EP0104595A2 - Lampe à incandescence avec deux enveloppes - Google Patents
Lampe à incandescence avec deux enveloppes Download PDFInfo
- Publication number
- EP0104595A2 EP0104595A2 EP83109347A EP83109347A EP0104595A2 EP 0104595 A2 EP0104595 A2 EP 0104595A2 EP 83109347 A EP83109347 A EP 83109347A EP 83109347 A EP83109347 A EP 83109347A EP 0104595 A2 EP0104595 A2 EP 0104595A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- mesh
- light
- lamp
- containment
- capsule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/26—Screens; Filters
Definitions
- This invention relates to double-enveloped tungsten halogen incandescent lamps employing light-source capsule containment devices.
- One type of containment failure which may occur in a lamp having a single-ended light-source capsule is as follows.
- the capsule ruptures near or in the press seal.
- the remainder or upper body of the capsule remains intact.
- the capsule body (still referred to herein as a shard) is propelled away from the press seal toward the outer envelope.
- the outer envelope is shattered by the impact of the propelled capsule body.
- the terms "light-source capsule” or "capsule” denote a tungsten halogen incandescent light-generating capsule of a double-enveloped tungsten halogen lamp.
- This type of lamp, with single-ended and double-ended capsules, has been suggested in the prior art.
- U.S. Patent No. 3,194,625, by Danko, issued July 13, 1965; No. 3,448,321, by Shanks, issued June 3, 1969; and No. 3,515,930, by Walsh et al, issued June 2, 1970, provide examples of tungsten halogen lamps of both the single-ended and double-ended capsule varieties.
- efficacy or luminous efficacy used herein are a measure, expressed in lumens per watt, of the total luminous flux emitted by a light source over all wavelengths divided by the power input of the source.
- a double-enveloped tungsten halogen incandescent lamp having a light-source capsule containment device.
- the lamp comprises an outer envelope, a light-source capsule, a stem, a containment mesh, and mesh-mounting means.
- the light-source capsule is mounted within the outer envelope on the stem.
- the containment mesh is mounted operatively via the mesh-mounting means within the outer envelope such that it substantially surrounds the light-source capsule.
- the containment mesh has a minimal effect on the efficacy of the lamp.
- the flare of the stem is hermetically sealed to the outer envelope.
- the containment mesh restricts shards of the light-source capsule from shattering the outer envelope.
- a double-enveloped tungsten halogen incandescent lamp having a light-source capsule containment device.
- the lamp comprises an outer envelope, a light-source capsule, a stem, a containment mesh, mesh-mounting means, and collision-absorbing means.
- the light-source capsule is single-ended, such capsule comprising a top and opposed base, with the base including a press seal.
- the light-source capsule is mounted within the outer envelope on the stem.
- the containment mesh is mounted operatively via the mesh-mounting means within the outer envelope such that it substantially surrounds the light-source capsule.
- the containment mesh has a minimal effect on the efficacy of the lamp.
- the collision-absorbing means is mounted within the outer envelope above the top of the light-source capsule.
- the flare of the stem is hermetically sealed to the outer envelope.
- the containment mesh restricts shards of the light-source capsule from shattering the outer envelope.
- the outer envelope may be further protected from being shattered by the collision-absorbing means which absorbs and dissipates the energy of impact in the event the light-source capsule or a substantial part thereof and the containment mesh are propelled against the outer envelope immediately following the burst of the light-source capsule.
- Lamps with light-source capsule containment devices constructed in accordance with the foregoing description will exhibit substantially improved operating safety characteristics when compared to lamps of the prior art.
- FIG. 1 shows a double-enveloped tungsten halogen incandescent lamp 10 having a light-source capsule containment device 12.
- Lamp 10 comprises outer envelope 14, light-source capsule 16, stem 18, containment mesh 20, and mesh mounting means 22.
- Capsule 16 is mounted on stem 18 by means of stiff lead-in wires 23 which protrude from stem 18.
- mesh 20 comprises knitted metal wire which forms a cylindrical sleeve which is closed at mesh top 26.
- Mesh 20 encloses capsule 16 laterally and about capsule-top 24.
- Mesh 20 may be formed into such a closed cylindrical sleeve by means of being knitted, self-welded, clamped, etc.
- More than one method may be used in the construction of containment mesh 20, such as knitting the mesh into a cylindrical sleeve and closing mesh-top 26 by welding or clamping.
- Mounting means 22 for containment mesh 20 comprises anchoring pins 29.
- Mesh 20, in sleeve form, is mounted by slipping the open end of the sleeve over capsule 16 and a portion of stem 18 such that anchoring pins 29 fit through respective stitches of mesh 20.
- Anchoring pins 29 should be inserted into stitches of mesh 20 which are sufficiently distant from the edge of the fabric so that the fabric will not tear in the event a force is exerted on mesh 20 in the direction of arrow 30.
- the distance between mesh-top 26 and outer envelope 14, as shown by distance d in the drawing, is greater than the maximum stretch of mesh 20 in the direction of arrow 30.
- the flare of stem 18, not shown in the drawing, is hermetically sealed to outer envelope 14.
- mesh 20 will absorb and contain a substantial portion of the energy emanating from such burst. In particular, mesh 20 will restrict shards of capsule 16 from shattering outer envelope 14. If capsule 16 fractures such that a substantial portion of capsule 16 is propelled in the direction of arrow 30, mesh 20 will contain capsule 16 and prevent it from shattering outer envelope 14 because mesh 20 is anchored to stem 18 and distance d exceeds the maximum possible extension of mesh 20. Thus, the protection against a containment failure of a tungsten halogen lamp has been significantly improved.
- containment mesh 20 is knitted. In other embodiments, containment mesh 20 may be rigid. In some embodiments, the knitted mesh may be preferred because of its superior energy-containing capability; in other embodiments, the rigid mesh may be preferred because of its tractability.
- the mesh be as light-transmissive as possible so that there will be a minimal effect on the efficacy of the lamp.
- a certain percentage of li ht will be reflected by the mesh on the light's first pass through the capsule. A portion of the reflected light will be unobstructed by the mesh on the reflected light's subsequent pass or passes through the capsule.
- the net reduction in luminous efficacy is less than would be expected by estimating the percentage of the area of the capsule covered by the mesh.
- efficacy was reduced by less than 7% due to the presence of the mesh. This efficacy loss can be reduced to less than 6% by electropolishing the mesh. Because of the partial diffusion caused by the mesh, there is reduced glare from the lamp.
- the mesh size i.e., the number of stitches per inch, should be selected such that the mesh will contain shards with mass large enough to be likely to cause a rupture of the outer envelope in the event of a burst of the light-source capsule.
- the selection of mesh size is dependent on many factors, such as the type of lamp, the properties of the light-source capsule, the atmosphere within the capsule, the type of mesh, the diameter and tensile strength of the strand or strands in the mesh, etc.
- one or both lead-in wires can be insulated by means of a dielectric sleeve or coating; also, one or both lead-in wires may contain a fuse as an additional precaution.
- containment mesh 20 is mounted to stem 18 by means of anchoring pins 29.
- a single anchoring pin or clamp may suffice.
- Another feasible mounting means would be to wrap a strap tightly around mesh 20 and stem 18.
- Still another mounting means may be to weld or clamp the mesh to one or both lead-in wires 23 provided one or both lead-in wires 23 have been properly insulated against the - ⁇ possibility of an electrical short circuit.
- the selection of construction material for the containment mesh is heavily influenced by the environment within the outer envelope during operation of the lamp and immediately following a burst of the light-source capsule. During lamp operation, the temperature about the mesh may be in excess of 200° C.
- Stainless-steel wire with a high chromium content is a preferred material for the construction of the mesh and mounting strap or straps because of its superior high-temperature properties, relatively low coefficient of thermal expansion, good resistance to oxidation and corrosion, and high tensile strength.
- FIG. 1 Several example lamps of the type shown in FIG. 1 were constructed. Mesh sizes ranged from 7 to 20 stitches per inch. Each containment mesh was knitted into a cylindrical sleeve from a single strand of stainless-steel wire having a diameter of .005 inches. Closure of the top of the mesh was accomplished by welding a strap of nickel across the mesh top. The light-source capsules were sealed into A 21 bulbs such that the distance between the top of the mesh and the outer envelope was approximately one-half inch. Internal capsule pressures were approximately 7-10 atmospheres when the lamp was cold; operating capsule pressures were in the 15-20 atmospheres range.
- FIG. 2 shows an elevational view of light-source capsule 16, containment mesh 20, and mesh-mounting means 32.
- mesh 20 is mounted directly on capsule 16 by means of strap 33 which is tightly wrapped around mesh 20 and press seal 28 of capsule 16.
- Alternate mounting means would be to clamp mesh 20 together below capsule-base 34 or to clamp mesh 20 to one or both lead-in wires 23 .
- one or both lead-in wires 23 should be insulated with a dielectric sleeve or coating in order to prevent a possible electrical short circuit caused by the wire mesh coming in contact with both lead-in wires 23.
- mesh 20 is mounted directly on capsule 16 by means of elastic or frictional forces exerted against the body of capsule 16 by mesh 20 itself. With the frictional mounting means, mesh 20 may not be anchored sufficiently to insure against the possibility of a substantial portion of capsule 16 and mesh 20 being propelled in the direction of arrow 30 and impacting with the outer envelope of the lamp. If this collision should occur, collision-absorbing means 36 acts as a cushion and prevents the shattering of the outer envelope. In this embodiment, collision-absorbing means 36 is a slightly crumpled portion of mesh 20 positioned above capsule-top 24.
- a double-ended light-source capsule 38 has containment mesh 20 secured thereto by mesh-mounting means 22.
- containment mesh 20 is a knitted cylindrical sleeve 21
- mesh-mounting means 22 comprises straps 43 which are tightly wrapped around sleeve 21 and press seals 44 of capsule 38.
- FIG. 5 is an enlarged, partial, pictorial view of an embodiment of a knitted containment mesh 20.
- the stitch is approximately square, as shown by approximately equal horizontal and vertical distances x on the diagram.
- This type of mesh may be knitted from a single strand 46 of wire or other suitable material.
- FIG. 6 is an enlarged partial, pictorial view of an embodiment of a screen or rigid containment mesh 20 which may be preferred in certain embodiments of the invention.
- the stitch is approximately square, as shown by approximately equal horizontal and vertical distances y on the diagram.
- This type of mesh generally is constructed from a plurality of strands of wire or strands of other suitable material as shown by vertical strands 48 and horizontal strands 50 in the diagram.
- the containment mesh may be imbedded in the walls of the light-source capsule. e.
- a double-enveloped tungsten halogen incandescent lamp having a light-source capsule containment device which provides substantially improved operational safety characteristics.
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42231182A | 1982-09-23 | 1982-09-23 | |
US422311 | 1982-09-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0104595A2 true EP0104595A2 (fr) | 1984-04-04 |
EP0104595A3 EP0104595A3 (en) | 1984-11-07 |
EP0104595B1 EP0104595B1 (fr) | 1990-07-04 |
Family
ID=23674302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19830109347 Expired EP0104595B1 (fr) | 1982-09-23 | 1983-09-20 | Lampe à incandescence avec deux enveloppes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0104595B1 (fr) |
CA (1) | CA1214194A (fr) |
DE (1) | DE3381705D1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0306269A2 (fr) * | 1987-08-28 | 1989-03-08 | Gte Products Corporation | Lampe électrique à ampoule double |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060049733A1 (en) * | 2004-09-07 | 2006-03-09 | Osram Sylvania Inc. | Protected Metal Halide Lamp |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR849331A (fr) * | 1938-01-25 | 1939-11-21 | Philips Nv | Lampe électrique à incandescence à atmosphère gazeuse dont la pression de service est supérieure à 4 atmosphères |
FR852426A (fr) * | 1938-04-02 | 1940-02-01 | Philips Nv | Perfectionnement apporté aux lampes électriques à incandescence |
US3148835A (en) * | 1962-02-19 | 1964-09-15 | Jacobsen Products Inc | Simulated gaslight and mantle |
-
1983
- 1983-09-19 CA CA000437015A patent/CA1214194A/fr not_active Expired
- 1983-09-20 DE DE8383109347T patent/DE3381705D1/de not_active Expired - Lifetime
- 1983-09-20 EP EP19830109347 patent/EP0104595B1/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR849331A (fr) * | 1938-01-25 | 1939-11-21 | Philips Nv | Lampe électrique à incandescence à atmosphère gazeuse dont la pression de service est supérieure à 4 atmosphères |
FR852426A (fr) * | 1938-04-02 | 1940-02-01 | Philips Nv | Perfectionnement apporté aux lampes électriques à incandescence |
US3148835A (en) * | 1962-02-19 | 1964-09-15 | Jacobsen Products Inc | Simulated gaslight and mantle |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0306269A2 (fr) * | 1987-08-28 | 1989-03-08 | Gte Products Corporation | Lampe électrique à ampoule double |
EP0306269A3 (fr) * | 1987-08-28 | 1991-01-23 | Gte Products Corporation | Lampe électrique à ampoule double |
Also Published As
Publication number | Publication date |
---|---|
CA1214194A (fr) | 1986-11-18 |
EP0104595A3 (en) | 1984-11-07 |
EP0104595B1 (fr) | 1990-07-04 |
DE3381705D1 (de) | 1990-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4625140A (en) | Tungsten halogen lamp with light source capsule containment device | |
US4721876A (en) | Light-source capsule containment device and lamp employing such device | |
US4888517A (en) | Double-enveloped lamp having a shield surrounding a light-source capsule within a thick-walled outer envelope | |
EP0306269B1 (fr) | Lampe électrique à ampoule double | |
US5136204A (en) | Metal halide arc discharge lamp assembly | |
JPH05121047A (ja) | 飛散防止型アークランプアセンブリ | |
EP0104594B1 (fr) | Lampe à double enveloppe. | |
JP4431981B2 (ja) | 高圧放電灯 | |
EP0104595B1 (fr) | Lampe à incandescence avec deux enveloppes | |
US4039893A (en) | Discharge lamp having disconnect effective upon jacket failure | |
US5719463A (en) | Retaining spring and stop means for lamp mount | |
US3137804A (en) | Explosion-proof lamp | |
JP3118749B2 (ja) | 二重管型白熱電球 | |
KR100382672B1 (ko) | 아크켄칭구조를갖는형광램프 | |
US4361782A (en) | Jacketed discharge lamp having oxidizable fail-safe switch | |
JP4462425B2 (ja) | 高圧放電灯 | |
JP2007165314A (ja) | 外管を備えたランプ | |
US4910427A (en) | Glow starter holder with protection against R.F. overheating | |
US7511406B2 (en) | Metal halide arc discharge lamp | |
JP2003100256A (ja) | 高圧金属蒸気放電ランプおよび照明器具 | |
US6459191B1 (en) | Dome shield for protected metal halide lamps | |
JPH08124541A (ja) | 防爆型二重管 | |
JPH0757699A (ja) | メタルハライドランプ | |
JP2009206056A (ja) | 高圧放電ランプおよび照明装置 | |
JPH03147247A (ja) | 封じ込めのため遮蔽体およびセラミックファイバメッシュを用いたランプ組立体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19840125 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB NL |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB NL |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3381705 Country of ref document: DE Date of ref document: 19900809 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19990901 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990916 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990930 Year of fee payment: 17 Ref country code: FR Payment date: 19990930 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19991126 Year of fee payment: 17 |
|
NLS | Nl: assignments of ep-patents |
Owner name: FLOWIL INTERNATIONAL LIGHTING (HOLDING) B.V. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20000505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000930 |
|
BERE | Be: lapsed |
Owner name: GTE PRODUCTS CORP. Effective date: 20000930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010531 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010401 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |