EP0095788A1 - Chambre de combustion d'une turbine à gaz et sa méthode - Google Patents

Chambre de combustion d'une turbine à gaz et sa méthode Download PDF

Info

Publication number
EP0095788A1
EP0095788A1 EP83200492A EP83200492A EP0095788A1 EP 0095788 A1 EP0095788 A1 EP 0095788A1 EP 83200492 A EP83200492 A EP 83200492A EP 83200492 A EP83200492 A EP 83200492A EP 0095788 A1 EP0095788 A1 EP 0095788A1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion chamber
elements
diffusion
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83200492A
Other languages
German (de)
English (en)
Other versions
EP0095788B1 (fr
Inventor
Eduard Brühwiler
Hans Koch
Gerald A. Roffe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0095788A1 publication Critical patent/EP0095788A1/fr
Application granted granted Critical
Publication of EP0095788B1 publication Critical patent/EP0095788B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00008Burner assemblies with diffusion and premix modes, i.e. dual mode burners

Definitions

  • the invention relates to the combustion chamber of a gas turbine according to the preamble of claim 1. It also relates to a method for starting and loading such a combustion chamber.
  • a combustion chamber of the type mentioned at the outset without water or steam injection is known from DE-A-2950535.
  • the invention seeks to remedy this.
  • the object of the invention is to raise the stability limit in the entire operating range in a combustion chamber of the type mentioned at the outset in such a way that the flame is extinguished with certainty.
  • the advantage of the invention can essentially be seen in the fact that a means is provided in a relatively simple manner to keep the combustion at all times within the ignition limits by appropriately distributing the fuel to the premixing or diffusion nozzles.
  • the fact that the use of previous pilot burners can be dispensed with has a particularly favorable effect.
  • combustion chamber is driven according to a fuel control curve as defined in claims 4 or 6, and if the burners are gradually ignited from the inside out, in addition to the required flame stability, there is a combustion in which the CO emissions are much better than those achieved with the combustion chamber mentioned at the beginning.
  • FIG. 1 shows, in a highly simplified manner, the design of a combustion chamber with the fuel supply according to the invention.
  • a larger number of tubular elements 2 are arranged in the upper area of the combustion chamber casing 1, which optimally fill the available space.
  • FIG. 2 An example of such an arrangement is shown in which 36 tubular elements 2 are arranged around a central pilot burner 5. The number is not mandatory, however, because it depends on the size of the combustion chamber, which in turn depends on the desired combustion output.
  • a support bridge 27, with which the tubular elements 2 are connected by means of suitable means, is anchored to a support rib 23.
  • the tubular elements 2 are guided laterally in the middle of their longitudinal extent by means of a guide plate 6.
  • the tubular elements 2 can also be anchored differently than with the support bridge 27 shown; In such cases, however, it will always be necessary to ensure that the chosen anchorage is placed as far away from the combustion chamber 7 as possible so that the thermal expansions cannot have a disruptive effect.
  • the greater part of the compressed air quantity flows through the openings 9 into a distribution chamber 19 provided in the combustion chamber shell, which is delimited downwards by the support bridge 27 and upwards by the cover 35 flanged by the flange rib 38 becomes. From this distribution chamber 19, the compressed air then flows through the air funnels 14 into the individual tubular elements 2.
  • the fuel supply is 2 for each tubular element provided by a fuel line 4, a fuel nozzle 15 ′ projecting into the tubular element 2. the atomization of the oil and a fuel nozzle 15 "take care of the blowing in of gas.
  • the fuel mixes with the inflowing compressed air in such a way that a pre-mixing / pre-evaporation process takes place in the tubular element 2.
  • This process is achieved by using a flange 24 at the air inlet of the tubular Element 2 intensified due to the resulting turbulence.
  • the fuel injection or fuel injection through the fuel nozzle 15 'or 15 "must be carried out at an optimal distance from the orifice 34, but still in the region of the resulting turbulence.
  • the flame holder 3 which forms the end of the downstream part of the tubular elements 2, has the task of preventing the flame from reigniting from the combustion chamber 7 into the interior of the tubular element 2. It is preferably provided with a swirl body 28, the openings of which lead the mixture to the combustion chamber 7 in a swirling manner.
  • the swirl body 28 favors due to the backflow occurring downstream in its center, a stable flame and good heat distribution, which results in a homogeneous temperature and speed distribution after the combustion chamber 7, with the effect that the turbine, not shown, is acted upon uniformly. So far combustion chambers are known.
  • a diffusion nozzle 8 is now arranged within the flame holder 3 of each element 2 and injects the fuel directly into the combustion chamber 7.
  • This nozzle 8 is intended both for oil operation and for gas operation. It is designed in such a way that the start-up in oil operation can only be carried out with diffusion combustion, i.e. it can do the whole; Process the amount of oil supplied to element 2. Because of the different volume ratios in gas operation, it is only possible to process about 50% of the total amount of gas supplied to an element 2 with the flow cross-section of the nozzle 8 unchanged.
  • FIG. 3 A simplified schematic diagram of the fuel supply can be seen in FIG. 3.
  • the fuel depending on the operating mode oil or gas, is fed into a swirl chamber 11 via a central line 10.
  • the atomizing air is guided in an annular space 12 enveloping the central line 10 and reaches the chamber 11 via openings 13.
  • the mixture is injected into the combustion space 7 via a commercially available diffusion nozzle 8.
  • the diffusion nozzle is cooled by an air flow which is removed from the annular space 12 upstream of the swirl chamber 11 via a bore 16 and is guided in an annular chamber 17 which is delimited on the outside by a sleeve 18.
  • the swirl bodies 28 of the flam are on this sleeve 18 menhalters 3 attached.
  • Separate fuel nozzles 15 ′ and 15 ′′ are provided for the gas and oil operation for the premixing system located approximately halfway up the elements 2.
  • the decisive factor here is that the oil expediently counteracts the air inflow direction, the gas, however, in or transversely to the air direction in the Mixing room is introduced.
  • a ring line 20 for the fuel oil is arranged around the central line 10 and communicates with an outlet chamber 24 via a bore 21, approximately at half the chamber height.
  • the atomizing air is guided in this area in longitudinal bores 26 which are evenly distributed over the circumference and which open into the annular space 12 already mentioned at their lower end.
  • this annular space 12 communicates with the lower, closed end of the outlet chamber 24 via a bore 29. and vaporization space is injected.
  • the choice of an injection angle suitable for this is of crucial importance for the extent of the premixing and for ensuring that no non-atomized oil reaches the wall of element 2. It goes without saying that it is not necessary to disclose absolute values here, since these depend on the numerous thermodynamic and geometric parameters and are not meaningful without their knowledge.
  • the gas premixing system is arranged above the oil premixing system.
  • the atomization not required in this area Exercise air is in turn guided in an annular chamber 30 concentrically surrounding the channels 12 and 20.
  • This annular chamber 30 is surrounded on the outside by a gas chamber 31, from which the fuel gas is blown under pressure into the mixing chamber via the nozzles 15 ′′, perpendicular to the flow direction of the combustion air.
  • the nozzles 15 'and 15 are dimensioned in such a way that they can process the entire amount of fuel supplied to an element 2.
  • the element arrangement shown in FIG. 2 is taken as a basis and the assumption is made that the elements 2 are only switched on or off in groups.
  • the machine speed n is plotted on the abscissa in [%] and the air excess number A is plotted on the ordinate.
  • the parameters K 24 , K 181 K 15 ' K 12 , K 9 and K 6 each represent a number of 24.18 ... 6 elements. It is the optimal switching curve when starting the combustion chamber in oil operation. It goes without saying that premix combustion cannot be carried out here, since when starting the air coming from the compressor is still too cold to cause oil evaporation within the elements 2. The starting process and the low load range are therefore burned with pure diffusion carried out. Since an excess air ratio of at least 1 is required for combustion, the diagram shows that at least 18 elements are required for starting.
  • the actual switching curve is drawn with a thick line.
  • the combustion chamber is started up with 18 elements.
  • the groups u, v and w are in operation.
  • group w is switched off at 60% speed. This means that the same amount of fuel is now burned in just 15 elements, which lowers the excess air figure.
  • group v is switched off at approx. 92% speed, which causes the excess air figure to drop to 1.2.
  • the fact that the curves in this area do not run continuously is due to the fact that the usual blowing off of compressor air is interrupted here.
  • the NO x limit value can easily be fallen below, but then the stability limit S M is low because of the low flame temperature.
  • the range between ignitability and extinguishing is too narrow to be able to safely run the gas turbine in the full load range.
  • the invention is therefore based on a mixed driving style with diffusion and premix combustion in the load range.
  • the respective proportion of oil quantity is selected so that a driving style with a sufficient distance from the resulting stability limit S DM is possible. Tests have shown that this is best achieved when 90 to 95% of the fuel is burned according to the premix principle and 5 to 10% of the fuel is burned according to the diffusion principle.
  • the diagram shows a mixed driving style with a 10% diffusion percentage. From idle to 15% load, 1/4 of the existing elements, ie only with group u, are used in pure diffusion mode. By increasing the fuel oil supply, ⁇ has become so low at 15% load that the element group v has to be switched on again. At 20% load, all el elements of groups u and v put the premix system into operation, which leads to a distribution of the fuel oil in the above-mentioned ratio. The reduction in fuel at the diffusion nozzles while the amount of air remains the same, causing the excess air figure to rise steeply, as shown in dashed lines.
  • the commissioning of the premix can be represented by reducing the excess air from the value 0 0 (infinite) to the value shown at 20% load, as is shown in dash-dot lines. With this measure, the stability limit falls to the displayed value S DM at 20% load.
  • the further control curve for the load increase is now determined in such a way that the excess air figure is constantly between 1.5 and 2.
  • the diagram in Fig. 6 deals with the optimal fuel control curve in the load range for gas combustion. All sizes shown from 20% load correspond to those in Fig. 5. Gas operation differs from oil operation only in the start phase and in the lower load range.
  • the starting process from 20% machine speed to idling (not shown) is already carried out with mixed diffusion / premix combustion and it has proven to be advantageous if the process is carried out with 50% premix and 50% diffusion combustion. This is possible because evaporation and the air temperature required for this are not necessary. Of course, 30% diffusion and 70% premixing or any other value in between can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
EP83200492A 1982-05-28 1983-04-07 Chambre de combustion d'une turbine à gaz et sa méthode Expired EP0095788B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH329582 1982-05-28
CH3295/82 1982-05-28

Publications (2)

Publication Number Publication Date
EP0095788A1 true EP0095788A1 (fr) 1983-12-07
EP0095788B1 EP0095788B1 (fr) 1985-12-18

Family

ID=4252890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83200492A Expired EP0095788B1 (fr) 1982-05-28 1983-04-07 Chambre de combustion d'une turbine à gaz et sa méthode

Country Status (4)

Country Link
US (1) US4967561A (fr)
EP (1) EP0095788B1 (fr)
JP (1) JPS58219329A (fr)
DE (1) DE3361535D1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159153A1 (fr) * 1984-03-26 1985-10-23 The Garrett Corporation Injecteur de carburant par air comprimé
EP0204553A1 (fr) * 1985-06-07 1986-12-10 Ruston Gas Turbines Limited Chaudière de combustion pour une turbine à gaz
EP0269824A2 (fr) * 1986-11-25 1988-06-08 General Electric Company Brûleur combiné à diffusion et à prémélange pour veilleuse
EP0274630A1 (fr) * 1986-12-11 1988-07-20 BBC Brown Boveri AG Agencement pour un brûleur
EP0193029B1 (fr) * 1985-02-26 1988-11-17 BBC Brown Boveri AG Chambre de combustion pour turbines à gaz
CH670296A5 (en) * 1986-02-24 1989-05-31 Bbc Brown Boveri & Cie Gas turbine fuel nozzle - has externally-supported premixing chamber for liq. fuel and air
EP0335978A1 (fr) * 1987-09-04 1989-10-11 Hitachi, Ltd. Bruleur de turbine a gaz
US4982570A (en) * 1986-11-25 1991-01-08 General Electric Company Premixed pilot nozzle for dry low Nox combustor
EP0433789A1 (fr) * 1989-12-19 1991-06-26 Asea Brown Boveri Ag Procédé d'une combustion à mélange préalable d'un combustible liquide
WO1993012388A1 (fr) * 1991-12-16 1993-06-24 United Technologies Corporation COMBUSTION A FAIBLE DEGAGEMENT DE NO¿x?
EP0564185A1 (fr) * 1992-03-30 1993-10-06 General Electric Company Assemblage d'une calotte pour chambre de combustion à plusieurs buses
EP0571782A1 (fr) * 1992-05-27 1993-12-01 Asea Brown Boveri Ag Procédé de fonctionnement d'une chambre de combustion pour turbine à gaz
EP0594127A1 (fr) * 1992-10-19 1994-04-27 Mitsubishi Jukogyo Kabushiki Kaisha Chambre de combustion pour turbine à gaz
US5339635A (en) * 1987-09-04 1994-08-23 Hitachi, Ltd. Gas turbine combustor of the completely premixed combustion type
EP0656512A1 (fr) * 1993-12-03 1995-06-07 Westinghouse Electric Corporation Chambre de combustion d'une turbine à gaz utilisant deux types de carburant
EP0670456A1 (fr) * 1994-03-04 1995-09-06 NUOVOPIGNONE INDUSTRIE MECCANICHE E FONDERIA S.p.A. Système de combustion perfectionné à pollution réduite pour turbine à gaz
EP0691511A1 (fr) 1994-06-10 1996-01-10 General Electric Company Méthode de régulation pour une chambre de combustion d'une turbine à gaz

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199265A (en) * 1991-04-03 1993-04-06 General Electric Company Two stage (premixed/diffusion) gas only secondary fuel nozzle
US5235814A (en) * 1991-08-01 1993-08-17 General Electric Company Flashback resistant fuel staged premixed combustor
US5261226A (en) * 1991-08-23 1993-11-16 Westinghouse Electric Corp. Topping combustor for an indirect fired gas turbine
US5323604A (en) * 1992-11-16 1994-06-28 General Electric Company Triple annular combustor for gas turbine engine
JP2580527B2 (ja) * 1993-12-27 1997-02-12 工業技術院長 液化lpガスを用いるガスタービン燃焼器
DE4412315B4 (de) * 1994-04-11 2005-12-15 Alstom Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
EP0747635B1 (fr) * 1995-06-05 2003-01-15 Rolls-Royce Corporation Brûleur à prémélange pauvre avec faible production de NOx pour turbines à gaz industrielles
US5822992A (en) * 1995-10-19 1998-10-20 General Electric Company Low emissions combustor premixer
GB2307980B (en) * 1995-12-06 2000-07-05 Europ Gas Turbines Ltd A fuel injector arrangement; a method of operating a fuel injector arrangement
US5881756A (en) * 1995-12-22 1999-03-16 Institute Of Gas Technology Process and apparatus for homogeneous mixing of gaseous fluids
US5797268A (en) * 1996-07-05 1998-08-25 Westinghouse Electric Corporation Partially swirled multi-swirl combustor plate and chimneys
SE514341C2 (sv) * 1998-06-18 2001-02-12 Abb Ab Förfarande för start av en brännaranordning till en gasturbin
EP1112462B1 (fr) * 1998-08-31 2003-06-18 Siemens Aktiengesellschaft Procede d'exploitation d'une turbine a gaz et turbine a gaz correspondante
IT1313547B1 (it) * 1999-09-23 2002-07-24 Nuovo Pignone Spa Camera di premiscelamento per turbine a gas
EP1199523A1 (fr) * 2000-10-20 2002-04-24 Siemens Aktiengesellschaft Procédé pour alimenter des brûleurs dans une chambre de combustion et chambre de combustion avec plusieurs brûleurs
US6928823B2 (en) * 2001-08-29 2005-08-16 Hitachi, Ltd. Gas turbine combustor and operating method thereof
US6813889B2 (en) * 2001-08-29 2004-11-09 Hitachi, Ltd. Gas turbine combustor and operating method thereof
US6962055B2 (en) * 2002-09-27 2005-11-08 United Technologies Corporation Multi-point staging strategy for low emission and stable combustion
US6931853B2 (en) * 2002-11-19 2005-08-23 Siemens Westinghouse Power Corporation Gas turbine combustor having staged burners with dissimilar mixing passage geometries
US7350357B2 (en) * 2004-05-11 2008-04-01 United Technologies Corporation Nozzle
US7546740B2 (en) * 2004-05-11 2009-06-16 United Technologies Corporation Nozzle
US7900435B1 (en) * 2007-05-23 2011-03-08 Xcor Aerospace Micro-coaxial injector for rocket engine
US8087228B2 (en) * 2008-09-11 2012-01-03 General Electric Company Segmented combustor cap
US8327642B2 (en) * 2008-10-21 2012-12-11 General Electric Company Multiple tube premixing device
US9140454B2 (en) 2009-01-23 2015-09-22 General Electric Company Bundled multi-tube nozzle for a turbomachine
US20120031097A1 (en) * 2009-05-07 2012-02-09 General Electric Company Multi-premixer fuel nozzle
US8402763B2 (en) * 2009-10-26 2013-03-26 General Electric Company Combustor headend guide vanes to reduce flow maldistribution into multi-nozzle arrangement
US8511092B2 (en) * 2010-08-13 2013-08-20 General Electric Company Dimpled/grooved face on a fuel injection nozzle body for flame stabilization and related method
US9033699B2 (en) * 2011-11-11 2015-05-19 General Electric Company Combustor
US9134023B2 (en) * 2012-01-06 2015-09-15 General Electric Company Combustor and method for distributing fuel in the combustor
US20130199189A1 (en) * 2012-02-08 2013-08-08 Jong Ho Uhm Fuel injection assembly for use in turbine engines and method of assembling same
US20130199190A1 (en) * 2012-02-08 2013-08-08 Jong Ho Uhm Fuel injection assembly for use in turbine engines and method of assembling same
US8511086B1 (en) * 2012-03-01 2013-08-20 General Electric Company System and method for reducing combustion dynamics in a combustor
US9366445B2 (en) * 2012-04-05 2016-06-14 General Electric Company System and method for supporting fuel nozzles inside a combustor
US20130283810A1 (en) * 2012-04-30 2013-10-31 General Electric Company Combustion nozzle and a related method thereof
US9261279B2 (en) * 2012-05-25 2016-02-16 General Electric Company Liquid cartridge with passively fueled premixed air blast circuit for gas operation
US20130318976A1 (en) * 2012-05-29 2013-12-05 General Electric Company Turbomachine combustor nozzle and method of forming the same
US9267690B2 (en) 2012-05-29 2016-02-23 General Electric Company Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same
US20140109582A1 (en) * 2012-10-23 2014-04-24 General Electric Company Self-stabilized micromixer
US9353950B2 (en) * 2012-12-10 2016-05-31 General Electric Company System for reducing combustion dynamics and NOx in a combustor
JP6033457B2 (ja) * 2013-10-18 2016-11-30 三菱重工業株式会社 燃料噴射器
US10107499B2 (en) * 2014-07-31 2018-10-23 General Electric Company Fuel plenum for a fuel nozzle and method of making same
JP6440433B2 (ja) 2014-09-29 2018-12-19 川崎重工業株式会社 燃料噴射ノズル、燃料噴射モジュール、及びガスタービン
RU2015156419A (ru) 2015-12-28 2017-07-04 Дженерал Электрик Компани Узел топливной форсунки, выполненный со стабилизатором пламени предварительно перемешанной смеси
US11226092B2 (en) 2016-09-22 2022-01-18 Utilization Technology Development, Nfp Low NOx combustion devices and methods
US10295190B2 (en) 2016-11-04 2019-05-21 General Electric Company Centerbody injector mini mixer fuel nozzle assembly
US10724740B2 (en) 2016-11-04 2020-07-28 General Electric Company Fuel nozzle assembly with impingement purge
US10465909B2 (en) 2016-11-04 2019-11-05 General Electric Company Mini mixing fuel nozzle assembly with mixing sleeve
US10352569B2 (en) 2016-11-04 2019-07-16 General Electric Company Multi-point centerbody injector mini mixing fuel nozzle assembly
US10393382B2 (en) 2016-11-04 2019-08-27 General Electric Company Multi-point injection mini mixing fuel nozzle assembly
US10634353B2 (en) 2017-01-12 2020-04-28 General Electric Company Fuel nozzle assembly with micro channel cooling
WO2019117467A1 (fr) * 2017-12-11 2019-06-20 (주)넥스트가스이노베이션 Dispositif de combustion à injection directe de gpl
US10890329B2 (en) 2018-03-01 2021-01-12 General Electric Company Fuel injector assembly for gas turbine engine
DE102018114870B3 (de) * 2018-06-20 2019-11-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennersystem und Verfahren zur Erzeugung von Heißgas in einer Gasturbinenanlage
WO2019008304A2 (fr) * 2018-10-05 2019-01-10 Fives Pillard Bruleur et procede de combustion pour bruleur
US10935245B2 (en) 2018-11-20 2021-03-02 General Electric Company Annular concentric fuel nozzle assembly with annular depression and radial inlet ports
US11073114B2 (en) 2018-12-12 2021-07-27 General Electric Company Fuel injector assembly for a heat engine
US11286884B2 (en) 2018-12-12 2022-03-29 General Electric Company Combustion section and fuel injector assembly for a heat engine
US11156360B2 (en) 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly
DE102020119619A1 (de) * 2020-07-24 2022-01-27 Friedrich-Alexander-Universität Erlangen-Nürnberg Düsencluster
KR102583225B1 (ko) * 2022-02-07 2023-09-25 두산에너빌리티 주식회사 마이크로 믹서 및 이를 포함하는 가스 터빈

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB721126A (en) * 1952-08-15 1954-12-29 Bbc Brown Boveri & Cie Improvements in or relating to gas burners
CH305532A (de) * 1951-06-25 1955-02-28 Parsons & Co Ltd C A Gasturbinenanlage.
DE1074920B (de) * 1955-07-07 1960-02-04 Ing habil Fritz A F Schmidt Murnau Dr (Obb) Verfahren und \ orrichtung zur Regelung von Gas turbmenbrennkammern mit unterteilter Verbrennung und mehreren Druckstufen
US4100733A (en) * 1976-10-04 1978-07-18 United Technologies Corporation Premix combustor
US4134719A (en) * 1976-09-27 1979-01-16 Velie Wallace W Multi-flame fuel burner for liquid and gaseous fuels
GB1543032A (en) * 1977-01-21 1979-03-28 Westinghouse Electric Corp Combustion apparatus for a gas turbine engine
EP0030313A1 (fr) * 1979-12-07 1981-06-17 Kraftwerk Union Aktiengesellschaft Chambre de combustion pour turbines à gaz et procédé pour son fonctionnement
US4288980A (en) * 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines
US4356698A (en) * 1980-10-02 1982-11-02 United Technologies Corporation Staged combustor having aerodynamically separated combustion zones
EP0029619B1 (fr) * 1979-11-23 1983-06-01 BBC Aktiengesellschaft Brown, Boveri & Cie. Chambre de combustion pour turbine à gaz avec éléments de prévaporisation/prémélange

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH388022A (de) * 1960-10-07 1965-02-15 Maschf Augsburg Nuernberg Ag Brennkammer für die gleichzeitige Verbrennung gasförmiger und nichtgasförmiger Brennstoffe, insbesondere für Gasturbinenanlagen
GB1284439A (en) * 1969-12-09 1972-08-09 Rolls Royce Fuel injector for a gas turbine engine
US3630024A (en) * 1970-02-02 1971-12-28 Gen Electric Air swirler for gas turbine combustor
US3777983A (en) * 1971-12-16 1973-12-11 Gen Electric Gas cooled dual fuel air atomized fuel nozzle
US3904119A (en) * 1973-12-05 1975-09-09 Avco Corp Air-fuel spray nozzle
US3886728A (en) * 1974-05-01 1975-06-03 Gen Motors Corp Combustor prechamber
GB1559779A (en) * 1975-11-07 1980-01-23 Lucas Industries Ltd Combustion assembly
US4327547A (en) * 1978-11-23 1982-05-04 Rolls-Royce Limited Fuel injectors
HU181665B (en) * 1979-11-28 1983-10-28 Chinoin Gyogyszer Es Vegyeszet Plant protective composition containing carbofurane with increased growth promoting and insecticide effect

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH305532A (de) * 1951-06-25 1955-02-28 Parsons & Co Ltd C A Gasturbinenanlage.
GB721126A (en) * 1952-08-15 1954-12-29 Bbc Brown Boveri & Cie Improvements in or relating to gas burners
DE1074920B (de) * 1955-07-07 1960-02-04 Ing habil Fritz A F Schmidt Murnau Dr (Obb) Verfahren und \ orrichtung zur Regelung von Gas turbmenbrennkammern mit unterteilter Verbrennung und mehreren Druckstufen
US4134719A (en) * 1976-09-27 1979-01-16 Velie Wallace W Multi-flame fuel burner for liquid and gaseous fuels
US4100733A (en) * 1976-10-04 1978-07-18 United Technologies Corporation Premix combustor
GB1543032A (en) * 1977-01-21 1979-03-28 Westinghouse Electric Corp Combustion apparatus for a gas turbine engine
US4288980A (en) * 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines
EP0029619B1 (fr) * 1979-11-23 1983-06-01 BBC Aktiengesellschaft Brown, Boveri & Cie. Chambre de combustion pour turbine à gaz avec éléments de prévaporisation/prémélange
EP0030313A1 (fr) * 1979-12-07 1981-06-17 Kraftwerk Union Aktiengesellschaft Chambre de combustion pour turbines à gaz et procédé pour son fonctionnement
US4356698A (en) * 1980-10-02 1982-11-02 United Technologies Corporation Staged combustor having aerodynamically separated combustion zones

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159153A1 (fr) * 1984-03-26 1985-10-23 The Garrett Corporation Injecteur de carburant par air comprimé
EP0193029B1 (fr) * 1985-02-26 1988-11-17 BBC Brown Boveri AG Chambre de combustion pour turbines à gaz
US4763481A (en) * 1985-06-07 1988-08-16 Ruston Gas Turbines Limited Combustor for gas turbine engine
EP0204553A1 (fr) * 1985-06-07 1986-12-10 Ruston Gas Turbines Limited Chaudière de combustion pour une turbine à gaz
CH670296A5 (en) * 1986-02-24 1989-05-31 Bbc Brown Boveri & Cie Gas turbine fuel nozzle - has externally-supported premixing chamber for liq. fuel and air
US4982570A (en) * 1986-11-25 1991-01-08 General Electric Company Premixed pilot nozzle for dry low Nox combustor
EP0269824A2 (fr) * 1986-11-25 1988-06-08 General Electric Company Brûleur combiné à diffusion et à prémélange pour veilleuse
EP0269824A3 (en) * 1986-11-25 1988-07-06 General Electric Company Premixed pilot nozzle for dry low nox combustor
US4850194A (en) * 1986-12-11 1989-07-25 Bbc Brown Boveri Ag Burner system
EP0274630A1 (fr) * 1986-12-11 1988-07-20 BBC Brown Boveri AG Agencement pour un brûleur
CH672541A5 (fr) * 1986-12-11 1989-11-30 Bbc Brown Boveri & Cie
US5339635A (en) * 1987-09-04 1994-08-23 Hitachi, Ltd. Gas turbine combustor of the completely premixed combustion type
EP0335978A4 (fr) * 1987-09-04 1989-12-13 Hitachi Ltd Bruleur de turbine a gaz.
EP0335978A1 (fr) * 1987-09-04 1989-10-11 Hitachi, Ltd. Bruleur de turbine a gaz
CH680946A5 (fr) * 1989-12-19 1992-12-15 Asea Brown Boveri
US5085575A (en) * 1989-12-19 1992-02-04 Asea Brown Boveri Method for premixed combustion of a liquid fuel
EP0433789A1 (fr) * 1989-12-19 1991-06-26 Asea Brown Boveri Ag Procédé d'une combustion à mélange préalable d'un combustible liquide
WO1993012388A1 (fr) * 1991-12-16 1993-06-24 United Technologies Corporation COMBUSTION A FAIBLE DEGAGEMENT DE NO¿x?
EP0564185A1 (fr) * 1992-03-30 1993-10-06 General Electric Company Assemblage d'une calotte pour chambre de combustion à plusieurs buses
US5274991A (en) * 1992-03-30 1994-01-04 General Electric Company Dry low NOx multi-nozzle combustion liner cap assembly
EP0571782A1 (fr) * 1992-05-27 1993-12-01 Asea Brown Boveri Ag Procédé de fonctionnement d'une chambre de combustion pour turbine à gaz
EP0594127A1 (fr) * 1992-10-19 1994-04-27 Mitsubishi Jukogyo Kabushiki Kaisha Chambre de combustion pour turbine à gaz
US5410884A (en) * 1992-10-19 1995-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Combustor for gas turbines with diverging pilot nozzle cone
EP0656512A1 (fr) * 1993-12-03 1995-06-07 Westinghouse Electric Corporation Chambre de combustion d'une turbine à gaz utilisant deux types de carburant
EP0670456A1 (fr) * 1994-03-04 1995-09-06 NUOVOPIGNONE INDUSTRIE MECCANICHE E FONDERIA S.p.A. Système de combustion perfectionné à pollution réduite pour turbine à gaz
EP0691511A1 (fr) 1994-06-10 1996-01-10 General Electric Company Méthode de régulation pour une chambre de combustion d'une turbine à gaz

Also Published As

Publication number Publication date
US4967561A (en) 1990-11-06
EP0095788B1 (fr) 1985-12-18
JPS58219329A (ja) 1983-12-20
JPH0356369B2 (fr) 1991-08-28
DE3361535D1 (en) 1986-01-30

Similar Documents

Publication Publication Date Title
EP0095788B1 (fr) Chambre de combustion d'une turbine à gaz et sa méthode
EP0576697B1 (fr) Chambre de combustion pour turbine à gaz
EP0029619B1 (fr) Chambre de combustion pour turbine à gaz avec éléments de prévaporisation/prémélange
EP0503319B1 (fr) Brûleur pour une combustion à mélange préalable d'un combustible liquide et/ou gazeux
EP0767345B1 (fr) Procédé de fonctionnement d'une centrale d'énergie
EP0571782B1 (fr) Procédé de fonctionnement d'une chambre de combustion pour turbine à gaz
DE4446945B4 (de) Gasbetriebener Vormischbrenner
EP0592717B1 (fr) Brûleur opérant au gaz du type à prémélange
DE10050248A1 (de) Brenner
DE4416650A1 (de) Verbrennungsverfahren für atmosphärische Feuerungsanlagen
EP0321809A1 (fr) Procédé pour la combustion de combustible liquide dans un brûleur
EP0274630A1 (fr) Agencement pour un brûleur
EP0481111B1 (fr) Chambre de combustion pour turbine à gaz
DE2417147A1 (de) Gasturbinenbrennvorrichtung und verfahren zum betrieb der vorrichtung
EP0801268A2 (fr) Chambre de combustion pour turbine à gaz
DE4320212A1 (de) Feuerungsanlage
EP0394800B1 (fr) Brûleur à mélange préalable pour la génération de gaz chaud
DE60125892T2 (de) Brennkammer
EP0816759B1 (fr) Brûleur à prémélange et procédé de mise en oeuvre du brûleur
EP0742411B1 (fr) Alimentation en air pour une chambre de combustion à prémélange
EP0483554B1 (fr) Procédé pour la réduction au minimum des émissions de NOx dans une combustion
EP0030313B1 (fr) Chambre de combustion pour turbines à gaz et procédé pour son fonctionnement
EP0602396B1 (fr) Méthode de exploitation d'un générateur de chaleur
DE4412315B4 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
DE4422535A1 (de) Verfahren zum Betrieb einer Feuerungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19840209

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 3361535

Country of ref document: DE

Date of ref document: 19860130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930706

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010316

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010329

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010421

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010427

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST