48 with steam pressure. In Fig. 15a, the longitudinal seals 49 and transverse seals are again provided, which seal the insert 46 against the groove flanks. It should be mentioned that there are also corresponding transverse seals, which, however, cannot be represented in the given views. Depending on the area ratio of the area, which is predetermined on the front side of the inner part 6 by the sealing strips 25 and the corresponding transverse seals, to the area which is predetermined by the sealing strips 49 and the corresponding transverse seals, the insert pieces 46 can be more or less extend less great length of the inner part 6. 16 shows that the insert extends over a partial length and has a feather-shaped cross section. Here, an annular O-ring can be used as a longitudinal and transverse seal. In the further partial illustration according to FIG. 16, the insert groove 47 with the insert 46 is cylindrical.

Bei den Einsatzstücken kann es sich auch - wie in Fig. 15b dargestellt - um Gummistopfen handeln, die dichtend in die Einsatznut 47 eingelegt sind.The insert pieces can also be rubber plugs, as shown in FIG. 15b, which are inserted sealingly into the insert groove 47.

In Fig. 15c ist dargestellt, dass das Einsatzstück 46 aus einem Schlauch oder Dehnkörper besteht, welcher sich über eine zumindest gewisse Länge in der Einsatznut 47 erstreckt und welcher mit einem Druckmedium, vorzugsweise Sattdampf, über eine geeignete Anschlussleitung, hier nicht dargestellt, druckbeaufschlagt wird.15c shows that the insert 46 consists of a hose or expansion body which extends over an at least certain length in the insert groove 47 and which also a pressure medium, preferably saturated steam, is pressurized via a suitable connecting line, not shown here.

In Fig. 17 ist eine Doppelfadenheizkammer gezeigt. Die Fadenheizkammern bestehen aus den Platten 51, 52 und 53. Das Plattenpaar 51 und 53 und das Plattenpaar 52 und 53 bilden jeweils eine Fadenheizkammer.A double filament heating chamber is shown in FIG. The filament heating chambers consist of the plates 51, 52 and 53. The plate pair 51 and 53 and the plate pair 52 and 53 each form a filament heating chamber.

Jede Platte 51 und 52 besitzt die beiden Ebenen 73 und 74, die planparallel zueinander liegen und durch eine Stufe 54 miteinander verbunden sind. Zwischen den Platten 51 und 52 ist die Platte 53 verschiebbar. Die Platte 53 besitzt ebenfalls die planparallelen Ebenen 75 und 76, welche durch die Stufen 55 miteinander verbunden sind. Die Stufen 54 und 55 der Platten 51, 52 und 53 sind jeweils gleich gross. In dem Ausführungsbeispiel ist gezeigt, dass die Stufen eine Ebene bilden. Es ist jedoch auch eine andere Ausbildung der Stufe möglich. Insbesondere ist es möglich, die Stufen - in dem gezeigten Querschnitt - konkav auszubilden. Ebenso ist es möglich, die Stufen in Fadenlaufrichtung schwach zu krümmen, so dass der Faden in Kontakt mit einer Stufe geführt wird. Gleichfalls können statt der Ebenen in Fadenlaufrichtung gewölbte Flächen vorgesehen werden, so dass der Faden in Kontakt mit einer Fläche geführt wird. In beiden Fällen entsteht jeweils ein gekrümmter Fadenkanal.Each plate 51 and 52 has the two planes 73 and 74 which are plane-parallel to one another and are connected to one another by a step 54. The plate 53 is displaceable between the plates 51 and 52. The plate 53 also has the plane-parallel planes 75 and 76, which are connected to one another by the steps 55. The steps 54 and 55 of the plates 51, 52 and 53 are each of the same size. In the exemplary embodiment it is shown that the steps form a plane. However, a different level training is also possible. In particular, it is possible to make the steps concave - in the cross section shown. It is also possible to slightly bend the steps in the thread running direction so that the thread is guided in contact with a step. Likewise, curved surfaces can be provided instead of the planes in the thread running direction, so that the thread is guided in contact with a surface. In both cases, a curved thread channel is created.

Die Platte 53 ist mit ihren Ebenen 75, 76 zwischen den einander zugewandten Ebenen 73, 74 der Platten 51 und 52 gleitend geführt. In der in Fig. 17 gezeigten Stellung (Einfädelstellung) entsteht auf der Vorderfront der Platten 51 und 52 ein Längsschlitz im Bereich der Stufen 55 der Platte 53, da diese Stufe 55 die Vorderfront der Platten 51, 52 geringfügig überragt. Durch diese Längsschlitze kann jeweils ein parallel zu den Längsschlitzen laufender Faden quer zu seiner Laufrichtung in den Spalt zwischen den Platten 51 und 53 bzw. 52 und 53 eingelegt werden. Sodann wird die Platte 53 zurückverschoben in eine Stellung, die in Fig. 18a angezeigt ist (Betriebsstellung). In dieser Stellung entstehen zwei enge, parallele, geradlinige oder ggf. gekrümmte Fadenkanäle. Jeder Fadenkanal ist durch die Ebene 74 und die Stufe 54 der Platte 51 bzw. 52 und durch die Ebene 75 und die Stufe 55 der Platte 53 gebildet. Durch Dampfanschluss 61 und Kanal 58 sowie Zwischenkanal 60 werden die beiden Fadenkanäle mit gesättigtem Wasserdampf beschickt. Hierzu ist - wie aus den Fig. 18a, 18b ersichtlich - im Bereich der Mündung des Dampfkanals 58 und des Dampfdurchtrittkanals 60 eine Ausnehmung 77 in die Ebene 74 und die Stufe 54 der Platten 51 bzw. 52 eingearbeitet. Diese Ausnehmung bewirkt eine Erweiterung des Fadenkanals. Diese Erweiterung dient in diesem Falle dazu, den durch Dampfkanal 58 zuströmenden Dampf ungedrosselt in den Kanal 60 durchfliessen zu lassen, so dass in den beiden benachbarten Fadenkanälen dieselben Druck- und Temperaturverhältnisse bestehen. Es ist jedoch auch möglich, die Ausnehmung 77 über eine grössere Länge vorzusehen, so dass der enge Spalt lediglich im Einlass- und Auslassbereich des Fadens 59 stehenbleibt. Es sei erwähnt, dass dort die Spaltweite etwa 0,2 bis 0,3 mm beträgt bei einer Länge der Endbereiche von 60 mm und mehr. Damit kann ein Faden von 167 dtex ohne schädliche Wandreibung bei nur geringen Dampfverlusten bei Temperaturen von 220°C, entsprechend ca. einem Druck von 24 bar, mit gesättigtem Wasserdampf behandelt werden.The plate 53 is slidably guided with its levels 75, 76 between the mutually facing levels 73, 74 of the plates 51 and 52. In the position shown in FIG. 17 (threading position), a longitudinal slit is created on the front of the plates 51 and 52 in the area of the steps 55 of the plate 53, since this step 55 slightly projects above the front of the plates 51, 52. Through these longitudinal slots, a thread running parallel to the longitudinal slots can be inserted transversely to its running direction into the gap between the plates 51 and 53 or 52 and 53. The plate 53 is then pushed back into a position which is indicated in FIG. 18a (operating position). In this position, two narrow, parallel, straight or possibly curved thread channels are created. Each thread channel is formed by the plane 74 and the step 54 of the plate 51 and 52 and by the plane 75 and the step 55 of the plate 53. The two thread channels are fed with saturated water vapor through steam connection 61 and channel 58 and intermediate channel 60. For this purpose - as can be seen from FIGS. 18a, 18b - in the area of the mouth of the steam channel 58 and the steam passage channel 60, a recess 77 is machined into the plane 74 and the step 54 of the plates 51 and 52, respectively. This recess causes an expansion of the thread channel. In this case, this expansion serves to allow the steam flowing through steam channel 58 to flow unthrottled into channel 60, so that the same pressure and temperature conditions exist in the two adjacent thread channels. However, it is also possible to provide the recess 77 over a greater length, so that the narrow gap only remains in the inlet and outlet region of the thread 59. It should be mentioned that the gap width there is approximately 0.2 to 0.3 mm with a length of the end regions of 60 mm and more. This means that a thread of 167 dtex can be treated with saturated water vapor without damaging wall friction with only slight steam losses at temperatures of 220 ° C, corresponding to a pressure of 24 bar.

Das Plattenpaket aus den Platten 51, 52 und 53 ist allseits von Isoliermaterial 62 umgeben. Dieses Plattenpaket ist eingefasst in einen massiven Block (Gehäuse), der aus den Platten 64, 65, 66 zusammengeschraubt und stabil genug ist, die im Inneren des Fadenkanals entstehenden Drükke und die dadurch hervorgerufenen Kräfte aufzunehmen. Um das Plattenpaket zusammenzupressen, ist in einer Kammer 67 der Platte 66 der Schlauch/Dehnkörper 68 eingeschmiegt, welcher sich im wesentlichen über die gesamte Länge der Heizkammer erstreckt. Der Schlauch besitzt bevorzugt einen länglichen Querschnitt, so dass die Breite, mit der der Schlauch an der Seitenfläche der Platte 52 anliegt, grösser ist als die Weite des Fadenkanals in der Betriebsstellung. Der Schlauch 68 kann daher mit einem annähernd um das Flächenverhältnis geringeren Druck beaufschlagt werden, um das Plattenpaket 51,52,53 dampfdicht zusammenzupressen.The plate pack consisting of plates 51, 52 and 53 is surrounded on all sides by insulating material 62. This plate package is enclosed in a solid block (housing), which is screwed together from the plates 64, 65, 66 and is stable enough to absorb the pressures generated in the interior of the thread channel and the forces caused thereby. In order to compress the plate pack, the hose / expansion body 68 is nestled into a chamber 67 of the plate 66, which extends essentially over the entire length of the heating chamber. The hose preferably has an elongated cross section, so that the width with which the hose rests on the side surface of the plate 52 is greater than the width of the thread channel in the operating position. The hose 68 can therefore be subjected to a pressure that is approximately lower by the area ratio in order to compress the plate pack 51, 52, 53 in a vapor-tight manner.

Der Schlauch 68 wird entweder an das betriebliche Druckluftnetz angeschlossen. Es ist jedoch bevorzugt, den Schlauch 18 an das Leitungsnetz des Sattdampfes anzuschliessen. Hierzu kann man z.B. den Schlauch 68 mit einer Flüssigkeit füllen, die ihrerseits mit dem Druck des Sattdampfes beaufschlagt ist. Zur Erzielung der zuvor geschilderten Vorteile einer Zusatzheizung vor allem der Platte, die keinen Vorheizkanal besitzt, wird der Schlauch bevorzugt mit dem Sattdampf selbst beaufschlagt.The hose 68 is either connected to the company compressed air network. However, it is preferred to connect the hose 18 to the saturated steam line network. For this you can e.g. fill the hose 68 with a liquid which in turn is pressurized by the saturated steam. In order to achieve the previously described advantages of additional heating, especially of the plate, which has no preheating channel, the saturated steam itself is preferably applied to the hose.

Durch die Kugeln 63 werden die auf das Plattenpaket 51, 52, 53 durch den Schlauch aufgebrachten Kräfte auf die Platte 64 des massiven Blocks (Gehäuse) übertragen.The balls 63 transmit the forces applied to the plate pack 51, 52, 53 by the hose to the plate 64 of the solid block (housing).

Zur Abdichtung der Fadenbehandlungskammer befindet sich auf jedem Ebenenpaar zumindest eine Dichtleiste 56 bzw. 57, welche in Grenzen flexibel ist. Durch diese Dichtleisten, die sich längs der Stufe erstrecken, wird vermieden, dass die Flächenpaarung 73, 74 der Platte 51 und die Flächenpaarung 75, 76 der Platte 53 mit absolut genauer Masseinhaltung gefertigt sein müssen. Vor allem ermöglichen diese Dichtleisten auch hier, zwischen den Ebenen einen definierten Flächenbereich zu schaffen, in den das Heizgas/ Sattdampf zum Zwecke der Zusatzheizung eindringen kann. Zur Abdichtung dieses Flächenbereiches in Fadenlaufrichtung können am Fadeneingang und Fadenausgang auch Querdichtungen vorgesehen sein, die sich zwischen den Längsdichtungen erstrecken. Diese Querdichtung wird auch dadurch erreicht, dass die Längsdichtungen an ihren Enden Ausweitungen haben, die sich bis an oder nahe an den Fadenkanal bzw. die jeweilige Stufe erstrecken.To seal the thread treatment chamber there is at least one sealing strip 56 or 57 on each pair of levels, which is flexible within limits. By means of these sealing strips, which extend along the step, it is avoided that the surface pairing 73, 74 of the plate 51 and the surface pairing 75, 76 of the plate 53 have to be manufactured with absolutely precise dimensional accuracy. Above all, these sealing strips also allow a defined surface area to be created between the levels, into which the heating gas / saturated steam can penetrate for the purpose of additional heating. To seal this surface area in the thread running direction, transverse seals can also be provided at the thread entrance and thread exit, which extend between the longitudinal seals. This transverse seal is also achieved in that the longitudinal seals have extensions at their ends that extend to or close to the thread channel or the respective step.

Die Mittelplatte 53 wird durch Zylinder-KolbenEinheit 70, 71 mittels Kolbenstange 69 verstellt. Mit 72 ist eine Anschlagschraube bezeichnet, durch welche die Spaltweite der Fadenbehandlungskammer im Betrieb eingestellt werden kann.The middle plate 53 is adjusted by cylinder-piston unit 70, 71 by means of piston rod 69. With 72 a stop screw is designated, through which the gap width of the thread treatment chamber can be adjusted during operation.

Das Ausführungsbeispiel nach den Fig. 19, 20 und 20a zeigt im Längs- und Querschnitt die linke Platte 51, die rechte Platte 52 und die Mittelplatte 53. Der Aufbau entspricht weitgehend demjenigen des Ausführungsbeispiels nach den Fig. 17, 18.The embodiment according to FIGS. 19, 20 and 20a shows the left plate 51, the right plate 52 and the middle plate 53 in longitudinal and cross section. The structure largely corresponds to that of the embodiment according to FIGS. 17, 18.

Folgende Abweichungen sind bemerkenswert: Die Aussenplatten 51 und 52 sind als ebene Platten ausgeführt. Auf jede dieser Platten ist eine Zwischenplatte 78 gelegt, welche dem Stufensprung in der Innenplatte 53 in ihrer Dicke entspricht. Hierdurch ergeben sich fertigungstechnische Vereinfachungen.The following deviations are noteworthy: The outer plates 51 and 52 are designed as flat plates. An intermediate plate 78 is placed on each of these plates, which corresponds in thickness to the step in the inner plate 53. This results in manufacturing simplifications.

Weiter ist der Dampfzufuhrkanal (Zwischenkanal) 60, welcher die Mittelplatte 53 zwischen den beiden Stufen 54, 55 durchdringt, an einen Dampfkanal 79 angeschlossen, welcher die Trennebene zwischen den Platten 51, 52, 53 sowie Zwischenplatten 78 durchdringt und welcher von dem Dampfanschluss 61 aus über einen Umwegkanal 80 gespeist wird. Umwegkanal 80 erstreckt sich längs der Stufe 54. Es ist ein weiterer Umwegkanal 81 in der anderen Platte 52 vorgesehen, welcher sich längs der Stufe 55 erstreckt und an die Dampfkanäle 79 angeschlossen ist. Die Umwegkanäle dienen als Vorheizkanäle für die Platten 51,52. Wie aus Fig. 20 ersichtlich, ist Umwegkanal 80 oben an den Dampfanschluss 61 angeschlossen. Ferner sind die Umwegkanäle 80, 81 an ihrem unteren Ende an Kondensatablaufleitungen 82 angeschlossen. Das kondensierte Wasser, das sich am Grunde der Umwegkanäle 80, 81 sammelt, gelangt über Drosseln 82.1, insbesondere einstellbare Drosseln, in einen Sammelbehälter und wird von hier durch Pumpe dem Dampferzeuger wieder zugeführt. Bevorzugt sind am Auslass der Umwegkanäle 81, 82 automatische vorzugsweise thermostatisch gesteuerte Kondensatablassventile angeschlossen, die für einen ständigen Kondensatabfluss sorgen. Sie sind in der Zeichnung nicht näher dargestellt, ebenso wie der Kondensatsammelbehälter und die Kondensatpumpe in der Speiseleitung zum Dampferzeuger.Furthermore, the steam supply duct (intermediate duct) 60, which penetrates the middle plate 53 between the two stages 54, 55, is connected to a steam duct 79, which penetrates the parting plane between the plates 51, 52, 53 and intermediate plates 78, and which extends from the steam connection 61 is fed via a detour channel 80. Detour channel 80 extends along step 54. A further detour channel 81 is provided in the other plate 52, which extends along step 55 and is connected to steam channels 79. The detour channels serve as preheating channels for the plates 51, 52. As can be seen from FIG. 20, the detour channel 80 is connected to the steam connection 61 at the top. Furthermore, the detour channels 80, 81 are connected at their lower end to condensate drain lines 82. The condensed water, which collects at the bottom of the detour channels 80, 81, reaches a collection container via throttles 82.1, in particular adjustable throttles, and is returned to the steam generator by a pump. Automatic, preferably thermostatically controlled, condensate drain valves are preferably connected to the outlet of the detour channels 81, 82 and ensure constant condensate drainage. They are not shown in the drawing, as are the condensate collector and the condensate pump in the feed line to the steam generator.

Das beschriebene System der Dampfzufuhr hat zum einen den Vorteil, dass bei Herausziehen der Mittelplatte 53 aus ihrer Betriebsstellung die Dampfzufuhr automatisch unterbrochen wird. Weiterhin ergibt sich der Vorteil, dass - im dargestellten Ausführungsbeispiel - zumindest der Umwegkanal 80 auch in der Fadeneinlegestellung der Mittelplatte 53 mit dem gesättigten Wasserdampf beaufschlagt wird, womit der Vorteil gegeben ist, dass die Seitenplatte 51 insbesondere im Bereich der Stufe 54 nicht auskühlt. Die Versorgung des Umwegkanals 81 mit dem Sattdampf kann in der Einfädelstellung der Mittelplatte 53 auch über einen gestrichelt eingezeichneten Zusatzkanal 83 erfolgen, welcher in der Fadeneinlegstellung der Mittelplatte 53 mit dem Teil des Dampfkanals 79 in der rechten Platte 52 fluchtet, welcher zu dem Umwegkanal 81 führt. Durch diesen Zusatzkanal 83 wäre auch die Versorgung des Umwegkanals 81 mit dem Sattdampf in der Fadeneinlegstellung der Mittelplatte 53 gewährleistet. Die Sattdampfversorgung der Umwegkanäle in der Einfädelstellung bietet im Zusammenhang mit dieser Erfindung den Vorteil, dass durch den fortdauernden flächigen Kontakt alle die Heizkammern bildenden Körper/Platte weiterbeheizt werden. Dies gilt auch für die anderen Ausführungsbeispiele.The described steam supply system has the advantage that the steam supply is automatically interrupted when the middle plate 53 is pulled out of its operating position. Furthermore, there is the advantage that - in the exemplary embodiment shown - at least the detour channel 80 is also acted upon with the saturated water vapor in the thread insertion position of the middle plate 53, with the advantage that the side plate 51 does not cool down, particularly in the area of the step 54. The supply of the detour channel 81 with the saturated steam can also take place in the threading position of the middle plate 53 via an additional channel 83 shown in broken lines, which in the thread insertion position of the middle plate 53 is aligned with the part of the steam channel 79 in the right plate 52 which leads to the detour channel 81 . This additional duct 83 would also ensure that the detour duct 81 is supplied with saturated steam in the thread insertion position of the middle plate 53. The supply of saturated steam to the detour channels in the threading position offers the advantage in connection with this invention that all the bodies / plates forming the heating chambers are heated further by the continuous surface contact. This also applies to the other exemplary embodiments.

Aus dem Längsschnitt nach Fig. 20 ist zu ersehen, dass sich die durch die Stufen 54 und 55 gebildete Fadennut im mittleren Bereich 19 der Heizkammer erweitert.It can be seen from the longitudinal section according to FIG. 20 that the thread groove formed by the steps 54 and 55 widens in the central region 19 of the heating chamber.

Es wurde bereits im Zusammenhang mit der Fig. 17, 18 erwähnt, dass das Plattenpaket durch Aussenkräfte zusammengehalten wird. Diese Aussenkräfte sind hier durch Pfeil 84 angedeutet. Diese Aussenkräfte müssen so gross sein, dass die Reibungskraft zwischen den Platten 51, 52 einerseits und 53 andererseits die auf die Platte 53 wirkende Dampfkraft übersteigt. Um eine besonders feste Konstruktion zu bewerkstelligen, weist die Heizkammer die Traversen 85 auf.It has already been mentioned in connection with FIGS. 17, 18 that the plate pack is held together by external forces. These external forces are indicated here by arrow 84. These external forces must be so great that the frictional force between the plates 51, 52 on the one hand and 53 on the other hand exceeds the steam force acting on the plate 53. In order to achieve a particularly solid construction, the heating chamber has the crossbeams 85.

In Fig. 21 ist schematisch dargestellt, wie die Vorheizkanäle 27 der zuvor beschriebenen Heizkammer geschaltet sein können. An einem gemeinsamen Dampferzeuger 86 mit geeigneten Heizeinrichtungen 94, beispielsweise elektrischen Widerstandsheizrohren, sind die Vorheizkanäle 27 mehrerer gleichartiger Heizlcammern unten mittels Anschlussrohren 28 angeschlossen. Die Anschlussrohre 87 dienen sowohl der Dampfzufuhr als auch dem Kondensatrücklauf. Zu diesem Zweck sind sie mit Gefälle verlegt und mit grossem Querschnitt ausgeführt.21 shows schematically how the preheating channels 27 of the heating chamber described above can be connected. The preheating ducts 27 of a plurality of heating chambers of the same type are connected at the bottom by means of connecting pipes 28 to a common steam generator 86 with suitable heating devices 94, for example electrical resistance heating pipes. The connecting pipes 87 serve both the steam supply and the condensate return. For this purpose, they are laid on a slope and have a large cross-section.

Gemäss Fig. 21 ist nun am oberen Ende des Dampfzufuhrrohres 88 eine als Nadelventil 90 ausgebildete Absperreinrichtung eingebaut, und zwar derart, dass einerseits der Vorheizkanal 27 ständig mit Sattdampf beschickt und auf die Temperatur des Sattdampfes beheizt wird, dieser Dampf aber nur über das Ventil 90 in den Fadenkanal gelangt. Hierzu ist das Verbindungsrohr 29 mit dem Ventilsitz 92 des Gehäuses 93 druckdicht verbunden. Verbindungskanal 29 entspricht den Löchern 29 bzw. 79 in den Fig. 4 bis 20. Das Ventil kann von aussen bedient werden. Dabei ist die Anordnung so getroffen, dass der Ventilsitz 92 von der axial bewegbaren, konzentrisch angeordneten Ventilnadel 91 nur freigegeben bzw. geöffnet wird, wenn der Fadenkanal 10 durch Relativdrehung der beiden Zylinder 4 und 6 radial verschlossen ist, d.h. die Fadenheizkammer in Betriebsstellung gebracht ist. In der Einfädel- oder Einlegstellung des Fadenkanals 10 - entsprechend den Fig. 2,4/5,7/8 und 10 - dagegen ist das Nadelventil 90 absolut dicht verschlossen, so dass ein Ausströmen von Dampf ausgeschlossen ist.According to FIG. 21, a shut-off device designed as a needle valve 90 is now installed at the upper end of the steam supply pipe 88, in such a way that on the one hand the preheating duct 27 is constantly fed with saturated steam and heated to the temperature of the saturated steam, but this steam is only via the valve 90 gets into the thread channel. For this purpose, the connecting pipe 29 is connected to the valve seat 92 of the housing 93 in a pressure-tight manner. Connecting channel 29 corresponds to holes 29 and 79 in FIGS. 4 to 20. The valve can be operated from the outside. The arrangement is such that the valve seat 92 is only released or opened by the axially movable, concentrically arranged valve needle 91 when the thread channel 10 is closed radially by relative rotation of the two cylinders 4 and 6, i.e. the thread heating chamber is brought into the operating position. In contrast, in the threading or inserting position of the thread channel 10 - corresponding to FIGS. 2,4 / 5,7 / 8 and 10 - the needle valve 90 is completely sealed, so that steam cannot escape.

Dies ist notwendig, um das Bedienungspersonal gegen Unfälle zu schützen. Um zusätzlich Bedienungsfehler auszuschliessen, erfolgt die Betätigung der aus der Heizkammer druckdicht nach aussen geführten Ventilspindel über im einzelnen nicht dargestellte Steuernocken einer Logikschaltung. Hierdurch erfolgt eine Kopplung bzw. Synchronisation der beiden Bewegungen unter Berücksichtigung der konstruktiv erforderlichen Totwege, beispielsweise aus dem Abstand der Dichtleisten 25 beidseits des Fadenführungskanals 10. Das siphonartig nach oben abgeknickte und oben in dem Vorheizkanal beginnende Verbindungsrohr 29 hat den Vorteil, dass durch dieses Verbindungsrohr inerte, d.h.nicht kondensierbare Gase, die sich in Sacklöchern und sonstigen Bereichen ohne Strömung sammeln, ständig abgeführt werden.This is necessary to protect the operating personnel against accidents. To additionally Be To rule out service errors, the valve stem is led out from the heating chamber in a pressure-tight manner via control cams of a logic circuit, not shown in detail. This results in a coupling or synchronization of the two movements, taking into account the design required dead paths, for example from the distance of the sealing strips 25 on both sides of the thread guide channel 10. The connecting pipe 29, which is bent upwards in the manner of a siphon and begins at the top in the preheating channel, has the advantage that through this connecting pipe Inert, non-condensable gases that collect in blind holes and other areas without flow are constantly removed.

Es sei erwähnt, dass es auch möglich ist, das Absperrorgan unten im Dampfzufuhrrohr 88 anzuordnen. Dies hat jedoch den Nachteil, dass eventuell nicht kondensierbare, inerte Bestandteile des Heizmediums wie Luft oder dgl. sich oben im Dampfzufuhrrohr 88 sammeln und im Laufe der Zeit zu Temperaturunterschieden von einem Rohr 88 zum anderen führen, sofern nicht ein separater Abzugkanal für Inertgase vorgesehen wird.It should be mentioned that it is also possible to arrange the shut-off element in the steam supply pipe 88 at the bottom. However, this has the disadvantage that possibly non-condensable, inert components of the heating medium, such as air or the like, collect at the top in the steam supply pipe 88 and lead to temperature differences from one pipe 88 to the other over time, unless a separate exhaust duct for inert gases is provided .

Weiterhin kann auch der gemeinsame Dampferzeuger 86 oben an den Dampfzufuhrrohren 88 angeschlossen sein. Dies bedingt jedoch die Anbringung separater Kondensatrückführleitungen am unteren Ende des Vorheizkanals evtl. mit Kondensatpumpe zum Dampferzeuger.Furthermore, the common steam generator 86 can also be connected to the steam supply pipes 88 at the top. However, this requires the attachment of separate condensate return lines at the lower end of the preheating duct, possibly with a condensate pump to the steam generator.

Schliesslich sei erwähnt, dass auch im dargestellten Beispiel gemäss Fig. 21 dem gemeinsamen Dampferzeuger neben dem rückfliessenden Kondensat ständig eine bestimmte Menge Speisewasser zugeführt werden muss, um das Heizmittel zu ersetzen, das vom behandelten Faden (Befeuchtung) aus der Fadenheizkammer herausgeschleppt wird. Dies erfolgt vorzugsweise durch eine nicht dargestellte Speisewasserpumpe (Druckerhöhungspumpe), die von einem Hochdruckschwimmer oder dgl. gesteuert wird.Finally, it should be mentioned that, in the example shown in FIG. 21, in addition to the refluxing condensate, the common steam generator must constantly be supplied with a certain amount of feed water in order to replace the heating medium which is dragged out of the thread heating chamber by the treated thread (humidification). This is preferably done by a feed water pump (pressure booster pump), not shown, which is controlled by a high pressure float or the like.

In Fig. 22a ist im Querschnitt eine Heizkammer dargestellt, die ebenfalls aus zwei ebenen Platten 51 und 53 besteht. Diese Platten sind durch Zylinder-Kolben-Einheit 69-71 relativ zueinander parallel zu ihrer Oberfläche verschiebbar. In der einen Endposition (Einfädelstellung) weicht die Vorderkante 105 der Platte 53 hinter die Fadennut 10 zurück, so dass eine Öffnung entsteht, in welche der Faden eingelegt werden kann. In der anderen, gestrichelt eingezeichneten Relativlage (Betriebsstellung) ist die Fadennut 10 in der Platte 51 durch die Schliessfläche der Platte 53 verschlossen. Im verschlossenen Zustand wird der so gebildete Fadenkanal durch Öffnen eines - hier nicht dargestellten - Ventils über Vorheizkanal 80 und Bohrung 58 mit Sattdampf beschickt. Durch Bohrung 103 wird auch die Rückseite der Platte 52 mit Dampf beschickt. Infolgedessen wird die Platte 52, die durch umlaufende Dichtungen 49 gegenüber dem Gehäuse 104 abgedichtet ist, gegen die andere Platte 53 gedrückt, so dass diese Platten zumindest mit ihren Dichtungen 56 dampfdicht aufeinander liegen. Von besonderer Wichtigkeit ist dabei, dass der von den umliegenden Dichtungen 49 umschriebene Flächeninhalt grösser ist als der Flächeninhalt, der von den Längsdichtungen 56, 57 und den zugehörigen Querdichtungen gebildet wird. Durch diese Art der Andrückung wird auch das Gehäuse 104 beheizt, was wiederum zur Vereinheitlichung der Temperatur aller Teile der Heizkammer beiträgt.22a shows a heating chamber in cross section, which likewise consists of two flat plates 51 and 53. These plates are displaceable relative to one another parallel to their surface by cylinder-piston unit 69-71. In one end position (threading position), the front edge 105 of the plate 53 recedes behind the thread groove 10, so that an opening is created in which the thread can be inserted. In the other relative position (operating position) shown in dashed lines, the thread groove 10 in the plate 51 is closed by the closing surface of the plate 53. In the closed state, the thread channel thus formed is fed with saturated steam by opening a valve (not shown here) via preheating channel 80 and bore 58. The back of plate 52 is also charged with steam through bore 103. As a result, the plate 52, which is sealed off from the housing 104 by circumferential seals 49, is pressed against the other plate 53, so that these plates, at least with their seals 56, lie on one another in a vapor-tight manner. It is particularly important that the surface area circumscribed by the surrounding seals 49 is larger than the surface area formed by the longitudinal seals 56, 57 and the associated transverse seals. This type of pressure also heats the housing 104, which in turn helps to standardize the temperature of all parts of the heating chamber.

Die Fig. 24d zeigt eine ähnliche Ausführung, die sich von der in Fig. 24a im Prinzip nur dadurch unterscheidet, dass die Vorderseite der Platte 51 mit einer Stufe 108 versehen ist.24d shows a similar embodiment, which differs from that in FIG. 24a in principle only in that the front of the plate 51 is provided with a step 108.

Ebenfalls im wesentlichen ähnlich ist das Ausführungsbeispiel nach Fig. 24c. Sein hauptsächlicher Unterschied zu den Ausführungen nach 24a und 24d besteht darin, dass die Platte 53 in der einen Einfädelstellung nicht einen Einfädelschlitz über der Fadenführungsnut freigibt, sondern eine vergrösserte Längsnut 109 (Einfädelnut) aufweist, die in der dargestellten Einfädelstellung, in der die Heizkammer ausser Betrieb ist, mit der Fadennut 10 fluchtet und einen erweiterten Einfädelspalt bildet, durch den der Faden pneumatisch oder mittels Borste leicht eingefädelt werden kann. Einseitig ist die Einfädelnut 109 mit einer Abschrägung versehen, damit der Faden beim Verschieben der Platte 51 in ihre gestrichelt dargestellte Betriebsstellung von der Abschrägung in die Fadenführungsnut 10 gedrückt wird.The exemplary embodiment according to FIG. 24c is also essentially similar. Its main difference from the explanations according to FIGS. 24a and 24d is that the plate 53 does not open a threading slot above the thread guide groove in the one threading position, but rather has an enlarged longitudinal groove 109 (threading groove), which in the threading position shown, in which the heating chamber except Operation is with the thread groove 10 aligned and forms an extended threading gap through which the thread can be easily threaded pneumatically or by means of bristles. The threading groove 109 is provided on one side with a bevel so that the thread is pressed into the thread guide groove 10 by the bevel when the plate 51 is moved into its operating position shown in dashed lines.

In all diesen Ausführungsbeispielen ist es erforderlich, dass das Gehäuse 104, welches die die Heizkammer bildenden Platten 51, 52 auf zumindest zwei gegenüberliegenden Seiten im Falle des Ausführungsbeispiels nach Fig. 24c auf allen Seiten umschliesst, stabil und steif genug ausgeführt wird, um die Dampfkräfte aufzunehmen und auch bei Belastung mit dem Dampfdruck zu gewährleisten, dass die Platten in ihren Berührungsflächen und mit ihren Längs- und Querdichtungen dicht aufeinander liegen.In all of these exemplary embodiments, it is necessary that the housing 104, which surrounds the plates 51, 52 forming the heating chamber on at least two opposite sides in the case of the exemplary embodiment according to FIG. 24c, is designed to be stable and rigid enough to withstand the steam forces and to ensure, even when loaded with the steam pressure, that the plates lie close together in their contact surfaces and with their longitudinal and transverse seals.

In den Fig. 20 und 20a ist in der linken Platte der Dampfanschluss 61 dargestellt, der im oberen Bereich des Vorheizkanals 80 mündet. Die Kondensatablaufleitung ist mit 82 bezeichnet und geht vom unteren Teil des Vorheizkanals 80 aus. Es ist eine Blende oder Drossel 82.1 vorgesehen, durch welche Kondensate und inerte Gase, die sich in dem unteren sackförmigen Teil der Vorheizkammer 80 sammeln, langsam entweichen können. In Fig. 20a ist dargestellt, dass der Vorheizkanal 80 sich bis zum Ende der Seitenplatten 51, 52 erstreckt und dort mit einem Stopfen geschlossen ist, welcher auf seiner Länge eine enge spaltförmige Nut 82.2 mit Sacklochbohrungen 82.3 aufweist.20 and 20a, the steam connection 61 is shown in the left plate, which opens into the upper region of the preheating duct 80. The condensate drain line is designated 82 and starts from the lower part of the preheating duct 80. An orifice or throttle 82.1 is provided, through which condensates and inert gases, which collect in the lower sack-shaped part of the preheating chamber 80, can slowly escape. 20a shows that the preheating duct 80 extends to the end of the side plates 51, 52 and is closed there with a stopper, which has a narrow slot-shaped groove 82.2 with blind holes 82.3 along its length.

Andere Kondensatabscheider, insbesondere temperaturbetätigte Kondensatabscheider, sind in der Literatur bekannt (z.B. Dubbel, «Taschenbuch für den Maschinenbau», 14. Aufl., Seite 500/501). Ein bevorzugtes Ausführungsbeispiel eines Kondensatabscheiders ergibt sich aus Fig. 23. Die dort gezeigte Heizkammer besteht - wie die Ausführungsbeispiele nach den Fig. 4 bis 16 - aus dem stationären, rohrförmigen Innenzylinder 6 und dem darum herum drehbaren Aussenzylinder 4. Wegen Einzelheiten der Konstruktion kann insoweit auf die Fig. 4 bis 16 Bezug genommen werden. Der im Inneren des Innenzylinders 6 gebildete Vorheizkanal 27 wird auf seinem oberen Ende über Dampfanschluss 61 mit Dampf beschickt. Die Löcher 29, durch welche der Sattdampf aus dem Vorheizkanal 80 in den mittleren Bereich 19 des Fadenkanals 10 gelangt, sind im oberen Bereich der Vorheizkammer angeordnet. Dadurch entsteht im unteren Bereich des Vorheizkanals ein Sack, in dem sich Kondensat, aber auch inerte Gase, d.h. Gase und Dämpfe, die bei den gegebenen Druck- und Temperaturverhältnissen nicht kondensieren, sammeln, insbesondere solche Gase, die schwerer als Sattdampf sind. Die Kondensate, insbesondere das kondensierte Wasser und die inerten Gase haben eine Temperatur, die unterhalb der Temperatur des Sattdampfes liegt. Der Vorheizkanal weist unten eine Öffnung 106 auf, die in eine Abscheidekammer 107 einmündet. Eine weitere Öffnung 110 der Abscheidekammer 107 führt ins Freie bzw. zu einem Kondensatsammler, der hier nicht dargestellt ist. Die Öffnung 106 und die Öffnung 110 liegen beide in einer gemeinsamen Ebene. Auf dem Boden der Abscheidekammer 107 liegt eine Platte 111, die hier frei beweglich ist, die jedoch auch durch eine schwache Feder unterstützt sein kann. Wichtig ist, dass die Platte im wesentlichen parallel zu der Ebene der Öffnungen 106, 110 liegt und von dieser Ebene lediglich einen geringen Abstand hat. Auf ihrer Unterseite weist die Platte Abstandshalter 112 auf, die bewirken, dass der statische Druck der Abscheidekammer 107 auch auf die Unterseite der Platte einwirkt.Other condensate separators, in particular temperature-operated condensate separators, are known in the literature (for example Dubbel, “Taschenbuch für den Maschinenbau”, 14th edition, page 500/501). A preferred exemplary embodiment of a condensate separator is shown in FIG. 23. The heating chamber shown there, like the exemplary embodiments according to FIGS. 4 to 16, consists of the stationary, tubular inner cylinder 6 and the outer cylinder 4 which can be rotated around it. For details of the construction, reference can be made to FIGS. 4 to 16 in this respect. The preheating duct 27 formed in the interior of the inner cylinder 6 is charged with steam at its upper end via steam connection 61. The holes 29, through which the saturated steam from the preheating duct 80 reaches the central region 19 of the thread duct 10, are arranged in the upper region of the preheating chamber. This creates a sack in the lower area of the preheating duct, in which condensate, but also inert gases, ie gases and vapors that do not condense under the given pressure and temperature conditions, collect, in particular those gases that are heavier than saturated steam. The condensates, in particular the condensed water and the inert gases, have a temperature which is below the temperature of the saturated steam. The preheating duct has an opening 106 at the bottom, which opens into a separation chamber 107. Another opening 110 of the separation chamber 107 leads to the outside or to a condensate collector, which is not shown here. The opening 106 and the opening 110 both lie in a common plane. On the bottom of the separation chamber 107 there is a plate 111 which is freely movable here, but which can also be supported by a weak spring. It is important that the plate lies essentially parallel to the plane of the openings 106, 110 and is only a short distance from this plane. On its underside, the plate has spacers 112, which have the effect that the static pressure of the separation chamber 107 also acts on the underside of the plate.

Es ist davon auszugehen, dass sich beim Aufheizen der Heizkammer zunächst Kondensate in dem unteren sackförmigen Bereich der Vorheizkammer 80 ansammeln. Diese Kondensate werden über Öffnungen 106, Abscheidekammer 107 und Öffnung 110 zum Kondensatsammler befördert.It can be assumed that when the heating chamber is heated up, condensates initially collect in the lower sack-shaped region of the preheating chamber 80. These condensates are conveyed to the condensate collector via openings 106, separation chamber 107 and opening 110.

Nach beendetem Aufheizen fällt lediglich noch eine geringe Kondensatmenge an, so dass Sattdampf beginnt, durch die Öffnungen 106 und 110 abzuströmen. Dabei trifft der Sattdampfstrom auf die Platte 111, so dass er mit hoher Strömungsgeschwindigkeit zur Öffnung strömt. Infolge dieser hohen Strömungsgeschwindigkeit fällt der statische Druck auf der Oberseite der Platte ab, während auf der Unterseite der Platte der statische Druck erhalten bleibt. Dadurch wird die Platte gegen die beiden Öffnungen 106 und 110 gedrückt und die Abscheidekammer 107 geschlossen, so dass der statische Druck dort erhalten bleibt. Da die Verschlussfläche an den Öffnungen 106 kleiner ist als die Unterseite der Platte 111 und da an der Öffnung 110 im wesentlichen kein höherer Druck als Atmosphärendruck anliegt, liegt die Platte stabil vor der Öffnung 106.After the heating has ended, only a small amount of condensate remains, so that saturated steam begins to flow out through the openings 106 and 110. The saturated steam flow hits the plate 111 so that it flows to the opening at a high flow rate. As a result of this high flow rate, the static pressure on the top of the plate drops, while the static pressure remains on the bottom of the plate. As a result, the plate is pressed against the two openings 106 and 110 and the separating chamber 107 is closed, so that the static pressure is maintained there. Since the closure area at the openings 106 is smaller than the underside of the plate 111 and since there is essentially no pressure higher than atmospheric pressure at the opening 110, the plate lies stably in front of the opening 106.

Dieser Zustand bleibt erhalten, solange die Temperatur in der Abscheidekammer 107 erhalten bleibt. Wenn sich nun im unteren sackförmigen Bereich der Vorheizkammer 80 wieder Kondensat bzw. inerte Gase sammeln, fällt die Temperatur ab. Dadurch sinkt auch der Druck in der Abscheidekammer 107, die die Temperaturschwankungen des Vorheizkanals infolge der unmittelbaren wärmeleitenden Verbindung mit dem Innenkörper 6 mitmacht. Infolge des entstehenden Überdrucks an der Öffnung 106 öffnet die Platte zunächst die Öffnung 106, wodurch sich die Platte gegenüber der Öffnung 110 verkantet. Dadurch fällt der Druck in der Abscheidekammer 107 ab und die Platte 111 fällt zu Boden, so dass nunmehr das Kondensat bzw. die inerten Gase vollständig entweichen können. Im dargestellten Ausführungsbeispiel ist die Platte gegen ihre Schwerkraft senkrecht beweglich. Es ist auch möglich, die Platte horizontal oder schwenkbar zu führen und/oder die Schwerkraftwirkung durch z.B. Federkraftwirkung zu ersetzen.This state remains as long as the temperature in the deposition chamber 107 is maintained. If condensate or inert gases collect again in the lower sack-shaped area of the preheating chamber 80, the temperature drops. As a result, the pressure in the separation chamber 107, which takes part in the temperature fluctuations of the preheating channel as a result of the direct heat-conducting connection to the inner body 6, also drops. As a result of the resulting excess pressure at the opening 106, the plate first opens the opening 106, as a result of which the plate tilts in relation to the opening 110. As a result, the pressure in the separation chamber 107 drops and the plate 111 falls to the bottom, so that the condensate or the inert gases can now escape completely. In the illustrated embodiment, the plate is vertically movable against its gravity. It is also possible to guide the plate horizontally or pivotably and / or the effect of gravity by e.g. To replace spring force.

Die Heizkammer nach Fig. 24 mit Querschnitt nach den Fig. 25a, 25b entspricht weitgehend der Heizkammer nach den Fig. 7 und 8 bzw. 9. Sie besteht aus einem rohrförmigen Innenzylinder 6 mit Fadennut 10. Die Fadennut 10 ist im Fadeneinlassteil und im Fadenauslassteil eng und erweitert sich im mittleren Bereich 19. Der Innenzylinder 6 ist ortsfest zwischen dem Flansch 3 und dem Flansch 113 befestigt. Im Inneren weist der Innenzylinder 6 in seinem unteren Bereich einen zentralen Vorheizkanal 114 auf, der hier nur gestrichelt angedeutet ist. Dieser zentrale Heizkanal steht permanent mit der Dampfzufuhrleitung 115 in Verbindung. Hierdurch wird bewirkt, dass der Innenzylinder 6 ständig in seinem mittleren und unteren Teil beheizt ist.24 with cross section according to FIGS. 25a, 25b largely corresponds to the heating chamber according to FIGS. 7 and 8 or 9. It consists of a tubular inner cylinder 6 with thread groove 10. The thread groove 10 is in the thread inlet part and in the thread outlet part narrow and widening in the middle region 19. The inner cylinder 6 is fixed between the flange 3 and the flange 113. Inside, the inner cylinder 6 has a central preheating channel 114 in its lower region, which is only indicated by dashed lines here. This central heating channel is permanently connected to the steam supply line 115. This has the effect that the inner cylinder 6 is constantly heated in its middle and lower part.

In seinem oberen Teil weist der Innenteil 6 einen ebenfalls als Vorheizkanal dienenden Dampfzufuhrkanal 27 auf, der über Loch 29 mit dem mittleren Bereich 19 der Fadennut 10 kommuniziert. Auf der hinteren Seite kommuniziert der Dampfzufuhrkanal 27 vorzugsweise mit einer Dampfandrückzone, welche zwischen dem Aussenzylinder 4 und dem Innenzylinder 8 - wie auch in den Fig. 8 und 9 dargestellt - zwischen den Dichtlippen 35 gebildet wird. Diese Andrückzone, die während des Betriebes mit dem unter Druck stehenden Heizgas, insbesondere Sattdampf, beschickt wird, bewirkt, dass der Aussenteil 4 und der Innenteil 6 im Bereich der Fadenführungsnut und der Dichtleisten 25 dicht aufeinander gedrückt werden, so dass durch die Dichtlippen 25 eine hinreichend dichte Abdichtung des Heizbereiches gegeben ist. Vor allem wird in dieser Andrückzone zwischen den Dichtlippen 35 eine Aufheizung des Aussenteils 4, der mit dem Heizgas bzw. Sattdampf in dieser Zone direkt in Verbindung kommt, bewirkt.In its upper part, the inner part 6 has a steam supply duct 27, which also serves as a preheating duct and communicates via hole 29 with the central region 19 of the thread groove 10. On the rear side, the steam supply channel 27 preferably communicates with a steam pressure zone, which is formed between the outer cylinder 4 and the inner cylinder 8 - as also shown in FIGS. 8 and 9 - between the sealing lips 35. This pressure zone, which is fed with the pressurized heating gas, in particular saturated steam, during operation, causes the outer part 4 and the inner part 6 in the area of the thread guide groove and the sealing strips 25 to be pressed tightly against one another, so that a sealing lip 25 is used sufficiently tight sealing of the heating area is given. Above all, in this pressing zone between the sealing lips 35, the outer part 4 is heated, which comes into direct contact with the heating gas or saturated steam in this zone.

Die Anlage des Dampfkanals 27 und des Loches 29, d.h. die Sattdampfführung von oben nach unten, bewirkt, dass sich in dem Dampfzufuhrkanal 27 kein Kondensat ansammeln kann.The layout of the steam duct 27 and the hole 29, i.e. the saturated steam flow from top to bottom means that no condensate can accumulate in the steam supply channel 27.

Die Dampfzufuhr zum Dampfzufuhrkanal 27 erfolgt über Dampfanschlussleitung 28 und das 3-Wege-Ventil 116. Durch dieses Ventil wird der Dampfzufuhrkanal 27 wahlweise mit Dampf beschickt oder entlastet. Durch die Entlastung wird auch gleichzeitig die Andrückzone auf der Rückseite des Innenteils 6 entlastet, so dass der Aussenteil 4 gegenüber dem Innenteil 6 leicht in die Einfädelstellung nach Fig. 25a gedreht werden kann. Auch in dieser Einfädelstellung bleibt jedoch die Dampfzufuhr zum unteren zentralen Vorheizkanal 114 erhalten.The steam supply to the steam supply duct 27 takes place via the steam connection line 28 and the 3-way valve 116. The steam supply duct 27 is optionally supplied with or relieved of steam by this valve. Through the discharge also relieves the pressure on the back of the inner part 6 at the same time, so that the outer part 4 can be easily rotated relative to the inner part 6 into the threading position according to FIG. 25a. Even in this threading position, however, the steam supply to the lower central preheating channel 114 is maintained.

Mit 117 ist ein Ableitungsrohr bezeichnet, welches konzentrisch im zentralen Vorheizkanal 114 sitzt und sich bis in dessen oberen Bereich erstreckt. Nach unten ist das Ableitungsrohr aus dem Krümmer der Zuleitung 115 herausgeführt und durch eine enge Drossel 118 verschlossen, die als Kondensatabscheider dient. Durch die Drossel 118 kann ständig etwas Dampf bzw. Kondensat bzw. Inertgase entweichen, so dass durch das Ableitungsrohr 117 vermieden wird, dass sich im oberen Bereich des zentralen Heizkanals 114 inerte, nicht kondensierbare Gase sammeln. Die am Grunde des Vorheizkanals sich sammelnden Kondensate selbst können in der Leitung 115 zurück zum Dampferzeuger laufen. Evtl. kann auch in der Leitung 115 ein Kondensatabscheider angeordnet sein, z.B. der Bauart, die im Zusammenhang mit Fig. 23 beschrieben ist.With 117 a discharge pipe is designated, which sits concentrically in the central preheating channel 114 and extends to its upper region. The discharge pipe is led out of the bend of the supply line 115 and closed by a narrow throttle 118, which serves as a condensate separator. A small amount of steam or condensate or inert gases can constantly escape through the throttle 118, so that the discharge pipe 117 prevents inert, non-condensable gases from collecting in the upper region of the central heating duct 114. The condensates themselves collecting at the bottom of the preheating duct can run back to the steam generator in line 115. Possibly. a condensate separator can also be arranged in line 115, e.g. of the type described in connection with FIG. 23.

Claims (50)

1. Heating chamber for threads in motion, in particular synthetic threads, in which the threads are treated with saturated steam at more than 2 bar and the end regions of which have two bodies (4, 6; 51, 53) displaceable relatively to one another, which in their operating position lie in contact with each other over their substantially congruent surface regions (closing surfaces) and as a result of a surface deformation in the surface of one of the two bodies enclose between them a thread channel (10) which is closely adapted to the cross-section of the thread and through which the thread runs in the longitudinal direction, characterised in that
1.1. the two bodies (4, 6; 51, 53) each have a surface deformation parallel to the other in the form of pairs: groove (10) - groove (11); groove (10) - end edge (105); or step (54) step (55);
1.2 the closing surfaces of the two bodies are displaceable transversely to the surface deformation between the operating position and a threading position as they slide over one another;
1.3 and the surface deformations of the two bodies cover each other in the threading position so that the thread channel (10) is increased in width for the purpose of inserting a thread in its direction of travel or is open in a longitudinal plane for the purpose of inserting a moving thread transversely to its direction of travel.
2. Heating chamber according to claim 1, characterised in that the bodies and the surface deformations extend over the whole length of the heating chamber.
3. Heating chamber according to claim 2, characterised in that the surface deformations are increased in width in the middle region while in the end regions they are adapted to the titre of the thread or to the sum of the titres of all the threads travelling together inside the surface deformations.
4. Heating chamber according to claim 1, characterised in that the bodies and the surface deformations extend only over the end regions of the heating chamber and in that the heating chamber is increased in cross-section in the middle region (in particular Figs. 1-3).
5. Heating chamber according to one of the claims 1 to 4, characterised in that the depth and/or width of the groove or step measures 0.2 to 0.5 mm in the end regions which extend over, preferably, 100 to 300 mm.
6. Heating chamber according to one of the claims 1 to 5, characterised in that the thread channel (10) is of such dimensions that it can carry a plurality of threads.
7. Heating chamber according to one of the claims 1 to 6, characterised in that several grooves or steps are formed on the thread guiding body to carry a plurality of threads or thread bundles.
8. Heating chamber according to one of the claims 1 to 7, characterised in that a preheating channel (27, 80) extending over at least part of the length of the surface deformation and charged with saturated steam is provided in at least one of the bodies, preferably the fixed body.
9. Heating chamber according to claim 8, characterised in that the preheating channel (27, 80) is connected by connecting channels (29, 79) to the region of the heating chamber through which the thread travels.
10. Heating chamber according to claim 9, characterised in that the preheating channel (27, 80) is connected in its upper region with a steam attachment (28, 61) and in its lower region with a discharge duct (82) for condensate.
11. Heating chamber according to one of the claims 8 to 10, characterised in that the upper region of the preheating channel (114) has a closable and/or throttled (restrictor 118) discharge channel (117) for inert gases (Figures 24, 25 a, b).
12. Heating chamber according to one of the claims 9, 10, characterised in that the connecting channel (29) which opens into the heating chamber through which the thread travels is branched off the upper region of the preheating channel (27).
13. Heating chamber according to one of the claims 1 to 12, characterised in that sealing strips (25, 56, 57) are provided along the grooves (10) or steps (54, 55) and seal off the area of separation between the closing surfaces of the bodies.
14. Heating chamber according to claim 13, characterised in that sealing strips (34) are provided transversely to the surface deformation at the thread inlet and/or thread outlet of the heating chamber, which have a passage for the thread.
15. Heating chamber according to claim 13, characterised in that the sealing strips have portions of increased width in the region of the thread inlet and/or thread outlet, said portions extending up to or close to the grooves (10) or steps (54,55).
16. Heating chamber according to one of the claims 1 to 15, characterised in that at least one of the bodies (6, 51) is subjected on its rear surface remote from its closing surface to the saturated steam which is under the operating pressure.
17. Heating chamber according to claim 16, characterised in that one of the bodies is rigid (external body 4) and encloses the other body (cylinder 6), making close contact with it at the front and rear of the latter.
18. Heating chamber according to claims 16, 17, characterised in that the thread channel (10) of the heating chamber and the rear surface which is subjected to saturated steam can be synchronously relieved of the pressure of the saturated steam and are preferably connected to the steam attachment (61) preferably by way of a common three-way valve (116) which has a pressure relieved outlet.
19. Heating chamber according to one of the claims 1 to 15, characterised in that a recess (47) for an insert with an insert (46) imperviously enclosed therein is situated at the rear of at least one of the bodies, on the side of the body remote from the closing surface, and in that the base of the recess for the insert can be subjected to the saturated steam which is under operating pressure.
20. Heating chamber according to one of the claims 1 to 15, characterised in that a tube (68), expansion body or flexible pipe charged with a pressure fluid extends over substantially the whole length of the path of travel of the thread on the rear side of at least one of the bodies, remote from the closing surface, which tube, expansion body or pipe lies with three of its or their sides in contact with a chamber (67) which is open on one side, and bears against the housing (66) on the open side.
21. Heating chamber according to claim 20, characterised in that the tube (68) or expansion body is directly subjected to the saturated steam which is under pressure.
22. Heating chamber according to claim 21, characterised in that the tube (68) or expansion body is filled with a fluid, in particular a liquid with a high boiling point, which liquid is subjected to pressure, in particular the pressure of the saturated steam.
23. Heating chamber according to claims 1 to 22, characterised in that one or more inserts (39, 40) carrying the step or groove are situated in a recess (38) provided for an insert in the closing surface of one of the bodies.
24. Heating chamber according to claim 23, characterised in that the inserts (39, 40) are situated in the insert recess (38) so as to be sealed off perpendicularly to the closing surface and are subjected to pressure on their rear side, preferably the pressure of the steam which is under the operating pressure.
25. Heating chamber according to one of the claims 1 to 24, characterised in that the bodies are in the form of two planar or curved plates (51, 53) sliding over one another and having a rectilinear or slightly curved thread groove (10) in the closing surface of the first plate (51) to form the thread channel and a threading groove (11) parallel thereto in the closing surface of the second plate (53), which threading groove (11) combines with the thread groove of the first plate when in the threading position to form a thread channel of increased width for axial insertion of the thread and preferably has a greater cross-section than the thread groove and preferably continuously increases in width from its base to the closing surface, at least on one side.
26. Heating chamber according to one of the claims 1 to 24, characterised in that the bodies consist of two planar or curved plates (51, 53) sliding on one another and having a rectilinear or slightly curved thread groove (10) forming the thread channel in the first plate, which groove is covered by the closing surface of the other plate when the plates are in the operating position whereas in the position for threading the said groove is opened for the insertion of the moving thread by displacement of the end edge (105) formed on the closing surface of the second plate (53), the surface of said end edge preferably leaving an acute angle open between itself and the closing surface of the other plate (51).
27. Heating chamber according to one of the claims 1 to 24, characterised in that the bodies consist of two planar or curved plates (51,53) having rectilinear or slightly curved steps (54, 55) of equal size in their closing surfaces and in that in the operating position the steps forming a thread channel closely adapted to the cross-section of the thread while in the threading position they form a thread channel of greater width for axial insertion of the thread.
28. Heating chamber according to one of the claims 1 to 24, characterised in that the two bodies consist of planar or curved plates (51, 53) sliding over one another and having rectilinear or curved steps of equal size which in the operating position form a thread channel closely adapted to the cross-section of the thread, and in that one plate (53) is displaceable relatively to the other plate (51) so that the step (55) of that plate (53) lies above the other plate (51 or 52) in the threading position to form a gap for insertion of the moving thread, which gap can be closed by displacement of the plate (53).
29. Heating chamber according to one of the claims 1 to 24, characterised in that one body is in the form of an internal cylinder (6) and the other body is in the form of a rigid external cylinder (4) enclosing said internal cylinder as a jacket having the same diameter, and in that a groove (10,11) is formed on a generatrix or helical line of the internal cylinder and on the internal surface of the external cylinder, and in that the internal cylinder and the external cylinder are rotatable and/or axially displaceable in relation to one another so that the grooves cover each other in the threading position and form a thread channel of increased width for the purpose of axial insertion of a thread, the groove (11) provided as threading groove preferably having a larger cross-section than the thread groove and preferabiy increasing continuously in width from its base to the peripheral surface, at least unilaterally.
30. Heating chamber according to one of the claims 1 to 24, characterised in that the first of the two bodies is an internal cylinder (6) having a groove (10) on a generatrix or helical line; the second body is a rigid external cylinder (4) enclosing the internal cylinder in the form of a jacket the internal diameter of which is substantially equal to the external diameter of the internal cylinder and having a slot (32) along a generatrix or helical line, and in that the two bodies are rotatable and/or axially displaceable in relation to one another so that in the position for threading, the slot (32) is aligned with the groove (10) of the internal cylinder for placing the moving thread into position.
31. Heating chamber according to claim 30, characterised in that the external cylinder (4) encloses the internal cylinder (6) with a press fit and can be spread open in the region of the slot (32).
32. Heating chamber according to claim 29, characterised in that the external cylinder (4) is sub-divided in at least one longitudinal plane and in that the two halves are braced together in the longitudinal seam (26) in the sense of a reduction in their diameter (binding 33, screw fitting 24).
33. Heating chamber according to claim 32, characterised in that the external cylinder is sub-divided in a longitudinal plane and in that a flexible seal (26) is inserted in the longitudinal seam.
34. Heating chamber according to one of the claims 1 to 24, characterised in that the external body (4) is divided into two parts in a longitudinal plane situated between the centre (15) of the internal cylinder (6) and the thread groove (11) formed on a generatrix of the internal cylinder, and in that the two parts of the external body (4) can be braced against a sealing plate (16) situated between them, which sealing plate extends to the surface of the internal cylinder on both sides of the thread guiding groove.
35. Heating chamber according to claim 34, characterised in that spacer members (17) are inserted between the parts of the external body to limit the bias tension introduced into the sealing plate (16).
36. Heating chamber according to one of the claims 29 to 33, characterised in that the internal cylinder is fixed in position and is provided with the thread groove (10) and in that the surrounding external cylinder (4) is rotatable about the internal cylinder.
37. Heating chamber according to claim 13 in combination with claim 36, characterised in that the external cylinder (4) is rotatable relatively to the internal cylinder through an angle such that in the operating position, the groove (11) in the external cylinder lies outside the sector angle between the sealing strips.
38. Heating chamber according to claim 36 or 37, characterised in that the internal cylinder (6) is a closed tube at least over part of its length, the inside of which tube is connected to a steam pipe (28, 115) and constitutes the preheating channel (27,114).
39. Heating chamber according to claim 38, characterised in that the steam pipe (28, 115) and optionally pipe for condensate and optionally discharge channel (117) for inert gases are attached on one side only, preferably at the bottom to the preheating channel (27) of the internal cylinder and in that the external cylinder (4) is fitted over the internal cylinder (6) from the other side.
40. Heating chamber according to claim 29 or 30, characterised in that the internal cylinder (6) and external cylinder (4) are mounted on an end flange (3) of the heating chamber and in that the movable one of the two bodies is rotatable and longitudinally displaceable and when rotated into the operating position is pressed with an axial force (30) against the flange (3) of the heating chamber (2) to make sealing contact.
41. Heating chamber according to claim 40, characterised in that the internal cylinder and the external cylinder (4, 6) have a screw thread, in that the thread guiding groove (10) of the fixed cylinder extends to in that the threading groove of the rotatable body extends at least to the core.
42. Heating chamber according to claim 41 in combination with claim 34 or 35, characterised in that the screw thread is also cut into the sealing plate (16).
43. Heating chamber according to claims 40 to 42, characterised in that the internal cylinder (6) is fixed in position on the end flange and has a screw thread and has a thread groove (10) extending into the core and in that the external cylinder (4) also has a screw thread and a slot for insertion.
44. Heating chamber according to one of the claims 25 to 28, characterised by a stack of more than two identical plates (51, 52, 53) which make contact with one another in two plane parallel planes (73, 74 and 75, 76) in each case forming a surface deformation (steps 54, 55), adjacent plates being displaceable in relation to one another by a movement at right angles to the surface deformation.
45. Heating chamber according to claims 27, 28, characterised in that one of the plates (53) is provided on both sides with a pair (75, 76) of plane parallel closing planes (75, 76) connected by a step (55), and in that a similar plate (51 and 52, respectively) is provided on each of the two sides of the plate (53) to form two thread channels.
46. Heating chamber according to claim 45, characterised in that the two outer plates (51, 52) are fixed in position and the middle plate (53) is displaceably mounted.
47. Heating chamber according to claim 44, characterised in that the plate (53) arranged between two plates (51, 52) is penetrated by a channel (60) for saturated steam in the region of the step or groove.
48. Heating chamber according to one of the claims 27, 28, 45, 46, characterised in that the plates are pressed together by a contact pressure force and in that the friction of the plates (51, 52, 53) produced by the contact pressure against their closing surfaces is greater than the forces of the steam acting on the surfaces of the steps (55) which are perpendicular to the closing surfaces.
49. Heating chamber according to one of the claims 44 to 48, characterised in that the plates of a stack (51, 52, 53) are accommodated in a rigid housing (64,65,66; 104) which takes up the steam forces acting transversely to the closing planes of the plates.
50. Heating chamber according to claim 47, characterised in that the plates (51, 52, 53) are heat-insulated against the housing (64, 65, 66) (insulating plates 62).
EP83112564A 1982-12-18 1983-12-14 Heating chamber for running yarns Expired EP0114298B1 (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
DE3247040 1982-12-18
DE3247040 1982-12-18
DE3247626 1982-12-23
DE3247626 1982-12-23
DE3304752 1983-02-11
DE3304752 1983-02-11
DE19833308251 DE3308251A1 (en) 1983-03-09 1983-03-09 Heating chamber for running yarns
DE3308251 1983-03-09
DE3312823 1983-04-09
DE3312823 1983-04-09
DE3318645 1983-05-21
DE3318645 1983-05-21
DE3321202 1983-06-11
DE3321202 1983-06-11
DE3326432 1983-07-22
DE3326432 1983-07-22
DE3336101 1983-10-05
DE3336101 1983-10-05

Publications (2)

Publication Number Publication Date
EP0114298A1 EP0114298A1 (en) 1984-08-01
EP0114298B1 true EP0114298B1 (en) 1987-07-15

Family

ID=27575890

Family Applications (3)

Application Number Title Priority Date Filing Date
EP83112564A Expired EP0114298B1 (en) 1982-12-18 1983-12-14 Heating chamber for running yarns
EP84900046A Expired EP0128176B1 (en) 1982-12-18 1983-12-14 Heating chamber for continuous filaments
EP84900279A Expired EP0128208B1 (en) 1982-12-18 1983-12-14 Heating chamber for continuous filaments

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP84900046A Expired EP0128176B1 (en) 1982-12-18 1983-12-14 Heating chamber for continuous filaments
EP84900279A Expired EP0128208B1 (en) 1982-12-18 1983-12-14 Heating chamber for continuous filaments

Country Status (5)

Country Link
US (4) US4560347A (en)
EP (3) EP0114298B1 (en)
JP (2) JPS60500378A (en)
DE (3) DE3372793D1 (en)
WO (2) WO1984002359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3526225A1 (en) * 1984-07-26 1986-03-06 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Heating chamber for running synthetic yarns

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531679A1 (en) * 1984-09-13 1986-03-27 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Heating chamber for running threads
DE3627513C2 (en) * 1986-08-13 1996-09-19 Barmag Barmer Maschf Nozzle for texturing a running thread
EP0333789A1 (en) * 1987-09-30 1989-09-27 Rhône-Poulenc Viscosuisse SA Device and process for treating a bundle of threads using a turbulent air stream
JP2525471B2 (en) * 1987-12-25 1996-08-21 東レ株式会社 Yarn processing equipment
US5088264A (en) * 1989-07-13 1992-02-18 Barmag Ag Yarn threading apparatus
NL8902381A (en) * 1989-09-25 1991-04-16 Hoogovens Groep Bv SHAFT OVEN.
EP0430132B1 (en) * 1989-12-01 1994-03-16 Barmag Ag False twist crimping machine for crimping synthetic yarns
US5228918A (en) * 1990-10-29 1993-07-20 Gem Gravure Company, Inc. System for marking a continuous substrate
EP0524111B1 (en) * 1991-07-18 1994-11-17 Icbt Roanne Apparatus for thermically treating moving yarns
FR2693480B1 (en) * 1992-07-08 1994-08-19 Icbt Roanne Heating device for a moving wire.
DE59308918D1 (en) * 1992-07-10 1998-10-01 Hoechst Ag Process for heat treatment of moving yarns and device for carrying out this treatment
EP0579083B1 (en) * 1992-07-10 1998-06-03 Hoechst Aktiengesellschaft Method of drawing heated yarns, thereby obtained polyester yarns and their end uses
EP0916756B1 (en) * 1995-08-16 2006-10-04 Saurer GmbH & Co. KG False-twisting machine with pneumatic yarn insert guide
DE59712026D1 (en) * 1996-09-12 2004-11-25 Saurer Gmbh & Co Kg Texturing machine with height adjustable thread guide
TW538153B (en) 1998-03-03 2003-06-21 Heberlein Fibertechnology Inc Process for air-jet texturing of frill yarn and yarn-finishing device and the application thereof
DE19809600C1 (en) * 1998-03-03 1999-10-21 Heberlein Fasertech Ag Method of finishing a yarn comprising several continuous filaments
GB9902501D0 (en) * 1999-02-05 1999-03-24 Fibreguide Ltd Air jet
DE10348278A1 (en) * 2003-10-17 2005-05-25 Saurer Gmbh & Co. Kg Method and device for treating a running thread with a gaseous and vaporous treatment medium
WO2005038106A1 (en) * 2003-10-21 2005-04-28 Heberlein Fibertechnology, Inc. Device and method for the heat treatment of thread, especially for air bubble texturing
AU2008241422B2 (en) * 2007-04-18 2012-05-03 Thomas A. Valerio Method and system for sorting and processing recycled materials
DE102010022211A1 (en) 2010-05-20 2011-11-24 Oerlikon Textile Gmbh & Co. Kg Yarn lock for sealing a pressurized yarn treatment chamber
CN103354850B (en) * 2011-02-10 2015-11-25 三菱丽阳株式会社 The steam under pressure treating apparatus of carbon fiber precursor propylene class strand and the manufacture method of propylene class strand
IN2013MU02577A (en) * 2013-08-05 2015-06-12 Marc Ltd T
WO2018007294A1 (en) * 2016-07-08 2018-01-11 Oerlikon Textile Gmbh & Co. Kg Heating device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB511786A (en) * 1938-02-23 1939-08-24 Edward Kinsella Improvements in or relating to the treatment of filaments or threads
US2351110A (en) * 1942-04-30 1944-06-13 American Viscose Corp Apparatus for liquid treatment of filamentary material
US2529563A (en) * 1946-12-24 1950-11-14 American Viscose Corp Stretch tube orifice
US2708843A (en) * 1950-08-10 1955-05-24 Chemstrand Corp Fluid treating apparatus for strands
US2954687A (en) * 1955-05-03 1960-10-04 Kanegafuchi Boseki Kaisha Continuous treatment of textile material under pressure
US3058232A (en) * 1960-01-20 1962-10-16 Nat Res Corp High vacuum
US3079746A (en) * 1961-10-23 1963-03-05 Du Pont Fasciated yarn, process and apparatus for producing the same
US3298430A (en) * 1962-10-19 1967-01-17 Kodaira Nobuhisa Apparatus of heat treatment for synthetic yarns
US3278430A (en) * 1965-03-29 1966-10-11 Skotch Products Corp Aqueous base lubricant and like material
US3372630A (en) * 1965-06-04 1968-03-12 Houston Schmidt Ltd Apparatus for processing light sensitive film
US3349578A (en) * 1965-08-24 1967-10-31 Burlington Industries Inc Sealing device
GB1155062A (en) * 1965-09-29 1969-06-18 Courtaulds Ltd Apparatus for the production of fancy yarn
US3449549A (en) * 1966-03-29 1969-06-10 Kokusai Electric Co Ltd Heat treatment apparatus for a travelling yarn or yarns
US3534483A (en) * 1968-07-10 1970-10-20 Nobuhisa Kodaira Apparatus for heat-setting synthetic fibre yarns
US3796538A (en) * 1972-07-11 1974-03-12 Howorth Air Conditioning Ltd Fume extractors for the heaters of textile processing machines
US3800371A (en) * 1972-07-11 1974-04-02 Du Pont Fluid jet apparatus for processing yarn
DE2703991C2 (en) * 1976-02-12 1982-04-22 Heberlein Maschinenfabrik AG, 9630 Wattwil "Device for the heat treatment of textile yarns"
DE2643787B2 (en) * 1976-09-29 1981-02-26 Bayer Ag, 5090 Leverkusen Device for the heat treatment of running threads by means of saturated steam
DE2851967A1 (en) * 1978-01-25 1979-07-26 Heberlein & Co Ag DEVICE FOR COOLING HEATED TEXTILE YARNS MADE OF THERMOPLASTIC MATERIAL
CH623861A5 (en) * 1978-01-26 1981-06-30 Heberlein & Co Ag
DE2817487C2 (en) * 1978-04-21 1982-12-09 Rieter Deutschland Gmbh, 7410 Reutlingen Device for drawing a running thread into a texturing nozzle
DE2840177A1 (en) * 1978-09-15 1980-03-27 Karlsruhe Augsburg Iweka Turbulence jet for intermingling continuous filament yarns - within a cylindrical chamber closed by a rotatable slotted tube
DE3036089A1 (en) * 1979-10-15 1981-04-23 Heberlein Maschinenfabrik Ag, Wattwil DEVICE FOR COOLING HEATED TEXTILE YARNS MADE OF THERMOPLASTIC MATERIAL
JPS56154528A (en) * 1980-04-23 1981-11-30 Toray Industries False twisting processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3526225A1 (en) * 1984-07-26 1986-03-06 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Heating chamber for running synthetic yarns

Also Published As

Publication number Publication date
EP0128208B1 (en) 1987-07-29
DE3372793D1 (en) 1987-09-03
JPS60500138A (en) 1985-01-31
EP0114298A1 (en) 1984-08-01
WO1984002359A1 (en) 1984-06-21
US4565524A (en) 1986-01-21
US4560347A (en) 1985-12-24
JPS60500378A (en) 1985-03-22
US4609344A (en) 1986-09-02
US4529378A (en) 1985-07-16
DE3372792D1 (en) 1987-09-03
DE3372503D1 (en) 1987-08-20
EP0128208A1 (en) 1984-12-19
WO1984002358A1 (en) 1984-06-21
EP0128176A1 (en) 1984-12-19
EP0128176B1 (en) 1987-07-29

Similar Documents

Publication Publication Date Title
EP0114298B1 (en) Heating chamber for running yarns
DE4313379C2 (en) Heating roller
DE2130759C2 (en) Device for continuous treatment, in particular shrinking, of textile thread or yarn material
DE3811552A1 (en) SHUT-OFF DEVICE FOR CLAMP FOR REGULATING THE FLOW THROUGH A PLASTIC HOSE PIPE
DE2220757A1 (en) Method and device for treating textile material webs with liquids
EP1161580B1 (en) Method for feeding in and starting a thread and false twist texturing device
DE10118854A1 (en) Spinning assembly has off-end drawing with hollow chamber for coolant and lubricant
DE911774C (en) Device for the treatment of running threads with a treatment agent
DE1939002A1 (en) Device for the treatment of gas samples
DE3342322C2 (en) Cooling tube for a cooling section for the rapid cooling of rolling stock
DE19511086A1 (en) Steam heated roll for paper machine press or finishing section
EP1114212B1 (en) Texturing machine
EP0171558B1 (en) Heat-exchange apparatus
EP0114166A1 (en) Device for tentering and guiding a continuous web
DE3308251A1 (en) Heating chamber for running yarns
DE8310431U1 (en) CHAMBER FOR RUNNING THREADS
DE3036089A1 (en) DEVICE FOR COOLING HEATED TEXTILE YARNS MADE OF THERMOPLASTIC MATERIAL
DE69926346T2 (en) DEVICE FOR RECYCLING A LONG-SLIDE MATERIAL OF THERMOPLASTIC PLASTIC
DE2450241C2 (en) Heated roller for heat treatment of e.g. man-made fibers
EP0389819A1 (en) Calender for packing sheets
DE2446138A1 (en) False twist texturing device with coolable yarn contact surface - reducing height for easy service and increasing output
DE2334381A1 (en) DEVICE FOR THE PRODUCTION OF CURLED FEEDS
CH709698A1 (en) Traversing element for a spinning machine and thus equipped spinning machine.
DE8303839U1 (en) CHAMBER FOR RUNNING THREADS
DE8437329U1 (en) Heating chamber for running threads

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19841003

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: B A R M A G AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3372503

Country of ref document: DE

Date of ref document: 19870820

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900209

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901231

BERE Be: lapsed

Owner name: BARMAG A.G.

Effective date: 19901231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911203

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971128

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980122

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001