EP0111700B1 - Titan-, zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung - Google Patents

Titan-, zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung Download PDF

Info

Publication number
EP0111700B1
EP0111700B1 EP83110895A EP83110895A EP0111700B1 EP 0111700 B1 EP0111700 B1 EP 0111700B1 EP 83110895 A EP83110895 A EP 83110895A EP 83110895 A EP83110895 A EP 83110895A EP 0111700 B1 EP0111700 B1 EP 0111700B1
Authority
EP
European Patent Office
Prior art keywords
hafnium
titanium
zirconium
oxides
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110895A
Other languages
English (en)
French (fr)
Other versions
EP0111700A1 (de
Inventor
Herbert Dr. Baltes
Heinz Dr. Litterer
Ernst Ingo Dr. Leupold
Friedrich Dr. Wunder
Wolfgang Dr. Ebertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0111700A1 publication Critical patent/EP0111700A1/de
Application granted granted Critical
Publication of EP0111700B1 publication Critical patent/EP0111700B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/065Galloaluminosilicates; Group IVB- metalloaluminosilicates; Ferroaluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • Zeolites are primarily crystalline aluminosilicates in which regular structures with cavities and pores are created by three-dimensional linking of Si0 4 and Al0 4 tetrahedra. In the hydrated state, these pores and cavities are filled with water. This can be removed without affecting the crystal structure or replaced by other molecules. The negative charges of the Al0 4 tetrahedra are compensated for by cations. If desired, these can be exchanged for other cations.
  • the properties described enable the use of the zeolites as ion exchangers, adsorbents and catalysts (DW Breck: Zeolite Molecular Sieves, 1974).
  • Zeolites of the X, Y, mordenite, erionite and offretite type have considerable technical interest as catalysts for conversion reactions of hydrocarbons such as cracking, hydrocracking or isomerization.
  • Zeolites of the pentasil type e.g. zeolite ZSM-5
  • zeolite ZSM-5 are becoming increasingly important as catalysts for the conversion of methanol to hydrocarbons.
  • zeolites of the Pentasil series were known, the boron (DE-A-2 830 787), iron (DE-A-2 831 611), arsenic (DE-A-2 830 830), antimony (DE-A -2 830 787), vanadium (DE-A-2 831 631 chromium (DE-A-2 831 630) or gallium (BE-A-882 484) at tetrahedral sites. Titanosilicates (US-A-3 329 481 and DE-A-3 047 798) and zirconosilicates (US-A-3 329 480) with a zeolite structure.
  • the following preferably applies to the ratio of silicon to titanium, zirconium and / or hafnium in the zeolites according to the invention: expressed in molar ratios of the oxides, where M is titanium, zirconium and / or hafnium.
  • the new zeolites according to the invention have erionite (LW Staples, JA Gard, Mineralogical Magazine, Volume 32, year 1959, page 261 f), or synthetic zeolites T (US-A-2 950 952) and ZSM-34 (DE -A-2 749 024) similar structure, but differ from them in their composition, in particular in the content of at least one element from the group titanium, zirconium and hafnium and in the nature of the organic ammonium compound.
  • zeolites according to the invention differ from this aluminosilicate by the content of titanium, zirconium and / or hafnium and by different catalytic properties.
  • titanium silicates according to US Pat. No. 3,329,481 and DE-A-3,047,798 the zirconosilicates according to US Pat. No. 3,329,480, the titanium-containing zeolites according to German Offenlegungsschrift 3 141 283 and the zirconium and / or hafnium-containing zeolites According to German Offenlegungsschrift 3 141 285, the titanium, zirconium and / or hafnium-containing zeolites according to the invention differ in their structure and in the type of organic ammonium compound.
  • the zeolites containing titanium, zirconium and / or hafnium according to the invention differ from the zeolites containing titanium or zirconium and / or hafnium with a similar structure (German Offenlegungsschrift 3 136 686 and 3 136 684) by the nature of the organic ammonium compound.
  • the zeolites according to the invention are also distinguished by a different crystal shape and by substantially larger crystallites.
  • the zeolites according to the invention can be prepared by mixing an ammonium compound RX with aluminum, silicon, sodium, potassium compounds and water and at least one compound from the group of titanium, zirconium and / or hafnium compounds and heating them in a closed vessel .
  • R has the meaning given above.
  • seed crystals can be added to the mixture before heating.
  • M is titanium, zirconium and / or hafnium.
  • All water-soluble salts of R can be used as the ammonium compound RX.
  • X can mean, for example: hydroxyl, chloride, bromide, iodide, sulfate, phosphate, sulfonate, carboxylate, carbonate and sulfite.
  • the ammonium compound RX can be used as a substance. However, it is preferably generated in situ in the reaction mixture by using a mixture of triethanolamine and / or diethanolamine on the one hand and a compound of the general formula R I Y on the other hand, where R 'has the meaning given above.
  • Y is generally hydroxyl, monoalkyl sulfate, halide or sulfonate, especially hydroxyl.
  • R I Y is preferably methanol, ethanol, propanol, butanol, ethylene glycol, 1,2-propylene glycol, dimethyl sulfate, diethyl sulfate, methyl iodide, ethyl iodide, propyl iodide, p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid ethyl ester or p-toluenesulfonic acid propyl ester.
  • R'Y is methanol, ethanol or ethylene glycol.
  • the molar ratio R'Y to amine is generally 0.5 to 20, preferably 1 to 10, in particular 4 to 10.
  • the zeolites according to the invention can also be used in the absence of a compound of the general formula R'Y, i.e. only in the presence of triethanolamine and / or diethanolamine with satisfactory crystallinity.
  • titanium, zirconium and hafnium compounds may be used, for example: titanium halides, titanium sulfate, titanyl sulfate, titanium alcoholates, sodium titanate, potassium titanate, titanium dioxide, zirconium halides, zirconium sulfate, zirconium alcoholates, zirconium nitrate, zirconium dioxide, Zirkonylhalogenide, zirconyl, Natriumzirkonat, Kaliumzirkonat, hafnium halides, hafnium dioxide, hafnium .
  • other titanium, zirconium and hafnium compounds are also suitable for the production of the zeolites according to the invention.
  • silicon, aluminum, sodium and potassium compounds which can be used are: silica gel, potassium silicate, sodium silicate, sodium aluminate, potassium aluminate, aluminum halides, aluminum metahydroxide, potassium hydroxide, potassium sulfate, potassium halides, sodium hydroxide, sodium sulfate, sodium halides.
  • silicon, aluminum, potassium and sodium compounds are also suitable for the production of the zeolites according to the invention.
  • the mixture of the respectively selected compounds with water is generally heated to a temperature between 80 and 200 ° C., preferably between 110 and 160 ° C., in a closed vessel for 18 to 1000 hours, preferably for 24 to 500 hours.
  • the zeolites bidid are isolated, washed and ge in the usual manner, for example by filtration dries. They can be converted into the catalytically active forms by known methods, for example by calcination and / or ion exchange (DW Breck, Zeolite Molecular Sieves, 1974).
  • the zeolites according to the invention are distinguished in particular by a high selectivity and by a low coke separation in the conversion of methanol to lower olefins.
  • This reaction is carried out, for example, at temperatures of 350-430 ° C. and a water content in the methanol of 0 to 80% by weight or with crude methanol.
  • the product has the X-ray diffraction pattern shown in Table 2.
  • the product has the X-ray diffraction pattern shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

  • Als Zeolithe bezeichnet man vor allem kristalline Aluminosilicate, bei denen durch eine dreidimensionale Verknüpfung von Si04- und Al04-Tetraedem regelmässige Strukturen mit Hohlräumen und Poren entstehen. Im hydratisierten Zustand sind diese Poren und Hohlräume mit Wasser gefüllt. Dieses lässt sich ohne Beeinflussung der Kristallstruktur entfernen oder durch andere Moleküle ersetzen. Die negativen Ladungen der Al04-Tetraeder werden durch Kationen kompensiert. Diese können, wenn gewünscht, gegen andere Kationen ausgetauscht werden. Die geschilderten Eigenschaften ermöglichen die Verwendung der Zeolithe als Ionenaustauscher, Adsorbentien und Katalysatoren (D.W. Breck: Zeolite Molecular Sieves, 1974).
  • Zeolithe des X-, Y, Mordenit-, Erionit- und Offretit-Typs beispielsweise besitzen als Katalysatoren für Umwandlungsreaktionen von Kohlenwasserstoffen wie Cracken, Hydrocracken oder Isomerisierungen beträchtliches technisches Interesse. Zeolithe vom Pentasil-Typ (z.B. Zeolith ZSM-5) gewinnen als Katalysatoren für die Umwandlung von Methanol zu Kohlenwasserstoffen steigende Bedeutung.
  • Aufgrund der zahlreichen Einsatzmöglichkeiten als Katalysatoren besteht grosses Interesse an neuen Zeolithen mit spezifischen katalytischen Eigenschaften. Beispielsweise erhält man sehr interessante Zeolithe, wenn man anstelle von Aluminium und/ oder Silicium andere Elemente in das Zeolith-Gerüst einbaut. So wurden unter anderem Zeolithe der Pentasil-Reihe bekannt, die Bor (DE-A-2 830 787), Eisen (DE-A-2 831 611), Arsen (DE-A-2 830 830), Antimon (DE-A-2 830 787), Vanadin (DE-A-2 831 631 Chrom (DE-A-2 831 630) oder Gallium (BE-A-882 484) auf Tetraederplätzen enthalten. Auch wurden Titanosilicate (US-A-3 329 481 und DE-A-3 047 798) und Zirkonosilicate (US-A-3 329 480) mit Zeolithstruktur bekannt.
  • Weiterhin wurden bereits beschrieben: borhaltige Zeolithe, gallium- und/oder indiumhaltige Zeolithe, titanhaltige Zeolithe sowie zirkon- und/oder hafniumhaltige Zeolithe (deutsche Offenlegungsschriften 3 134 316, 3 134 317, 3 136 686, 3 136 684, 3 141 283, 3 141 285, 3 217 324, 3 217 323).
  • Gegenstand der Erfindung sind titan-, zirkon-und/oder hafniumhaltige Zeolithe, die dadurch gekennzeichnet sind, dass sie
    • a) Silicium, Aluminium, Natrium, Kalium, eine organische Ammoniumverbindung und mindestens ein Element aus der Gruppe Titan, Zirkon und Hafnium in folgendem Verhältnis enthalten
      • (Si02 + M02) : (0,02 - 0,30) Al2O3 : (0,05 -
      • 0,30) (Na20 + K20) : (0,01 - 0,30) R20,

      ausgedrückt in Molverhältnissen von Oxiden, wobei M gleich Titan, Zirkon und/oder Hafnium ist und R Ammoniumreste der allgemeinen Formeln (HOCH2CH2)4N, (HOCH2CH2)4R1N oder (HOCH2CHz)2R1R2N bezeichnet und die Reste R' und R2 gleich oder verschieden sein können und Alkyl, substituiertes Alkyl, Cycloalky), substituiertes Cycloalkyl, Aryl, substituiertes Aryl oder Wasserstoff bedeuten und
    • b) im Röntgenbeugungsdiagramm die in Tabelle 1 aufgeführten charakteristischen Signale aufweisen:
      Figure imgb0001
      • Hierbei bedeutet lo die Intensität des stärksten Si02
      • Signals, und es gilt = 0,4 - 0,99, Si02 + M02

      ausgedrückt in Molverhältnissen der Oxide. Für die Angabe der Intensitäten in Tabelle 1 gilt:
      Figure imgb0002
  • Vorzugsweise besitzen die erfindungsgemässen Zeolithe die folgende Zusammensetzung, ausgedrückt in Molverhältnissen der Oxide:
    • (Si02 + MOz : (0,08 - 0,18) Al2O3 : (0,05 - 030)
    • (NazO + K20) : (0,01 - 0,30) R20,

    wobei M gleich Titan, Zirkon und/oder Hafnium ist.
  • Dabei hat R die oben angegebene Bedeutung, vorzugsweise ist R = (HOCH2CH2)3R1N.
    • R1 und R2 haben die oben angegebene Bedeutung, vorzugsweise sind sie Alkylreste mit maximal jeweils fünf C-Atomen oder Wasserstoff, insbesondere Methyl, Ethyl, oder Wasserstoff. R1 und R2 können verschieden sein, vorzugsweise gilt jedoch R' = R2, insbesondere R1 = R = Methyl.
  • Vorzugsweise gilt für das Verhältnis von Silicium zu Titan, Zirkon und/oder Hafnium in den erfindungsgemässen Zeolithen:
    Figure imgb0003
    ausgedrückt in Molverhältnissen der Oxide, wobei M gleich Titan, Zirkon und/oder Hafnium ist.
  • Die erfindungsgemässen neuen Zeolithe besitzen eine dem Erionit (L.W. Staples, J.A. Gard, Mineralogical Magazine, Band 32, Jahrgang 1959, Seite 261 f), bzw. den synthetischen Zeolithen T (US-A-2 950 952) und ZSM-34 (DE-A-2 749 024) ähnliche Struktur, unterscheiden sich jedoch von diesen in der Zusammensetzung, insbesondere durch den Gehalt an mindestens einem Element aus der Gruppe Titan, Zirkon und Hafnium sowie durch die Art der organischen Ammoniumverbindung.
  • Ein weiteres kristallines Aluminosilicat dieses Strukturtyps wurde kürzlich in der deutschen Offenlegungsschrift 3 217 322 beschrieben. Von diesem Aluminosilikat unterscheiden sich die erfindungsgemässen Zeolithe durch den Gehalt an Titan, Zirkon und/oder Hafnium sowie durch unterschiedliche katalytische Eigenschaften.
  • Von den Titanosilicaten gemäss US-A-3 329 481 und DE-A-3 047 798, den Zirkonosilicaten gemäss US-A-3 329 480, den titanhaltigen Zeolithen gemäss der deutschen Offenlegungsschrift 3 141 283 sowie den zirkon- und/oder hafniumhaltigen Zeolithen gemäss der deutschen Offenlegungsschrift 3 141 285 unterscheiden sich die erfindungsgemässen titan-, zirkon- und/oder hafniumhaltigen Zeolithe durch die Struktur sowie durch die Art der organischen Ammoniumverbindung.
  • Von den titanhaltigen bzw. zirkon- und/oder hafniumhaltigen Zeolithen mit ähnlicher Struktur (deutsche Offenlegungsschrift 3 136 686 bzw. 3 136 684) unterscheiden sich die erfindungsgemässen titan-, zirkon- und/oder hafniumhaltigen Zeolithe durch die Art der organischen Ammoniumverbindung. Die erfindungsgemässen Zeolithe zeichnen sich ferner durch eine unterschiedliche Kristallform sowie durch wesentlich grössere Kristallite aus. Die erfindungsgemässen Zeolithe lassen sich herstellen, indem man eine Ammoniumverbindung RX mit Aluminium-, Silicium-, Natrium-, Kaliumverbindungen und Wasser sowie mindestens einer Verbindung aus der Gruppe der Titan-, Zirkon-, und/oder Hafniumverbindungen mischt und in einem geschlossenen Gefäss erhitzt. Dabei hat R die oben angegebene Bedeutung. Dem Gemisch können darüberhinaus vor dem Erhitzen Impfkristalle zugesetzt werden.
  • Die Ausgangsverbindungen werden im allgemeinen in folgendem Verhältnis eingesetzt, ausgedrückt in Molverhältnissen der Oxide:
    • (Si02 + M02) : (0,02 - 0,30) AI203 : (0,02 -
    • 0,70) Na20 : (0,02 - 0,30) K20 : (0,02 - 0,5)
    • R20 : (10 - 90) H20,

    vorzugsweise im Verhältnis
    • (Si02 + M02) : (0,02 - 0,18) A1203 : (0,10 -
    • 0,60) Na20 : (0,04 - 0,20) K20 : (0,10 - 0,40)
    • R20 : (10 - 40) H2O,

    wobei M gleich Titan, Zirkon und/oder Hafnium ist und R die oben angegebene Bedeutung hat.
  • Dabei gilt:
    Figure imgb0004
    vorzugsweise
    Figure imgb0005
    ausgedrückt in Molverhältnissen der Oxide, wobei M gleich Titan, Zirkon und/oder Hafnium ist.
  • Als Ammoniumverbindung RX können alle wasserlöslichen Salze von R eingesetzt werden. X kann beispielsweise bedeuten: Hydroxyl, Chlorid, Bromid, lodid, Sulfat, Phosphat, Sulfonat, Carboxylat, Carbonat und Sulfit.
  • Die Ammoniumverbindung RX kann als Substanz eingesetzt werden. Vorzugsweise wird sie jedoch in situ im Reaktionsgemisch erzeugt, indem man ein Gemisch aus Triethanolamin und/oder Diethanolamin einerseits und einer Verbindung der allgemeinen Formel RIY andererseits einsetzt, wobei R' die oben angegebene Bedeutung hat. Y ist im allgemeinen Hydroxyl, Monoalkylsulfat, Halogenid oder Sulfonat, insbesondere Hydroxyl.
  • RIY ist vorzugsweise Methanol, Ethanol, Propanol, Butanol, Ethylenglykol, 1,2-Propylenglykol, Dimethylsulfat, Diethylsulfat, Methyliodid, Ethyliodid, Propyliodid, p-Toluolsulfonsäuremethylester, p-Toluolsulfonsäureethylester oder p-Toluolsulfonsäurepropylester. Insbesondere ist R'Y Methanol, Ethanol oder Ethylenglykol. Das Molverhältnis R'Y zu Amin (Triethanolamin und/oder Diethanolamin) beträgt im allgemeinen 0,5 bis 20, vorzugsweise 1 bis 10, insbesondere 4 bis 10.
  • Die erfindungsgemässen Zeolithe lassen sich jedoch auch in Abwesenheit einer Verbindung der allgemeinen Formel R'Y, d.h. nur in Gegenwart von Triethanolamin und/oder Diethanolamin mit zufriedenstellender Kristallinität herstellen.
  • Als Titan-, Zirkon-und Hafniumverbindungen können beispielsweise eingesetzt werden: Titanhalogenide, Titansulfat, Titanoxidsulfat, Titanalkoholate, Natriumtitanat, Kaliumtitanat, Titandioxid, Zirkonhalogenide, Zirkonsulfat, Zirkonalkoholate, Zirkonnitrat, Zirkondioxid, Zirkonylhalogenide, Zirkonylsulfat, Natriumzirkonat, Kaliumzirkonat, Hafniumhalogenide, Hafniumdioxid, Hafniumoxychlorid. Aber auch andere Titan-, Zirkon- und Hafniumverbindungen eignen sich für die Herstellung der erfindungsgemässen Zeolithe.
  • Als Silicium-, Aluminium-, Natrium- und Kaliumverbindungen können beispielsweise eingesetzt werden: Kieselsäuregel, Kaliumsilicat, Natriumsilicat, Natriumaluminat, Kaliumaluminat, Aluminiumhalogenide, Aluminiummetahydroxid, Kaliumhydroxid, Kaliumsulfat, Kaliumhalogenide, Natriumhydroxid, Natriumsulfat, Natriumhalogenide. Aber auch andere Silicium-, Aluminium-, Kalium- und Natriumverbindungen eignen sich für die Herstellung der erfindungsgemässen Zeolithe.
  • Das Gemisch der jeweils gewählten Verbindungen mit Wasser wird im allgemeinen 18 bis 1000 Stunden, vorzugsweise 24 bis 500 Stunden lang auf eine Temperatur zwischen 80 und 200°C, vorzugsweise zwischen 110 und 160°C, in einem geschlossenen Gefäss erhitzt.
  • Die gebideten Zeolithe werden in üblicher Weise, z.B. durch Filtration, isoliert, gewaschen und getrocknet. Sie können nach bekannten Methoden in die katalytisch aktiven Formen überführt werden, z.B. durch Kalzinierung und/oder lonenaustausch (D.W. Breck, Zeolite Molecular Sieves, 1974).
  • Die erfindungsgemässen Zeolithe zeichnen sich nach ihrer Überführung in die katalytisch aktive Form insbesondere aus durch eine hohe Selektivität und durch eine geringe Koksabscheidung bei der Umwandlung von Methanol in niedere Olefine. Diese Reaktion führt man beispielsweise bei Temperaturen von 350-430°C und einem Wasseranteil im Methanol von 0 bis 80 Gew.-% oder mit Rohmethanol durch.
  • Die Erfindung soll durch die folgenden Beispiele erläutert werden, wobei die Beispiele aber in keiner Weise einschränkend sein sollen. Alle angegebenen Röntgenbeugungsdaten wurden mit einem computergesteuerten Pulverdiffraktometer D-500 der Firma Siemens aufgenommen. Es wurde Kupfer-K-alpha-Strahlung verwandt.
  • Beispiel 1
  • 17,92 g Natriumaluminat (54 Gew.-% Al2O3, 41 Gew.-% Na20), 9,5 g Natriumhydroxid, 10 g Kaliumhydroxid, 77,6 g Triethanolamin und 56 g Ethylenglykol werden in 240 ml Wasser gelöst (Lösung A). 14,2 g TitanethanolatTi(OC2H5)4 werden in 40 g Ethylenglykol gelöst (Lösung B). In die Lösung A werden nun unter intensivem Rühren zuerst 178 g 40 gew.-%iges kolloidales Kieselgel und anschliessend die Lösung B eingebracht. Die entstandene Mi- schung wird homogenisiert und anschliessend in einem Rührautoklaven 120 h auf 150°C erhitzt. Das entstandene Produkt wird abfiltriert, mit Wasser gewaschen und bei 120°C getrocknet.
  • Das Produkt besitzt das in Tabelle 2 wiedergegebene Röntgenbeugungsmuster.
  • Die chemische Analyse ergibt folgende Zusammensetzung, ausgedrückt in Molverhältnissen von Oxiden:
    • Si02 : 0,147 Al2Os : 0,058 Ti02 : 0,073 Na20 :
    • 0,091 KzO : 0,060 R20,

    wobei R gleich (HOCH2CH2)4N ist.
    Figure imgb0006
    Figure imgb0007
    Beispiel 2
  • 11,2 g Natriumaluminat (54 Gew.-% AI203, 41 Gew.-% Na20), 5,9 g Natriumhydroxid, 5,3 g Kaliumhydroxid, 48,7 g Triethanolamin und 31 g Methanol werden in 150 ml Wasser gelöst. In diese Lösung werden zuerst 100 g 40 gew.-%iges kolloidales Kieselgel und anschliessend 22,2 g Titantetrachlorid eingebracht. Die entstandene Mischung wird homogenisiert und 226 h im geschlossenen Gefäss auf 140°C erhitzt. Das entstandene Produkt wird abfiltriert, mit Wasser gewaschen und bei 120°C getrocknet.
  • Das Produkt zeigt die in Tabelle 1 angegebenen Röntgendaten und besitzt die folgende chemische Zusammensetzung, ausgedrückt in Molverhältnissen von Oxiden:
    • Si02 : 0,180 TiOz : 0,125 A1203
    Beispiel 3
  • 11,2 g Natriumaluminat, 5,9 g Natriumhydroxid, 5,3 g Kaliumhydroxid und 34,3 g Diethanolamin werden in 150 ml Wasser gelöst. In diese Lösung werden nacheinander 110 g 40 gew.-%iges kolloidales Kieselgel, eine Lösung aus 17,8 g Titanethanolat Ti(OC2H5)4 in 85 g Ethanol sowie 2 g Impfkristalle aus Versuch 1 eingebracht. Die entstandene Mischung wird homogenisiert und 192 h im geschlossenen Gefäss auf 150°C erhitzt. Das entstandene Produkt wird abfiltriert, mit Wasser gewaschen und bei 120 °C getrocknet. Das Produkt besitzt das in Tabelle 1 angegebene Röntgenbeugungsmuster und folgende chemische Zusammensetzung, ausgedrückt in Molverhältnissen von Oxiden:
    • SiO2 : 0,100 TiOz : 0,132 A1203.
    Beispiel 4
  • 17,92 g Natriumaluminat (54 Gew.-% Al2O3, 41 Gew.-% Na20), 9,5 g Natriumhydroxid, 10 g Kaliumhydroxid, 77,6 g Triethanolamin und 96 g Ethylenglykol werden in 240 ml Wasser gelöst. In diese Lösung werden unter intensivem Rühren zuerst 178 g 40 gew.-%iges kolloidales Kieselgel und anschliessend 17,7 g Zirkonsulfat in wenig Wasser eingebracht. Die entstandene Mischung wird homogenisiert und anschliessend in einem Rührautoklaven 120 h auf 150°C erhitzt. Das entstandene Produkt wird abfiltriert, mit Wasser gewaschen und bei 120°C getrocknet.
  • Das Produkt besitzt das in Tabelle 1 wiedergegebene Röntgenbeugungsmuster.
  • Die chemische Analyse ergibt folgende Zusammensetzung, ausgedrückt in Molverhältnissen von Oxiden:
    • SiO2 : 0,143 AI203 : 0,049 Zr02 : 0,052 Na20 :
    • 0,068 K20 : 0,062 R20,

    wobei R gleich (HOCH2CH2)4N ist.

Claims (16)

1. Titan-, zirkon- und/oder hafniumhaltige Zeolithe, dadurch gekennzeichnet, dass sie
a) Silicium, Aluminium, Natrium, Kalium, mindestens ein Element aus der Gruppe Titan, Zirkon und Hafnium sowie eine organische Ammoniumverbindung in folgendem Verhältnis enthalten
(Si02 + MOz) : (0,02 - 0,30) Al3O3 : (0,05 - 0,30) (Na20 + K20) : (0,01 - 0,30) R20,

ausgedrückt in Molverhältnissen von Oxiden, wobei M gleich Titan, Zirkon und/oder Hafnium ist und R Ammoniumreste der allgemeinen Formeln (HOCH2CH2)4N, (HOCH2CH2)3R1N oder (HOCH2CH2)2R1R2N bezeichnet und die Reste R1 und R2 gleich oder verschieden sein können und Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Aryl, substituiertes Aryl oder Wasserstoff bedeuten und
b) Im Röntgenbeugungsdiagramm die folgenden charakteristischen Signale aufweisen:
Figure imgb0008
wobei lo die Intensität des stärksten Signals bedeutet, und bei denen
SiO2 c) = 0,4 - 0,99 gilt, ausgedrückt Si02 + MO2

in Molverhältnissen der Oxide.
2. Titan-, zirkon-, und/oder hafniumhaltige Zeolithe nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung besitzen:
(SiO2 + M02) : (0,08 - 0,18) A12O3 : (0,05 - 0,30) (Na20 + K20) : (0,01 - 0,30) R20.
3. Titan-, zirkon- und/oder hafniumhaltige Zeolithe nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass R1 und R Alkylreste mit maximal jeweils fünf C-Atomen oder Wasserstoff sind.
4. Titan-, zirkon- und/oder hafniumhaltige Zeolithe nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass R1 und R Methyl, Ethyl oder Wasserstoff sind.
5. Titan-, zirkon- und/oder hafniumhaltige Zeolithe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass R1 gleich R2 ist.
6. Titan-, zirkon- und/oder hafniumhaltige Zeolithe nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass R1 und R2 gleich Methyl sind.
7. Titan-, zirkon- und/oder hafniumhaltige Zeolithe nach einem derAnsprüche 1 oder 2, dadurch gekennzeichnet, dass gilt:
Figure imgb0009

augedrückt in Molverhältnissen der Oxide.
8. Verfahren zur Herstellung von titan-, zirkon-und/oder hafniumhaltigen Zeolithen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man eine Mischung aus Silicium-, Aluminium-, Natrium-, Kalium-, organischen Ammoniumverbindungen und Wasser sowie mindestens einer Verbindung aus der Gruppe der Titan-, Zirkon- und/oder Hafniumverbindungen herstellt, die folgende Zusammensetzung hat, ausgedrückt in Molverhältnissen der Oxide:
(SiO2 + M02) : (0,02 - 0,30) Al2O3 : (0,02 - 0,70) Na20 : (0,02 - 0,30) K20 : (0,02 - 0,50) R20 : (10 - 90) H20,

und wobei für das Gemisch der Ausgangsverbindungen gilt:
Figure imgb0010
ausgedrückt in Molverhältnissen der Oxide und diese Mischung in einem geschlossenen Gefäss erhitzt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die zu erhitzende Mischung folgende Zusammensetzung hat, ausgedrückt in Molverhältnissen der Oxide:
(SiO2 + M02) : (0,02 - 0,18) AI203 : (0,10 - 0,60) Na20 : (0,04 - 0,20) K20 : (0,10 - 0,40) R20: (10 - 40) H20.
10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass man anstelle einer Ammoniumverbindung eine äquivalente Menge an Triethanolamin und/oder Diethanolamin zusammen mit einer Verbindung der allgemeinen Formel RIY einsetzt, wobei R' gleich Alkyl, substituiertes Alkyl, Cycloalkyl, substituiertes Cycloalkyl, Aryl, substituiertes Aryl oder Wasserstoff ist und Y gleich Hydroxyl, Monoalkylsulfat, Halogenid oder Sulfonat ist.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass R1Y gleich Methanol, Ethanol, Propanol, Butanol, Ethylenglykol, 1,2-Propylenglykol, Dimethylsulfat, Diethylsulfat, Methyliodid, Ethyliodid, Propyliodid, p-Toluolsulfonsäuremethylester, p-Toluolsulfonsäureethylester oder p-Toluolsulfonsäurepropylester ist.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass RIY gleich Methanol, Ethanol oder Ethylenglykol ist.
13. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass man anstelle einer Ammoniumverbindung eine äquivalente Menge an Triethanolamin einsetzt.
14. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass man anstelle einer Ammoniumverbindung eine äquivalente Menge an Diethanolamin einsetzt.
15. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass für das Gemisch der Ausgangsverbindungen gilt:
Figure imgb0011
ausgedrückt in Molverhältnissen der Oxide.
16. Verwendung von titan-, zirkon- und/oder hafniumhaltigen Zeolithen nach einem der Ansprüche 1 bis 7 als Katalysatoren bei der Herstellung von C2- bis C4-Olefinen aus Methanol.
EP83110895A 1982-11-05 1983-11-02 Titan-, zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung Expired EP0111700B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3240869 1982-11-05
DE19823240869 DE3240869A1 (de) 1982-11-05 1982-11-05 Titan-, zirkon- und/oder hafniumhaltige zeolithe und verfahren zu ihrer herstellung sowie ihre verwendung

Publications (2)

Publication Number Publication Date
EP0111700A1 EP0111700A1 (de) 1984-06-27
EP0111700B1 true EP0111700B1 (de) 1986-08-06

Family

ID=6177360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110895A Expired EP0111700B1 (de) 1982-11-05 1983-11-02 Titan-, zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung

Country Status (7)

Country Link
EP (1) EP0111700B1 (de)
JP (1) JPS59107919A (de)
AU (1) AU2100183A (de)
CA (1) CA1206460A (de)
DE (2) DE3240869A1 (de)
NZ (1) NZ206144A (de)
ZA (1) ZA838199B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002804A1 (de) 2022-06-29 2024-01-04 Gehr-Kunststoff-Extrusionsgesellschaft mbH Antibakterielles thermoplastisches substrat

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707345A (en) * 1984-04-26 1987-11-17 Union Carbide Corporation Titanium-aluminum-silicon-oxide molecular sieve compositions and process for preparing the same
US4892720A (en) * 1984-04-26 1990-01-09 Uop Substituted aluminosilicate compositions and process for preparing same
JPS61501982A (ja) * 1984-04-26 1986-09-11 ユニオン カ−バイド コ−ポレ−シヨン チタン−アルミニウム−ケイ素−酸化物モレキユラ−シ−ブ組成物
IT1222022B (it) * 1987-07-14 1990-08-31 Montedipe Spa Metodo per la preparazione di un catalizzatore per l' ammossimazione di composti carbonilici
JP2573511B2 (ja) * 1988-04-06 1997-01-22 久俊 浅岡 チタニウム、アルミニウム、ケイ素及びホウ素の各四面体酸化物の組合せによる組成物及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK155176C (da) * 1978-06-22 1989-07-17 Snam Progetti Fremgangsmaade til fremstilling af aluminiumoxidmodificeret siliciumdioxid
DE3141283A1 (de) * 1981-10-17 1983-04-28 Hoechst Ag, 6230 Frankfurt "titanhaltige zeolithe und verfahren zu ihrer herstellung sowie ihre verwendung"
DE3141285A1 (de) * 1981-10-17 1983-04-28 Hoechst Ag, 6230 Frankfurt "zirkon- und/oder hafniumhaltige zeolithe und verfahren zu ihrer herstellung sowie ihre verwendung"
DE3217323A1 (de) * 1982-05-08 1983-11-10 Hoechst Ag, 6230 Frankfurt Zirkon- und/oder hafniumhaltige zeolithe und verfahren zu ihrer herstellung sowie ihre verwendung
DE3217322A1 (de) * 1982-05-08 1983-11-10 Hoechst Ag, 6230 Frankfurt Kristalline aluminosilicat-zeolithe, verfahren zu ihrer herstellung sowie ihre verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002804A1 (de) 2022-06-29 2024-01-04 Gehr-Kunststoff-Extrusionsgesellschaft mbH Antibakterielles thermoplastisches substrat

Also Published As

Publication number Publication date
AU2100183A (en) 1984-05-10
DE3240869A1 (de) 1984-05-10
NZ206144A (en) 1985-12-13
ZA838199B (en) 1984-06-27
DE3365167D1 (en) 1986-09-11
JPS59107919A (ja) 1984-06-22
EP0111700A1 (de) 1984-06-27
CA1206460A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
DE60009030T2 (de) Katalytisches crack-verfahren mit mcm-68-katalysator
DE60106864T2 (de) Katalytisches Krackverfahren
DE69819989T2 (de) Zusammensetzung, die Molekularsiebe vom Pentasil-Typ enthält, sowie ihre Herstellung und Verwendung
DE4310792C2 (de) Zeolithisches Material, dessen Verwendung sowie Verfahren zum Herstellen eines solchen zeolithhaltigen Materials
EP0074651B1 (de) Gallium- und/oder indiumhaltige Zeolithe und Verfahren zu deren Herstellung sowie ihre Verwendung
EP0077522B1 (de) Titanhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE3119160A1 (de) Caesiumhaltiger zeolith und verfahren zu dessen herstellung
EP0074652B1 (de) Gallium- und/oder indiumhaltige Zeolithe und Verfahren zu deren Herstellung sowie ihre Verwendung
DE3687636T2 (de) Synthetisches, kristallines, poroeses, kieselsaeure-, titanoxid- und tonerdehaltiges material.
EP0077523B1 (de) Zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP0111700B1 (de) Titan-, zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP0094025A1 (de) Kristalline Aluminosilicat-Zeolithe, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE3141283A1 (de) "titanhaltige zeolithe und verfahren zu ihrer herstellung sowie ihre verwendung"
EP0111147B1 (de) Titan-, zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE69029125T2 (de) Modifiziert kristalline Aluminosilikaten und Verfahren für die Herstellung derselben
DE3540283A1 (de) Synthetische kristalline molekularsieb-materialien und verfahren zu ihrer herstellung
EP0094024A1 (de) Titanhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP0077946B1 (de) Borosilikatzeolithe - ZBH und Verfahren zur Herstellung kristalliner Borosilikatzeolithe (ZBH) und Verwendung als Katalysator
DE68904216T2 (de) Kristalline, kieselsaeurereiche (metallo)silikate vom sodalittyp sowie verfahren zur deren herstellung.
EP0073482A2 (de) Boro-Alumosilikate mit Zeolithstruktur und Verfahren zu deren Herstellung sowie ihre Verwendung
DE3141285A1 (de) "zirkon- und/oder hafniumhaltige zeolithe und verfahren zu ihrer herstellung sowie ihre verwendung"
EP0094023A1 (de) Zirkon- und/oder hafniumhaltige Zeolithe und Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP0073483A2 (de) Boro-Alumosilikate mit Zeolithstruktur und Verfahren zu deren Herstellung sowie ihre Verwendung
EP0091508B1 (de) Borosilikatzeolithe-ZBH und Verfahren zur Herstellung von kristallinen Borosilikatzeolithen (ZBH) und deren Verwendung als Katalysator
DE2739950A1 (de) Herstellung von alkylbenzol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19840830

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3365167

Country of ref document: DE

Date of ref document: 19860911

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861130

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19871130

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19871130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122