EP0095439B1 - Wärmepumpenanlage - Google Patents

Wärmepumpenanlage Download PDF

Info

Publication number
EP0095439B1
EP0095439B1 EP83730048A EP83730048A EP0095439B1 EP 0095439 B1 EP0095439 B1 EP 0095439B1 EP 83730048 A EP83730048 A EP 83730048A EP 83730048 A EP83730048 A EP 83730048A EP 0095439 B1 EP0095439 B1 EP 0095439B1
Authority
EP
European Patent Office
Prior art keywords
heat
liquid
pump
consumer
ring pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83730048A
Other languages
English (en)
French (fr)
Other versions
EP0095439A3 (en
EP0095439A2 (de
Inventor
Heinz Ing. Strop (Grad.)
Werner Ing. Kohler (Grad.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT83730048T priority Critical patent/ATE36401T1/de
Publication of EP0095439A2 publication Critical patent/EP0095439A2/de
Publication of EP0095439A3 publication Critical patent/EP0095439A3/de
Application granted granted Critical
Publication of EP0095439B1 publication Critical patent/EP0095439B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • F22B3/045Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators the drop in pressure being achieved by compressors, e.g. with steam jet pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Definitions

  • the invention is in the field of heat generation by means of heat pumps and is to be used in the system engineering and apparatus design of a heat pump system.
  • the heat pump systems currently in use generally work with three circuits: a brine circuit on the heat source side, a cooling circuit in the compression process and a heating medium circuit on the consumer side. While water is primarily used as the heating medium on the consumer side, fluorocarbons are preferably used in the compression process. However, these are not to be used at temperatures of a little over 90 ° C in the limit range of their application possibilities and therefore in high-temperature heat pumps with heating temperatures of 100 to 120 ° C.
  • a heat pump system is already known in whose coolant circuit water is used as the refrigerant and in which a liquid ring pump is provided as a compressor for compressing the water vapor.
  • This liquid ring pump is operated with water as a barrier liquid.
  • the effect of such a compressor is, however, very low, since the sealing liquid also evaporates under reduced pressure on the suction side of the compressor and at temperatures above 100 ° C. (US-A4 260 335, corresponds to DE-A-2 754 977).
  • the invention has for its object to design the system so that with it the efficiency Heating temperatures above 100 ° C can also be achieved from previously conventional three-circuit heat pump systems with comparable efficiency.
  • the liquid ring pump is operated with a thermal oil as the sealing liquid and that a heat exchanger is arranged in the circuit of the sealing liquid, the heat emission side of which is in the primary or secondary heat transfer circuit of the heat consumer.
  • a thermal oil is used instead of the previously used sealing liquid in the form of water, which is characterized by a high boiling point and by low viscosity at the intended evaporation temperatures.
  • a suitable thermal oil is sold, for example, by the company BP under the name "Transcal LT".
  • the new heat pump system can be used both in the low temperature range and in the high temperature range.
  • water vapor at temperatures of around 50 to 70 ° C can be generated in the vacuum region.
  • Radiators can be fed directly with the water vapor, whereby the water vapor condenses in the radiator.
  • the system is designed such that a fore-vacuum pump is connected to the steam line between the vacuum pump and the heat consumer and that a controllable valve for controlling the amount of condensate in the heat consumer is connected downstream of the heat consumer.
  • water vapor in the overpressure range can be generated with temperatures of 110 to 120 ° C.
  • the water vapor compressed with low overpressure can emit its heat directly or indirectly in an open or closed condenser.
  • a system is particularly expedient in which a direct liquid condenser is arranged between the vacuum pump and the heat consumer, the liquid inlet of which is connected to the outlet of the heat consumer. If a vacuum pump
  • Liquid ring pump is used, it is recommended to arrange the heat exchanger of the liquid ring pump between the condenser and the heat consumer to improve the efficiency of the system and to increase the heating temperature of the condensate.
  • the compressed water vapor can also be fed to a heat exchanger, in whose secondary circuit the actual heat consumer lies.
  • a ring pump as a vacuum pump, it is recommended in this case that the heat emission side of the heat exchanger arranged in the circuit of the sealing liquid of the ring pump in the secondary circuit of the To arrange heat exchanger.
  • the new heat pump system is particularly suitable for industrial processes in the higher temperature range and can also be used there for cooling and heating purposes. If the vacuum pump is driven by a water-cooled internal combustion engine, the cooling water of the internal combustion engine is expediently supplied to the heat collector of the heat pump system as an additional heat source. As a result, especially at low temperatures of the heat source in the evaporator, an evaporation pressure can be achieved which is in the working range of the liquid ring pump.
  • Fig. 1 shows the circuit of a heat pump system that works in the low temperature range with water as a refrigerant.
  • a vacuum pump 1 in the form of a liquid ring pump is provided, in the sealing liquid circuit 2 of which the heat exchanger 3 is arranged.
  • a heat collector designed as an evaporator 4 is supplied with water in the temperature range from 0 to 10 ° C., for example river water, via the inlet 5 and evaporated directly or indirectly.
  • the steam is supplied to the vacuum pump 1 via the steam line 6 and from there, after compression and temperature increase, to the heat consumer 8, for example a radiator, via the supply lines 7 and 13.
  • the water vapor condenses in the heat consumer 8, and the condensate level is adjusted with the aid of a valve 10, which can be controlled via a sensor 11 and a control device 12.
  • the condensate is otherwise fed via the throttle valve 9 to the evaporator 4 for re-evaporation or, when using a direct evaporator, drained behind the valve 10.
  • the water used as the heat source leaves the evaporator 4 via the outlet 15.
  • the forevacuum pump 14 is connected to the feed line 13 and constantly maintains the condensation pressure required in this system with respect to the atmosphere.
  • the backing pump also serves to keep the entire system air-free at all times.
  • the return line of a district heating network is supplied to the evaporator 16 via the inlet 5 and leaves the evaporator via the outlet 15.
  • the vacuum pump 1 again designed as a liquid ring pump, generates water vapor in the temperature range from 110 to 120 ° C. which is condensed in the heat exchanger 17 with the aid of a secondary heat transfer circuit and is supplied to the evaporator 16 again via the throttle valve 9.
  • the heat exchanger of the liquid ring pump 1 is arranged in the circuit 18 of the secondary heat carrier behind the heat exchanger 17.
  • the liquid ring pump 1 can be driven by a water-cooled internal combustion engine 23, the water supply to the indirect evaporator 16 being designed such that the cooling water of the internal combustion engine is supplied to the evaporator 16 as an additional heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

  • Die Erfindung liegt auf dem Gebiet der Wärmeerzeugung mittels Wärmepumpen und ist bei der systemtechnischen und apparativen Ausgestaltung einer Wärmepumpenanalage anzuwenden.
  • Die heute gebräuchlichen Wärmepumpenanlagen arbeiten in aller Regel mit drei Kreisläufen: einem Solekreislauf auf der Wärmequellenseite, einem Kältekreislauf beim Kompressionsprozeß und einem Heizmediumkreislauf auf der Verbraucherseite. Während vor allem auf der Verbraucherseite Wasser als Heizmedium eingesetzt wird, werden beim Kompressionsprozeß vorzugsweise Fluorkohlenwasserstoffe verwendet. Diese sind jedoch bei Temperaturen von etwas über 90° C im Grenzbereich ihrer Anwendungsmöglichkeiten und somit bei Hochtemperaturwärmepumpen mit Heiztemperaturen von 100 bis 120°C nicht zu verwenden.
  • Es ist schon eine Wärmepumpenanlage bekannt, in deren Kältemittelkreislauf als Kältemittel Wasser verwendet wird und bei der als Verdichter zur Verdichtung des Wasserdampfes eine Flüssigkeitsringpumpe vorgesehen ist. Diese Flüssigkeitsringpumpe wird mit Wasser als Sperrflüssigkeit betrieben. Der Effekt eines solchen Verdichters ist allerdings sehr gering, da die Sperrflüssigkeit bei Unterdruck auf der Saugseite des Verdichters und bei Temperaturen von über 100°C ebenfalls verdampft (US-A4 260 335, entspricht DE-A-2 754 977).
  • Im übrigen ist es bekannt, in einem Kälteaggregat zur Verdichtung des Kältemittels (Dichlormethan) eine Flüssigkeitsringpumpe zu verwenden, die mit einem Öl als Sperrflüssigkeit betrieben wird. Die von der Sperrflüssigkeit aufgenommenen Wärme wird dabei mittels eines Kühlers abgegeben, der mit einem Ventilator zusammenarbeitet (US-A-2 256 201).
  • Ausgehend von einer Wärmepumpenanlage mit den Merkmalen des Oderbegriffs des Patentanspruchs 1, bei der als Kältemittel Wasser verwendet wird, und bei der der Verdichter aus einer Flüssigkeitsringpumpe besteht, liegt der Erfindung die Aufgabe zugrunde, die Anlage so auszugestalten, daß mit ihr bei einem dem Wirkungsgrad von bisher üblichen Drei-Kreis-Wärmepumpenanlagen vergleichbaren Wirkungsgrad auch Heiztemperaturen über 100°C erreicht werden können.
  • Zur Lösung dieser Aufgabe ist gemäß der Erfindung vorgesehen, daß die Flüssigkeitsringpumpe mit einem Thermo-Öl als Sperrflüssigkeit betrieben wird und daß im Kreislauf der Sperrflüssigkeit ein Wärmetauscher angeordnet ist, dessen Wärmeabgabeseite im primären oder sekundären Wärmeträgerkreislauf des Wärmeverbraucher liegt.
  • Bei einer derartigen Ausgestaltung der Wärmepumpenanlage wird also anstelle der bisher verwendeten Sperrflüssigkeit in Form von Wasser ein Thermo-Öl eingesetzt, das sich durch einen hohen Siedepunkt und durch niedrige Viskosität bei den vorgesehenen Verdampfungstemperaturen auszeichnet. Ein geeignetes Thermo-Öl wird beispielsweise von der Firma BP unter der Bezeichnung "Transcal LT" vertrieben. Durch die Verwendung einer bei der Betriebstemperatur der Flüssigkeitsringpumpe nicht verdampfenden Sperrflüssigkeit kann die Flüssigkeitsringpumpe auf der Druckseite auch im Temperaturbereich von 100 bis 120°C arbeiten. Da die Verlustleistung dieser Pumpe über den der Sperrflüssigkeit zugeordneten Wärmetauscher als zusätzliche Heizleistung in den Heizkreislauf eingespeist wird, ist ein guter Wirkungsgrad sichergestellt.
  • Die neue Wärmepumpenanlage kann je nach Ausgangstemperatur der Wärmequelle sowohl im Niedertemperaturbereich als auch im Hochtemperaturbereich eingesetzt werden. Wird beispielsweise als Wärmequelle Flußwasser verwendet, kann im Unterdruckbereich Wasserdampf mit Temperaturen von etwa 50 bis 70°C erzeugt werden. Mit dem Wasserdampf lassen sich Heizkörper direkt speisen, wobei der Wasserdampf im Heizkörper kondensiert. In diesen Fällen wird die Anlage so ausgestaltet, daß an die Dampfleitung zwischen der Vakuumpumpe und dem Wärmeverbraucher eine Vorvakuumpumpe angeschlossen ist und daß dem Wärmeverbraucher ein steuerbares Ventil zur Steuerung der Kondensatmenge im Wärmeverbraucher nachgeschaltet ist.
  • Wird als Wärmequelle beispielsweise der Rücklauf eines Fernheiznetzes mit einer Temperatur von ca. 50°C verwendet, läßt sich Wasserdampf im Überdruckbereich mit Temperaturen von 110 bis 120°C erzeugen. Der mit geringem Überdruck verdichtete Wasserdampf kann seine Wärme direkt oder indirekt in einem offenen oder geschlossenen Kondensator abgeben. Besonders zweckmäßig ist eine Anlage, bei der zwischen der Vakuumpumpe und dem Wärmeverbraucher ein direkter Flüssigkeitskondensator angeordnet ist, dessen Flüssigkeitszulauf mit dem Ausgang des Wärmeverbrauchers verbunden ist. Sofern hierbei als Vakuumpumpe eine
  • Flüssigkeitsringpumpe eingesetzt ist, empfiehlt es sich, zur Verbesserung des Wirkungsgrades der Anlage und zur Erhöhung der Heiztemperatur des Kondensats den Wärmeaustauscher der Flüssigkeitsringpumpe zwischen dem Kondensator und dem Wärmeverbraucher anzuordnen.
  • Bei Verwendung des Rücklaufes eines Fernheiznetzes als Wärmequelle kann man den verdichteten Wasserdampf aber auch einem Wärmetauscher zuführen, in dessen sekundärem Kreislauf der eigentliche Wärmeverbraucher liegt. Bei Einsatz einer Ringpumpe als Vakuumpumpe empfiehlt es sich in diesem Fall, die Wärmeabgabeseite des im Kreislauf der Sperrflüssigkeit der Ringpumpe angeordneten Wärmeaustauschers im sekundären Kreislauf des Wärmetauschers anzuordnen.
  • Die neue Wärmepumpenanlage eignet sich besonders für industrielle Prozesse im höheren Temperaturbereich und kann dort gleichzeitig für Kühl- und Heizzwecke eingesetzt werden. Sofern die Vakuumpumpe von einem wassergekühlten Verbrennungsmotor angetrieben wird, führt man zweckmäßig das Kühlwasser des Verbrennungsmotors dem Wärmekollektor der Wärmepumpenanlage als zusätzliche Wärmequelle zu. Dadurch kann vor allem bei niedrigen Temperaturen der Wärmequelle im Verdampfer ein Verdampfungsdruck erreicht werden, der im Arbeitsbereich der Flüssigkeitsringpumpe liegt.
  • Ausführungsbeispiele der neuen Wärmepumpenanlage sind in den Figuren 1 bis 4 dargestellt.
  • Fig. 1 zeigt den Kreislauf einer Wärmepumpenanlage, die im Niedertemperaturbereich mit Wasser als Kältemittel arbeitet. Zur Verdichtung des erzeugten Wasserdampfes ist eine Vakuumpumpe 1 in Form einer Flüssigkeitsringpumpe vorgesehen, in deren Sperrflüssigkeitskreislauf 2 der Wärmeaustauscher 3 angeordnet ist.
  • Einem als Verdampfer 4 ausgebildeten Wärmekollektor wird über den Zulauf 5 Wasser im Temperaturbereich von 0 bis 10 ° C, beispielsweise Flußwasser, zugeführt und direkt oder indirekt verdampft. Der Wasserdampf wird über die Dampfleitung 6 der Vakuumpumpe 1 zugeführt und gelangt von dort nach Verdichtung und Temperaturerhöhung über die Zuleitung 7 und 13 zum Wärmeverbraucher 8, beispielsweise einem Heizkörper. Im Wärmeverbraucher 8 kondensiert der Wasserdampf, der Kondensatspiegel wird dabei mit Hilfe eines Ventils 10 eingestellt, das über einen Fühler 11 und eine Steuereinrichtung 12 steuerbar ist. Das Kondensat wird im übrigen über das Drosselventil 9 dem Verdampfer 4 zur erneuten Verdampfung zugeführt oder, bei Verwendung eines direkten Verdampfers, hinter dem Ventil 10 abgelassen. Bei Verwendung eines indirekten Verdampfers verläßt das als Wärmequelle verwendete Wasser den Verdampfer 4 über den Auslauf 15.
  • Da bei der Wärmepumpenanlage gemäß Fig. 1 Wasserdampf im Temperaturbereich von etwa 50 bis 60 °C erzeugt wird, arbeitet die Anlage auf der Verbraucherseite im Unterdruckbereich. Aus diesem Grunde ist an die Zuleitung 13 die Vorvakuumpumpe 14 angeschlossen, die den bei dieser Anlage erforderlichen Kondensationsdruck gegenüber der Atmosphäre ständig aufrechterhält. Die Vorvakuumpumpe dient gleichzeitig dazu, das gesamte System ständig luftfrei zu halten.
  • Bei der Wärmepumpenanlage gemäß Fig. 2 wird dem Verdampfer 16 über den Zulauf 5 der Rücklauf eines Fernheiznetzes zugeführt und verläßt den Verdampfer über den Auslauf 15. Die wiederum als Flüssigkeitsringpumpe ausgebildete Vakuumpumpe 1 erzeugt in diesem Fall Wasserdampf im Temperaturbereich von 110 bis 120 °C, der im Wärmetauscher 17 mit Hilfe eines sekundären Wärmeträgerkreislaufes kondensiert wird und über das Drosselventil 9 dem Verdampfer 16 erneut zugeführt wird. In diesem Fall ist der Wärmeaustauscher der Flüssigkeitsringpumpe 1 im Kreislauf 18 des sekundären Wärmeträgers hinter dem Wärmeaustauscher 17 angeordnet.
  • Bei der Wärmepumpenanlage gemäß Fig. 3 wird dem als indirektem Verdampfer 16 ausgebildeten Wärmekollektor ebenfalls warmes Wasser mit Temperaturen von 50 bis 60 0 C zugeführt, so daß mit Hilfe der Flüssigkeitsringpumpe 1 Wasserdampf im Überdruckbereich erzeugt wird. In dem der Vakuumpumpe nachgeschalteten direkten Flüssigkeitskondensator 20 wird dieser Wasserdampf kondensiert, indem dessen Flüssigkeitszulauf mit dem Ausgang des Wärmeverbrauchers 19 über die Zuleitungen 21 und 22 verbunden ist. Das im Kondensator 20 gebildete Kondensat wird mit Hilfe des Wärmeaustauschers 3 der Flüssigkeitsringpumpe 1 weiter erhitzt.
  • Gemäß Fig. 4 kann die Flüssigkeitsringpumpe 1 von einem wassergekühlten Verbrennungsmotor 23 angetrieben sein, wobei der Wasserzulauf zum indirekten Verdampfer 16 derart gestaltet ist, daß das Kühlwasser des Verbrennungsmotors dem Verdampfer 16 als zusätzliche Wärmequelle zugeführt wird.

Claims (4)

1. Wärmepumpenanlage, bei der ein als Verdampfer ausgebildeter Kollektor, ein Verdichter und wenigstens ein Wärmeverbraucher in einem Kältekreislauf angeordnet sind und bei der der Verdichter aus einer Flüssigkeitsringpumpe besteht und als Kältemittel Wasser verwendet ist, dadurch gekennzeichnet daß die Flüssigkeitsringpumpe (1) mit einem Thermo-Öl als Sperrflüssigkeit betrieben wird und daß im Kreislauf der Sperrflüssigkeit ein Wärmetauscher (3) angeordnet ist, dessen Wärmeabgabeseite im primären oder sekundären Wärmeträgerkreislauf des Wärmeverbrauchers (17, 19) liegt.
2. Wärmepumpenanlage nach Anspruch 1, dadurch gekennzeichnet, daß an die Dampfleitung (13) zwischen der Flüssigkeitsringpumpe (1) und dem Wärmeverbraucher (8) eine Vorvakuumpumpe (14) angeschlossen ist und daß dem Wärmeverbraucher (8) ein steuerbares Ventil (10) zur Steuerung der Kondensatmenge im Wärmeverbraucher nachgeschaltet ist.
3. Wärmepumpenalage nach Anspruch 1, dadurch gekennzeichnet, daß zwischen der Flüssigkeitsringpumpe (1) und dem Wärmeverbraucher (19) ein direkter Flüssigkeitskondensator (20) angeordnet ist, dessen Flüssigkeitszulauf (22) mit dem Ausgang des Wärmeverbrauchers (19) verbunden ist.
4. Wärmepumpenanlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Wärmetauscher (3) zwischen dem Kondensator (20) und dem Wärmeverbraucher (19) angeordnet ist.
EP83730048A 1982-05-21 1983-05-13 Wärmepumpenanlage Expired EP0095439B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83730048T ATE36401T1 (de) 1982-05-21 1983-05-13 Waermepumpenanlage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3219680 1982-05-21
DE19823219680 DE3219680A1 (de) 1982-05-21 1982-05-21 Waermepumpenanlage

Publications (3)

Publication Number Publication Date
EP0095439A2 EP0095439A2 (de) 1983-11-30
EP0095439A3 EP0095439A3 (en) 1985-05-22
EP0095439B1 true EP0095439B1 (de) 1988-08-10

Family

ID=6164480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83730048A Expired EP0095439B1 (de) 1982-05-21 1983-05-13 Wärmepumpenanlage

Country Status (4)

Country Link
US (1) US4580720A (de)
EP (1) EP0095439B1 (de)
AT (1) ATE36401T1 (de)
DE (2) DE3219680A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147067A (ja) * 1984-01-10 1985-08-02 協和醗酵工業株式会社 ヒ−トポンプ
JPH0729363Y2 (ja) * 1988-05-30 1995-07-05 シーメンス、アクチエンゲゼルシヤフト プロセス装置
IL103824A (en) * 1992-11-20 1996-12-05 Assaf Gad Liquid ring compressor/turbine and air conditioning systems utilizing same
US5636523A (en) * 1992-11-20 1997-06-10 Energy Converters Ltd. Liquid ring compressor/turbine and air conditioning systems utilizing same
US7871249B2 (en) * 1998-04-16 2011-01-18 Air Liquide Electronics U.S. Lp Systems and methods for managing fluids using a liquid ring pump
US20070119816A1 (en) * 1998-04-16 2007-05-31 Urquhart Karl J Systems and methods for reclaiming process fluids in a processing environment
US7980753B2 (en) 1998-04-16 2011-07-19 Air Liquide Electronics U.S. Lp Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system
WO2005066466A1 (de) * 2003-12-22 2005-07-21 Erwin Oser Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie
US20070109912A1 (en) * 2005-04-15 2007-05-17 Urquhart Karl J Liquid ring pumping and reclamation systems in a processing environment
JP5151014B2 (ja) 2005-06-30 2013-02-27 株式会社日立製作所 ヒートポンプ装置及びヒートポンプの運転方法
WO2009069090A2 (en) 2007-11-27 2009-06-04 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Improved reclaim function for semiconductor processing systems
NO20120734A1 (no) * 2012-06-25 2013-12-26 Vacuwatt As Varmepumpeanlegg
DE102013211084A1 (de) * 2013-06-14 2014-12-18 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Wärmepumpe und Wärmepumpe
US20160296902A1 (en) 2016-06-17 2016-10-13 Air Liquide Electronics U.S. Lp Deterministic feedback blender
CN107514831A (zh) * 2017-07-20 2017-12-26 卢振华 一种以水为工作物质的热泵及工作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE393061C (de) * 1920-06-12 1924-04-03 Siemens Schuckertwerke G M B H Verfahren zur Erzeugung von Wasserdampf
US1991733A (en) * 1931-12-29 1935-02-19 Foster Wheeler Corp Method and apparatus for cooling liquid
US2256201A (en) * 1937-02-26 1941-09-16 Siemens Ag Refrigerating apparatus of the compression type
US2653012A (en) * 1948-08-12 1953-09-22 Charles J Thatcher Method and system for air conditioning
DE955718C (de) * 1950-12-13 1957-01-10 Helmuth Speyerer Dr Ing Verfahren zum Betreiben einer Waermepumpe mit stufenweiser Entspannung und Absaugung
CH342583A (de) * 1956-06-21 1959-11-30 Rawyler Ernst Nach dem Prinzip der Wärmepumpe arbeitende Dampferzeugungsanlage
FR2305588A2 (fr) * 1975-03-28 1976-10-22 Technip Cie Procedes pour la production, le stockage et la distribution d'energies
US3940058A (en) * 1974-10-07 1976-02-24 Norris Orlin R Steam generating system including means for reinitiating the operation of a steam bound boiler feed pump
FR2371638A1 (fr) * 1976-11-19 1978-06-16 Lezier Gerard Installation de chauffage comportant une pompe a chaleur
FR2374539A1 (fr) * 1976-12-15 1978-07-13 Air Ind Procede de compression de vapeur d'eau, et circuits thermiques pour sa mise en oeuvre
US4282070A (en) * 1978-05-30 1981-08-04 Dan Egosi Energy conversion method with water recovery
DE2841906C2 (de) * 1978-09-26 1980-02-21 Siemens Ag, 1000 Berlin Und 8000 Muenchen Flüssigkeitsringverdichter oder -vakuumpumpe
FR2480864A1 (fr) * 1980-04-18 1981-10-23 Bernier Jean Paul Chauffe-eau solaire et pompes fluidiques polythermes a volume total constant
FR2492068B1 (fr) * 1980-10-13 1985-08-16 Entropie Sa Procede et installation de pompe a chaleur par ejectocompression pour le chauffage de l'eau

Also Published As

Publication number Publication date
DE3377665D1 (en) 1988-09-15
EP0095439A3 (en) 1985-05-22
DE3219680A1 (de) 1983-11-24
ATE36401T1 (de) 1988-08-15
EP0095439A2 (de) 1983-11-30
US4580720A (en) 1986-04-08

Similar Documents

Publication Publication Date Title
EP0095439B1 (de) Wärmepumpenanlage
DE2539164A1 (de) Verfahren fuer den thermischen betrieb einer waermepumpenanlage und anlage zur durchfuehrung des verfahrens
DE2754626A1 (de) Absorptionskuehlanlage zur verwendung von sonnenenergie
DE2227435A1 (de) Verfahren zum Verdampfen eines strömenden kryogenen Mediums
DE102011054744A1 (de) Wärmetauscher für ein Kombikraftwerk
DE2847028B1 (de) Brennkraftmaschienanlage
DE3201339A1 (de) Anlage zur energieumwandlung
DE102006043491B4 (de) Dampfkreisprozess mit verbesserter Energieausnutzung
DE19630559A1 (de) Vorrichtung zur Nutzung der Exergie in Heizungssystemen
WO2007054204A1 (de) Solar betriebene kältemaschine
EP0019124B1 (de) Wärmepumpe und Verfahren zu ihrem Betrieb
WO2019121542A1 (de) Anordnung zur umwandlung thermischer energie aus verlustwärme einer verbrennungskraftmaschine
DE2528736A1 (de) Waermepumpe mit thermischem antrieb
DE102008005036A1 (de) Verbrennungskraftmaschine mit Wärmerückgewinnungsvorrichtung
DE1288615B (de) Vorrichtung zur Kuehlung einer Kammer
DE102009060887A1 (de) System zur Umwandlung von thermischer Energie in elektrische Energie
DE3808209A1 (de) Absorptions-waermetauscher-einrichtung
DE9201493U1 (de) Energiesparende Kraft-Wärmekopplung
DE102010022902A1 (de) Verfahren und Vorrichtung zum Betreiben von Blockheizkraftwerken
DE102013203243A1 (de) Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE10160593B4 (de) Wärmekraftanlage
DE2651888A1 (de) Verfahren und vorrichtung zur nutzbarmachung von waerme eines waermetraegers niederer temperatur
DE2359813A1 (de) Vorrichtung zur verbesserung des wirkungsgrades von mit dampf betriebenen generatorturbinen
DE2405572A1 (de) Thermomaschine
DE2946076A1 (de) Sorptionswaermepumpe mit angeschlossenem brauchwasserspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19850509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 36401

Country of ref document: AT

Date of ref document: 19880815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3377665

Country of ref document: DE

Date of ref document: 19880915

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890513

Ref country code: AT

Effective date: 19890513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890531

Ref country code: CH

Effective date: 19890531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST