EP0099599B1 - Method of forming continuous strip of amorphous metal - Google Patents
Method of forming continuous strip of amorphous metal Download PDFInfo
- Publication number
- EP0099599B1 EP0099599B1 EP83200882A EP83200882A EP0099599B1 EP 0099599 B1 EP0099599 B1 EP 0099599B1 EP 83200882 A EP83200882 A EP 83200882A EP 83200882 A EP83200882 A EP 83200882A EP 0099599 B1 EP0099599 B1 EP 0099599B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- jets
- strip
- row
- metal
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000005300 metallic glass Substances 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 239000000155 melt Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000007711 solidification Methods 0.000 claims description 2
- 230000008023 solidification Effects 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 238000009987 spinning Methods 0.000 description 10
- 229910001338 liquidmetal Inorganic materials 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000002074 melt spinning Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/064—Accessories therefor for supplying molten metal
- B22D11/0642—Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/01—Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
Definitions
- the invention relates to a method of forming a continuous strip of amorphous metal, comprising forcing a row of jets of molten metal through a corresponding row of orifices in the nozzle of a reservoir for the molten metal onto a chill surface moving transverse to said row and within a distance of 2,5 mm from said nozzle, on which surface the jets join together to form a melt puddle for solidification of the metal into an amorphous strip which is carried off by the chill surface.
- U.S. Patent Specification 4 154380 shows a nozzle for making amorphous metal strip using 2 coaxial slit-shaped orifices and a nozzle provided with a row of 3 round openings for the jets of liquid metal.
- German Patent application 29 38 709 discloses a process and apparatus for making amorphous metal strip using relatively large orifices to avoid clogging. These orifices have a dimension in the range of 1.5 ⁇ 6.0 mm in the direction of the movement of the chill surface.
- European Patent application 50 397 discloses a process and apparatus for making a rapidly quenched, cast metallic strip comprising a plurality of dissimilar longitudinal portions. Each individual portion of the strip is metallurgically alloy-bonded to the edges of adjacent portions.,along the longitudinal extent of the strip during casting. To that end separate streams of molten metal from separate crucibles are delivered onto the casting surface. The crucibles and their nozzles are arranged such that on the casting surface the peripheral edge portion of one stream contacts the peripheral edge portion of the adjacent stream.
- amorphous metal strip having a maximum thickness of about 30-40 11m is too thin. Because of this extremely small thickness the strip is very vulnerable mechanically and as a rule it does not quite satisfy the set standards of rigidity and strength and hence stability of shape.
- amorphous metal strip including that of Fe-alloys, having a thickness greater than that of the known range of 30-40 11m and having uniform properties.
- the invention now has for its object to make metal strip by the melt spinning process in which use is made of a chill surface and the metal is solidified substantially in the amorphous state and the resulting metal strip has a greater thickness than realized with the previously known method and has a uniform thickness and width.
- amorphous metal is to be understood here a metal in which no crystalline phase can be detected by X-ray diffractometry.
- the method according to the invention is characterized in that the metal is forced against the chill surface using at least two parallel rows of jets emerging from parallel rows of orifices in the same nozzle and the jets of all rows together form the melt puddle.
- the unexpected result of this method is that the thickness of the amorphous strip obtained is considerably greater and far more regular than can be realized by using 1 row of jets of liquid metal and, moreover, a considerably wider strip can be obtained than with said use of a single row of jets. This is the more surprising in that in prior art disclosures it was considered that the use of a plurality of jets could not possibly lead to wider strip having uniform properties.
- the use of 2 or more parallel rows of jets of liquid metal also results in greatly reduced instability in the melt puddle and hence in suppression of variation in strip thickness and width.
- the favourable result obtained in making amorphous strip is particularly manifest in that with the amorphous phase being retained, the metal strip can be made at least 1,5 times as thick as by spinning from a slotted nozzle under identical conditions, It is preferred that the jets of a liquid metal should be arranged in 3 ⁇ 4 rows. The rows need not be spaced at equal distances and the jets of the successive rows need not be staggered. Also the number of jets per row may differ. It is preferred that the rows should each be perfectly straight, but there is no absolute need for that.
- One or more of the rows may be arranged slightly curved or be interrupted for influencing the cross-sectional shape of the strip.
- the nozzle orifices in which the jets are formed may best be circular, but other forms, such as short slots, also may be used.
- the distance from the centres of the jets of the first row to those of the last row should not be greater than 10 mm.
- a distance not greater than 5 mm may be preferred.
- the diameter of jets having a circular cross section may with advantage be chosen in the range of from 0,5 to 1,0 mm and the centre-to-centre distance between 2 jets of a row in the range of 1,1-2 times the diameter.
- the jets of a row may be of different thicknesses for influencing the cross-sectional shape of the strip.
- Comparative melt spinning experiments in which use is made of a single jet formed in the slotted nozzle as described in the aforementioned US Patent Specification 4 221 257 and several rows of jets according to the invention demonstrate that the absolute uniformity of the thickness and the width obtained in the process of the present invention is hardly or not smaller than that of strip obtained using a single slot, but that the relative uniformity bf the thickness is generally somewhat more favourable.
- flank angle i.e. the angle between a side face of the strip and the base
- a large flank angle and a high relative uniformity of thickness are especially desired when making amorphous strip which is assembled into laminates. It is desirable then that the strips should fit together as closely as possible when placed side by side or one upon the other. This is of great importance in processing amorphous strip into a laminate for making electromagnetic cores as described in Netherlands Patent Application 8 201 427.
- the stacking fraction of the metal in the cores should be as high as possible.
- amorphous strip of alloys of the MmZz type wherein M is Fe, Ni, Co or blends thereof and Z is a metalloid, such as C, P, B, Si, AI or blends thereof and m is 70-90 at.% and z is 30-10 at.%.
- Part of the Fe, Ni and/or CO content may be replaced with other metals, such as Mn, Mo, Cr and the like.
- Such compositions of alloys rendered amorphous by very rapid cooling are mentioned in, among other publications, Acta Metallurgica Vo. 20, April 1972, pp. 485-491, and U.S. Patent Specification 3856513.
- Metal strips of these alloys are very ductile and have excellent magnetic properties such as low hysteresis losses and are excellently suitable to be used for electromagnetic cores. These cores may then be built up of stack of amorphous metal strips. Since the stacking of these strips can be realized more readily as they are thicker, the aim will be to make the thickest possible metal strips while retaining the amorphous structure of the metal.
- the numeral 1 refers to a quartz crucible for a metal 2.
- the metal can be melted with the aid of an MF induction coil 3.
- the crucible changes into a nozzle 4 which is provided with orifices 9.
- the nozzle 4 can be closed with a valve 5 which is actuated from a unit 6, from which also a particular gas pressure may be applied in the crucible.
- nozzle 4 Positioned at some adjustable distance from the under side. of the nozzle 4 is the internally water-cooled surface of a chill roll 7 which is driven by some device (not shown) such that it has a spinning speed in the range of 0 to 50 m/s.
- the strip obtained by using the nozzle 4 has a uniform thickness and width.
- the comparative experiment demonstrates that the use of 3 rows of jets results in obtaining strip which is considerably thicker than that obtained with a single jet from a slot-shaped orifice. This experiment also shows that with the use of a slotted nozzle said alloy may be formed into amorphous strip having a maximum thickness of about 30 ⁇ m.
- Example 1 In the manner described in Example 1, use being made of the alloy mentioned in it, strip is made at different spinning speeds. Starting from a value of 30 m/s the spinning speed of the chill surface is decreased in each successive experimental run.
- Strips obtained using a slotted nozzle, slot dimensions 8x0,6 mm, are-compared with strips obtained using a 7,1 mm wide nozzle having 14 orifices 0,7 mm in diameter arranged in 3 rows of 5,4 and 5 orifices, respectively, which are spaced at a centre-to-centre distance of 1,6 mm.
- the distance from the centre of the first to that of the third row is 2,6 mm.
- the orifices of the second row are staggered half a centre-to-centre orifice distance with respect to those of the 1st and 3rd rows. The values found are given in Table 2.
- the width of the strip obtained using the slotted nozzle was 8,2 mm and that obtained using the multiple-row nozzle 6,3 mm.
- This experiment also shows that use of a multiple-row nozzle leads to a considerably greater strip thickness than that obtained using a slotted nozzle, irrespective of the spinning speed.
- the experiment moreover demonstrates that for the alloy used in it the spinning speed must be higher than 20 m/sec in order that the strip may solidify in the amorphous state.
- the equipment and the alloy used for Experiment 1 are employed for making a wider amorphous strip at different spinning speeds.
- the nozzle used has 44 orifices of 0,7 mm arranged in 3 rows of 15, 14 and 15 orifices.
- the distance between the centres of the first and the third rows is 1,6 mm and the width 12 mm.
- the centre-to-centre distance of the orifices of a row is 0,8 mm.
- Measured are the strip thickness, strip width and the amplitude of the strip thickness. The values found are given in Table 4.
- amorphous strip is made from the alloy Fe 72 , 5 Mn 2,0 B 9,0 Si 16,2 CO,3 (at.%).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Soft Magnetic Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83200882T ATE18726T1 (de) | 1982-07-15 | 1983-06-16 | Verfahren zur herstellung eines fortlaufenden bandes aus amorphem metall. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL8202856 | 1982-07-15 | ||
NL8202856 | 1982-07-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0099599A1 EP0099599A1 (en) | 1984-02-01 |
EP0099599B1 true EP0099599B1 (en) | 1986-03-26 |
Family
ID=19840032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83200882A Expired EP0099599B1 (en) | 1982-07-15 | 1983-06-16 | Method of forming continuous strip of amorphous metal |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0099599B1 (enrdf_load_stackoverflow) |
JP (1) | JPS5924556A (enrdf_load_stackoverflow) |
AT (1) | ATE18726T1 (enrdf_load_stackoverflow) |
DE (1) | DE3362675D1 (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3620722A1 (de) * | 1986-06-20 | 1988-02-25 | Wilfried Dr Hug | Giessvorrichtung zur herstellung schnell erstarrender duennwandiger gegenstaende |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2065565B (en) | 1979-12-21 | 1983-07-20 | Pilot Ink Co Ltd | Ball-point pen tip and ball-point pen provided with same |
JPS60108144A (ja) * | 1983-11-18 | 1985-06-13 | Nippon Steel Corp | 金属薄帯の製造方法 |
JPS60121049A (ja) * | 1983-12-02 | 1985-06-28 | Nippon Steel Corp | 金属線材の製造方法 |
JPS60199553A (ja) * | 1984-03-23 | 1985-10-09 | Nippon Steel Corp | 金属薄帯の製造方法 |
JPS63220950A (ja) * | 1986-06-28 | 1988-09-14 | Nippon Steel Corp | 金属薄帯の製造方法および製造用ノズル |
KR0149065B1 (ko) * | 1993-08-23 | 1998-11-16 | 도끼와 히꼬끼찌 | 무정형 합금리본 제조방법 |
US6689234B2 (en) | 2000-11-09 | 2004-02-10 | Bechtel Bwxt Idaho, Llc | Method of producing metallic materials |
US20030183310A1 (en) * | 2002-03-29 | 2003-10-02 | Mcrae Michael M. | Method of making amorphous metallic sheet |
CN104368774A (zh) * | 2013-08-12 | 2015-02-25 | 江苏宏远新能源科技有限公司 | 一种多条非晶合金薄带同时喷制生产系统 |
JP2018167298A (ja) * | 2017-03-30 | 2018-11-01 | Bizyme有限会社 | Fe−Si−B系ナノ結晶合金の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5448637A (en) * | 1977-09-27 | 1979-04-17 | Nippon Steel Corp | Method of making amorphous metal sheet |
JPS5518582A (en) * | 1978-07-26 | 1980-02-08 | Matsushita Electric Ind Co Ltd | Manufacture of amorphous metal |
US4221257A (en) * | 1978-10-10 | 1980-09-09 | Allied Chemical Corporation | Continuous casting method for metallic amorphous strips |
DE2938709A1 (de) * | 1979-09-25 | 1981-04-02 | Vacuumschmelze Gmbh, 6450 Hanau | Verfahren und vorrichtung zur herstellung von amorphen metallbaendern |
YU96681A (en) * | 1980-10-22 | 1983-12-31 | Allegheny Ludlum Steel | Device for casting metal bands |
-
1983
- 1983-06-16 EP EP83200882A patent/EP0099599B1/en not_active Expired
- 1983-06-16 AT AT83200882T patent/ATE18726T1/de not_active IP Right Cessation
- 1983-06-16 DE DE8383200882T patent/DE3362675D1/de not_active Expired
- 1983-07-14 JP JP58127048A patent/JPS5924556A/ja active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3620722A1 (de) * | 1986-06-20 | 1988-02-25 | Wilfried Dr Hug | Giessvorrichtung zur herstellung schnell erstarrender duennwandiger gegenstaende |
Also Published As
Publication number | Publication date |
---|---|
DE3362675D1 (en) | 1986-04-30 |
EP0099599A1 (en) | 1984-02-01 |
JPH0478391B2 (enrdf_load_stackoverflow) | 1992-12-11 |
ATE18726T1 (de) | 1986-04-15 |
JPS5924556A (ja) | 1984-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1078111A (en) | Continuous casting method for metallic strips | |
US4142571A (en) | Continuous casting method for metallic strips | |
US5301742A (en) | Amorphous alloy strip having a large thickness | |
US4221257A (en) | Continuous casting method for metallic amorphous strips | |
EP0099599B1 (en) | Method of forming continuous strip of amorphous metal | |
EP1587642B1 (en) | Casting steel strip with low surface roughness and low porosity | |
US4409296A (en) | Rapidly cast alloy strip having dissimilar portions | |
US5480496A (en) | Method of making twin roll cast clad material using drag cast liner stock and article produced thereby | |
CA1160423A (en) | Apparatus and method for chill casting of metal strip employing a chromium chill surface | |
US4485839A (en) | Rapidly cast alloy strip having dissimilar portions | |
EP0050397B1 (en) | Cast metallic strip and method and apparatus for producing same | |
US5226953A (en) | Process and device for producing a laminated material for slide elements | |
US4331739A (en) | Amorphous metallic strips | |
Liebermann | Coaxial jet melt-spinning of glassy alloy ribbons | |
JPS6340629B2 (enrdf_load_stackoverflow) | ||
US4719964A (en) | Method for producing a metal wire | |
US3940976A (en) | Method of determining the suitability of continuously cast slabs of Al- or Al-Si-killed soft steel for producing cold rolled sheets to be tinned | |
JP2856960B2 (ja) | 進行磁場と静磁場による鋼スラブの連続鋳造方法 | |
JPS60199553A (ja) | 金属薄帯の製造方法 | |
JPS63149053A (ja) | 異形断面をもつ金属または合金薄帯の製造方法 | |
JP3083940B2 (ja) | 金属・合金薄帯の製造方法 | |
US4842041A (en) | Metal strip manufacturing method and nozzle therefor | |
JP3020850B2 (ja) | 広幅金属薄帯の製造方法および製造装置 | |
JP2971372B2 (ja) | 広幅金属薄帯の製造方法および製造装置 | |
JP2001269753A (ja) | 急冷凝固薄帯鋳造用ノズルおよび急冷凝固薄帯の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19840705 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 18726 Country of ref document: AT Date of ref document: 19860415 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3362675 Country of ref document: DE Date of ref document: 19860430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CESSIONE;SHELL INTERNATIONALE RESEARCH MAATSCHAPPI |
|
NLS | Nl: assignments of ep-patents |
Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. TE |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940428 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940503 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940510 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940610 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940627 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19940630 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940707 Year of fee payment: 12 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 83200882.5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950616 Ref country code: AT Effective date: 19950616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19950630 |
|
BERE | Be: lapsed |
Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. Effective date: 19950630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960229 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 83200882.5 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |