EP0094928B1 - Discharging device for a shaft furnace - Google Patents

Discharging device for a shaft furnace Download PDF

Info

Publication number
EP0094928B1
EP0094928B1 EP83890059A EP83890059A EP0094928B1 EP 0094928 B1 EP0094928 B1 EP 0094928B1 EP 83890059 A EP83890059 A EP 83890059A EP 83890059 A EP83890059 A EP 83890059A EP 0094928 B1 EP0094928 B1 EP 0094928B1
Authority
EP
European Patent Office
Prior art keywords
lock chamber
star wheel
outlet
cellular wheel
discharge apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83890059A
Other languages
German (de)
French (fr)
Other versions
EP0094928A3 (en
EP0094928A2 (en
Inventor
Martin Nagl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
Original Assignee
Voestalpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine AG filed Critical Voestalpine AG
Publication of EP0094928A2 publication Critical patent/EP0094928A2/en
Publication of EP0094928A3 publication Critical patent/EP0094928A3/en
Application granted granted Critical
Publication of EP0094928B1 publication Critical patent/EP0094928B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/21Arrangements of devices for discharging
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces

Definitions

  • the invention relates to a discharge device for a shaft furnace, consisting of a lock chamber connected to the shaft furnace by means of a conveying line, in which a cell wheel receiving the furnace material, closing the lock chamber inlet from the lock chamber outlet and having star-shaped cell walls is drivably mounted, the feed line being connected to a sealing gas -Pressure source is connected.
  • lock chambers are provided via a delivery line connected to the shaft furnace, in which a rotor consisting of a drum is rotatably mounted.
  • This drum has a passage opening in a circumferential area for receiving or delivering the furnace material. If the passage opening of the drum matches the lock chamber inlet, the furnace material is brought into the drum from the shaft furnace.
  • the lock chamber inlet is closed by the drum jacket and the lock chamber outlet is opened when the passage opening in the drum jacket reaches the area of the lock chamber outlet, and the furnace material can fall out of the drum through the lock chamber outlet.
  • the main disadvantage of this arrangement of a drum is that the furnace material cannot be conveyed continuously through the lock chamber and that there is no security against undesired escape of furnace gas through the lock chamber.
  • the rotation of the drum means that no material is conveyed between the lock chamber inlet and outlet, because the furnace material is either rotated with the drum or rolls on the inside wall of the drum.
  • the invention has for its object to a discharge device of the type described. improve that the gas-tight furnace closure required for hot material discharge in the area of the lock chamber can be ensured with simple means.
  • the invention solves this problem in that the lock chamber between the lock chamber inlet and the lock chamber outlet has an exhaust pipe in the delivery area of the cellular wheel and that the angular distance between two successive cell walls of the cellular wheel is smaller than the angular distances of the exhaust pipe on the one hand from the lock chamber inlet and on the other hand from the lock chamber outlet.
  • Exhaust gas line between the lock chamber inlet and the lock chamber outlet in the delivery area of the cellular wheel can be effectively prevented that appropriate amounts of sealing gas are discharged through the lock chamber with the furnace material.
  • the sealing gas must at least have a pressure equal to the pressure of the furnace gas in order to prevent the furnace gas from reaching the lock chamber and a pressure loss in the furnace. This means that a corresponding pressure of the sealing gas is present in the delivery line between the shaft furnace and the lock chamber. can be set up with little effort, a direct connection between the delivery line and the exhaust line on the one hand and between the exhaust line and the lock chamber outlet on the other hand must be prevented via a cell chamber of the cellular wheel.
  • the angular distance between two successive cell walls of the cellular wheel on the angular distances of the exhaust pipe is on the one hand from the sluice lowering chamber inlet and on the other hand matched by the lock chamber outlet, so that there is at least one cell wall between the exhaust pipe and the lock chamber inlet or outlet in each rotational position of the cellular wheel.
  • the angular distance between the exhaust pipe and the lock chamber outlet can be selected to be greater than twice the angular distance between two successive cell walls.
  • the necessary pressure reduction in the lock chamber is based on the fact that the cell walls connect to the peripheral wall of the lock chamber and form a seal between the lock chamber inlet and the lock chamber outlet.
  • this closure cannot be completely gas-tight due to the necessary play between the cell wheel and the lock chamber, the sealing gas will also penetrate into the lock chamber against the conveying direction of the cell wheel between the cell walls of the cell wheel and the lock chamber wall. So that this sealing gas component can also be prevented from escaping from the lock chamber, an exhaust line can also be connected to the lock chamber between the lock chamber inlet and the lock chamber outlet in the return area of the cellular wheel.
  • the cellular wheel Since, according to the invention, the cellular wheel is not used for metering purposes, but rather for closing a lock chamber as gas-tight as possible, the cell walls of the cellular wheel must be brought close to the lock chamber wall.
  • the comparatively high temperatures of the furnace material passing through the lock chamber for example 750 ° C., must be taken into account. Because of these high material temperatures, heat radiation cannot be avoided despite good thermal insulation, so that it must be expected that the walls of the lock chamber will have a lower temperature than the cellular wheel stored in the lock chamber.
  • the associated different thermal expansions must not call into question the rotatability of the cellular wheel, so that sufficient expansion play must be provided between the cellular wheel and the lock chamber, especially with regard to starting from the cold state up to the full operating temperature.
  • the axial expansion play of the cellular wheel relative to the lock chamber can remain irrelevant for the gas-tight closure of the lock chamber by the cellular wheel if the cellular wheel consists of two end disks between which the cell walls are inserted. These end disks close the cell chambers in a gas-tight manner in the axial direction, so that no consideration has to be taken of connecting the cell walls to the end walls of the lock chamber.
  • the end disks of the cellular wheel can consequently be arranged at a distance from the end walls of the lock chamber that absorbs the thermal expansion of the cellular wheel with respect to the lock chamber, without sacrificing the tightness of the lock.
  • this axial distance between the end disks of the cellular wheel and the end walls of the lock chamber results in a possible flow channel for the sealing gas passing between the end disks of the cellular wheel and the peripheral wall of the lock chamber, which is no longer in the area of the exhaust pipes, but in the area of the lock chamber outlet reached.
  • the end disks of the cellular wheel in a further embodiment of the invention carry at least one ring flange projecting against the end wall of the lock chamber, which overlaps a counter flange on the end wall of the lock chamber to form a sealing gap on the outside. Since the ring flange and the counter flange are located concentrically next to one another, the axial expansion possibility of the cellular wheel is not restricted by this closure of the end space between the cellular wheel and the lock chamber.
  • the enlargement of the sealing gap between the ring flanges and the counter flanges that occurs during start-up does not cause any disturbing impairment with regard to the tightness of the lock, because with the enlargement of this sealing gap due to the greater radial expansion of the cellular wheel, the radial gaps between the cell walls and the front disks of the cellular wheel on the one hand and the peripheral wall of the lock chamber on the other hand become smaller, so that the sealing effect can be regarded as approximately constant in all operating states.
  • the high temperature of the furnace material, which should be conveyed through the lock chamber without any loss of heat, requires a comparatively high thermal load on the bearings for the shaft of the cellular wheel.
  • At least one ring channel for a coolant can be provided between the lock chamber and the shaft of the cellular wheel on the side of the bearings for the shaft of the cellular wheel facing the cellular wheel. This measure not only allows the bearing temperature to be reduced, but also provides additional security against leakage of gas from the shaft bearings. Particularly favorable conditions are created if two ring channels are provided axially one behind the other in order to carry out step-by-step cooling first with a cold inert gas and then with a cooling liquid, for example water.
  • the lock chamber carries an annular flange projecting axially against the front disk, which overlaps a counter flange on the front disk with the interposition of a sealing slide ring on the outside, so very simple constructional relationships are ensured without the necessary expansion possibility of the cellular wheel with respect to the lock chamber jeopardize the tight closure of the ring channel with respect to the lock chamber.
  • the expansion of the cellular wheel relative to the lock chamber causes the slide ring clamped between the flanges to compress, which accordingly has to yield elastically. Due to the greater pressing force on the slide ring, the tight seal of the ring channel is even increased.
  • the conveying device for discharging the hot furnace material is connected via a conveyor line 1 to a lock chamber 2 in which a cellular wheel 3 can be driven is stored.
  • This cellular wheel 3 consists of two end disks 5 seated on a shaft 4, between which the cell walls 6 are inserted.
  • the arrangement is such that the front disks 5 are provided with an axial distance from the end walls 7 of the lock chamber 2, while the radial gap 8 (see in particular Fig.
  • the annular space 10 which results between the end walls 7 of the lock chamber 2 and the front disks 5 of the cellular wheel 3 is closed off in the area of the outer circumference of the cellular wheel 3 by a gap seal which consists of two annular flanges 11 arranged at a radial distance from one another on the front disks 5 of the cellular wheel 3 and two corresponding counter flanges 12 is formed on the end walls 7 of the lock chamber 2.
  • two ring channels 15 and 16 are provided on the side of the bearing 14 facing the cellular wheel 3 between the lock chamber 2 and the shaft 4, into which a coolant can be introduced.
  • the lock chamber 2 in each case forms an annular flange 17 projecting axially against the front disk 5, which overlaps a counter flange 18 on the front disk 5 of the cellular wheel 3 on the outside at a radial distance, between the ring flange 17 and the Counter flange 18 is a sealing ring 19 is used sealingly, which consists for example of a graphite-asbestos mixture.
  • the slide ring 19 between the flanges 17 and 18 is compressed more, which increases the tightness of the annular channel 15 with respect to the lock chamber 2 and the annular space 10 increases without affecting the rotatability of the cellular wheel 3, because the sliding ring 19 can yield elastically.
  • the coolant which consists of a cold inert gas and is introduced into the annular space 15 via lines 20, dissipates the absorbed heat via the lines 21.
  • the annular channel 16, which is separated from the annular channel 15, is filled via the supply lines 22 with cooling water which is discharged via an axial bore 24 of the shaft 4 connected to the annular channel 16 by radial bores 23.
  • the axial bore 24 is extended by an extension tube 26 which slidably engages in a connecting piece 25.
  • a graduated cooling system is thus available for dissipating the heat, which ensures permissible operating temperatures for the bearings of the shaft 4 of the cellular wheel 3.
  • the delivery line 1 is connected to a sealing gas pressure source by means of a pipe connection 27, so that a sealing gas pressure greater than the furnace gas pressure can be built up in the delivery line 1.
  • the barrier gas pressure must be reduced within the lock chamber 2 in order to largely prevent the barrier gas from escaping from the lock chamber 2. This is effected with the aid of the cellular wheel 3, an exhaust line 30 being provided between the lock chamber inlet 28 and the lock chamber outlet 29 both in the delivery area of the cellular wheel 3 and in the opposite return area, which leads the sealing gas penetrating into the lock chamber 2 into an existing gas circuit. Since the sealing gas has to be heated in order to avoid cooling of the furnace material, recycling the sealing gas is of considerable economic importance.
  • the flow path between the lock chamber inlet 28 and the exhaust pipes 30 must therefore always be interrupted by at least one cell wall 6.
  • the angular distance a between two successive cell walls 6 of the cellular wheel 3 must be selected to be smaller than the angular distances ⁇ of the exhaust pipes 30 from the lock chamber inlet 28.
  • the same condition applies to the angular distance of the exhaust pipes 30 from the lock chamber outlet 29 in order to prevent the passage of sealing gas to the lock chamber outlet 29. If there are two or more cell walls between the exhaust gas lines 30 and the lock chamber outlet 29, the security against an undesired sealing gas outlet is increased.
  • the cellular wheel 3 which can be driven via a chain wheel 31, conveys the hot furnace material through the lock chamber 2, whereby due to the completion of the free passage between the lock chamber inlet 28 and the lock chamber outlet 29 through the cellular wheel 3, a certain barrier pressure in the region of the delivery line is maintained can be obtained.
  • the lock chamber 2 receiving the cellular wheel 3 consequently acts as a pressure lock, which allows the hot furnace material to pass through, so that a continuous furnace discharge can be ensured without having to fear discharge of the furnace gas.
  • the lock chamber 2 has a corresponding thermal insulation 32, which, however, cannot prevent a temperature difference between the cell wheel 3 and the lock chamber 2, which occurs in particular when the pressure lock is started from the cold Condition becomes noticeable by subjecting the cellular wheel 3 to greater thermal expansion. This greater thermal expansion is compensated for by appropriate expansion compensation without endangering the lock effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

Die Erfindung bezieht sich auf eine Austragungsvorrichtung für einen Schachtofen, bestehend aus einer mittels einer Förderleitung mit dem Schachtofen verbundenen Schleusenkammer, in der ein das Ofengut aufnehmendes, den Schleusenkammereinlaß vom Schleusenkammerauslaß abschließendes Zellenrad mit sternförmig angeordneten Zellenwänden antreibbar gelagert ist, wobei die Förderleitung an eine Sperrgas-Druckquelle angeschlossen ist.The invention relates to a discharge device for a shaft furnace, consisting of a lock chamber connected to the shaft furnace by means of a conveying line, in which a cell wheel receiving the furnace material, closing the lock chamber inlet from the lock chamber outlet and having star-shaped cell walls is drivably mounted, the feed line being connected to a sealing gas -Pressure source is connected.

Um eine unerwünschte Oxidation zu vermeiden und weitgehend frei von Staubbelästigungen zu bleiben, wird der in einem Schachtofen reduzierte Eisenschwamm heiß ausgetragen und brikettiert. Dabei ergibt sich allerdings die Schwierigkeit, den Austritt des unter Druck stehenden Ofengases aus dem Ofen zu verhindern. Zu diesem Zweck ist es bekannt, das Ofengut portionsweise mit Hilfe eines an die Austragsöffnung ansetzbaren Behälters auszutragen, so daß die Austragsöffnung nach dem Gutaustrag wieder verschlossen werden kann.In order to avoid undesired oxidation and to remain largely free of dust, the iron sponge reduced in a shaft furnace is discharged hot and briquetted. However, there is a difficulty in preventing the furnace gas under pressure from escaping from the furnace. For this purpose, it is known to discharge the kiln goods in portions with the aid of a container that can be attached to the discharge opening, so that the discharge opening can be closed again after the discharge.

Bei anderen bekannten Austragungsvorrichtungen (DE-C-337622, DE-C-338413 und DE-C-345 027) sind über eine Förderleitung mit dem Schachtofen verbundene Schleusenkammern vorgesehen, in denen ein aus einer Trommel bestehender Rotor drehbar gelagert ist. Diese Trommel weist in einem Umfangsbereich eine Durchtrittsöffnung zur Aufnahme bzw. zur Abgabe des Ofengutes auf. Stimmt die Durchtrittsöffnung der Trommel mit dem Schleusenkammereinlaß überein, so wird das Ofengut aus dem Schachtofen in die Trommel eingebracht. Bei einer Drehung der Trommel wird der Schleusenkammereinlaß durch den Trommelmantel abgeschlossen und der Schleusenkammerauslaß geöffnet, wenn die Durchtrittsöffnung im Trommelmantel in den Bereich des Schleusenkammerauslasses gelangt, wobei das Ofengut aus der Trommel durch den Schleusenkammerauslaß abfallen kann. Nachteilig bei dieser Anordnung einer Trommel ist vor allem, daß das Ofengut nicht kontinuierlich durch die Schleusenkammer gefördert werden kann und daß keine Sicherheit vor einem unerwünschten Austreten von Ofengas durch die Schleusenkammer gegeben ist. Dazu kommt noch, daß mit der Drehung der Trommel keine Gutförderung zwischen dem Schleusenkammerein- und -auslaß verbunden ist, weil das Ofengut entweder mit der Trommel mitgedreht wird oder sich an der Trommelinnenwand abwälzt.In other known discharge devices (DE-C-337622, DE-C-338413 and DE-C-345 027), lock chambers are provided via a delivery line connected to the shaft furnace, in which a rotor consisting of a drum is rotatably mounted. This drum has a passage opening in a circumferential area for receiving or delivering the furnace material. If the passage opening of the drum matches the lock chamber inlet, the furnace material is brought into the drum from the shaft furnace. When the drum rotates, the lock chamber inlet is closed by the drum jacket and the lock chamber outlet is opened when the passage opening in the drum jacket reaches the area of the lock chamber outlet, and the furnace material can fall out of the drum through the lock chamber outlet. The main disadvantage of this arrangement of a drum is that the furnace material cannot be conveyed continuously through the lock chamber and that there is no security against undesired escape of furnace gas through the lock chamber. In addition, the rotation of the drum means that no material is conveyed between the lock chamber inlet and outlet, because the furnace material is either rotated with the drum or rolls on the inside wall of the drum.

Wird das Ofengut nicht heiß ausgetragen, sondern in einer Kühlzone des Schachtofens gekühlt, so besteht die Gefahr, daß eine Wiederoxidation des reduzierten Ofengutes durch die bei der Reduktion entstehenden, oxidierenden Gase in der Kühlzone eintritt. Um einer solchen Wiederoxidation vorzubeugen, ist es schließlich bekannt (DE-C-545 354), der Kühlzone Kohlenmonoxid zuzuführen, das in die Förderleitung zwischen dem Schachtofen und einer Schleusenkammer eingeleitet wird, in der ein das Ofengut aufnehmendes, den Schleusenkammereinlaß vom Schleusenkammerauslaß abschließendes Zellenrad mit sternförmig angeordneten Zellenwänden antreibbar gelagert ist. Durch das Einleiten von Kohlenmonoxid in die Kühlzone wird nicht nur das Ofengut gekühlt, sondern auch erreicht, daß der größte Teil der bei der Reduktion entstehenden, oxidierenden Gase oberhalb der Kühlzone abgeführt werden kann, so daß eine Wiederoxidation des bereits reduzierten Ofengutes vermieden wird. Obwohl durch das Zellenrad der Schleusenkammer ein kontinuierlicher Gutaustrag ermöglicht wird, wird durch die Schleusenkammer kein gasdichter Ofenabschluß erreicht. Diese bekannte Austragungsvorrichtung ist daher nicht für das heiße Austragen von Eisenschwamm aus einem Schachtofen geeignet.If the furnace material is not discharged hot, but is cooled in a cooling zone of the shaft furnace, there is a risk that the reduced furnace material will re-oxidize in the cooling zone due to the oxidizing gases produced during the reduction. In order to prevent such reoxidation, it is finally known (DE-C-545 354) to supply the cooling zone with carbon monoxide, which is introduced into the delivery line between the shaft furnace and a lock chamber, in which a cell wheel which receives the furnace material and closes the lock chamber inlet from the lock chamber outlet is drivably mounted with star-shaped cell walls. By introducing carbon monoxide into the cooling zone, not only is the furnace material cooled, but it is also achieved that the majority of the oxidizing gases formed during the reduction can be removed above the cooling zone, so that reoxidation of the already reduced furnace material is avoided. Although a continuous discharge of material is made possible by the cell wheel of the lock chamber, no gas-tight furnace closure is achieved by the lock chamber. This known discharge device is therefore not suitable for the hot discharge of sponge iron from a shaft furnace.

Der Erfindung liegt die Aufgabe zugrunde, eine Austragungsvorrichtung der eingangs geschilderten Art so zu. verbessern, daß mit einfachen Mitteln der für eine heiße Gutaustragung erforderliche gasdichte Ofenabschluß im Bereich der Schleusenkammer sichergestellt werden kann.The invention has for its object to a discharge device of the type described. improve that the gas-tight furnace closure required for hot material discharge in the area of the lock chamber can be ensured with simple means.

Die Erfindung löst die gestellte Aufgabe dadurch, daß die Schleusenkammer zwischen dem Schleusenkammereinlaß und dem Schleusenkammerauslaß eine Abgasleitung im Förderbereich des Zellenrades aufweist und daß der Winkelabstand zwischen zwei aufeinanderfolgenden Zellenwänden des Zellenrades kleiner als die Winkelabstände der Abgasleitung einerseits vom Schleusenkammereinlaß und anderseits vom Schleusenkammerauslaß ist.The invention solves this problem in that the lock chamber between the lock chamber inlet and the lock chamber outlet has an exhaust pipe in the delivery area of the cellular wheel and that the angular distance between two successive cell walls of the cellular wheel is smaller than the angular distances of the exhaust pipe on the one hand from the lock chamber inlet and on the other hand from the lock chamber outlet.

Durch das Vorsehen einer. Abgasleitung zwischen dem Schleusenkammereinlaß und dem Schleusenkammerauslaß im Förderbereich des Zellenrades kann wirksam verhindert werden, daß mit dem Ofengut entsprechende Sperrgasmengen durch die Schleusenkammer ausgetragen werden. Das Sperrgas muß ja zumindest einen dem Druck des Ofengases gleichen Druck aufweisen, um ein Vordringen des Ofengases bis zur Schleusenkammer und einen Druckverlust im Ofen zu vermeiden. Damit in der Förderleitung zwischen dem Schachtofen und der Schleusenkammer ein entsprechender Druck des Sperrgases mit. geringem Aufwand aufgebaut werden kann, mu5-eine unmittelbare Verbindung zwischen der Förderleitung und der Abgasleitung einerseits und zwischen der Abgasleitung und dem Schleusenkammerauslaß anderseits über eine Zellenkammer des Zellenrades unterbunden werden. Zu diesem Zweck ist der Winkelabstand zwischen zwei aufeinanderfolgenden Zellenwänden des Zellenrades auf die Winkelabstände der Abgasleitung einerseits vom Schleusenkammereinlaß und anderseits vom Schleusenkammerauslaß abgestimmt, so daß sich in jeder Drehlage des Zellenrades zumindest eine Zellenwand zwischen der Abgasleitung und dem Schleusenkammereinlaß bzw. -auslaß befindet.By providing one. Exhaust gas line between the lock chamber inlet and the lock chamber outlet in the delivery area of the cellular wheel can be effectively prevented that appropriate amounts of sealing gas are discharged through the lock chamber with the furnace material. The sealing gas must at least have a pressure equal to the pressure of the furnace gas in order to prevent the furnace gas from reaching the lock chamber and a pressure loss in the furnace. This means that a corresponding pressure of the sealing gas is present in the delivery line between the shaft furnace and the lock chamber. can be set up with little effort, a direct connection between the delivery line and the exhaust line on the one hand and between the exhaust line and the lock chamber outlet on the other hand must be prevented via a cell chamber of the cellular wheel. For this purpose, the angular distance between two successive cell walls of the cellular wheel on the angular distances of the exhaust pipe is on the one hand from the sluice lowering chamber inlet and on the other hand matched by the lock chamber outlet, so that there is at least one cell wall between the exhaust pipe and the lock chamber inlet or outlet in each rotational position of the cellular wheel.

Soll eine besonders gute Unterbrechung der Strömungswege zwischen der Abgasleitung und dem Schleusenkammerauslaß sichergestellt werden, so kann der Winkelabstand zwischen der Abgasleitung und dem Schleusenkammerauslaß größer als der doppelte Winkelabstand zwischen zwei aufeinanderfolgenden Zellenwänden gewählt werden. Bei einer solchen Ausbildung befinden sich in jeder Drehstellung des Zellenrades zumindest zwei Zellenwände zwischen der Abgasleitung und dem Schleusenkammerauslaß.If a particularly good interruption of the flow paths between the exhaust pipe and the lock chamber outlet is to be ensured, the angular distance between the exhaust pipe and the lock chamber outlet can be selected to be greater than twice the angular distance between two successive cell walls. With such a design, there are at least two cell walls between the exhaust pipe and the lock chamber outlet in each rotational position of the cellular wheel.

Der notwendige Druckabbau in der Schleusenkammer beruht darauf, daß die Zellenwände an die Umfangswand der Schleusenkammer anschließen und einen Verschluß zwischen dem Schleusenkammereinlaß und dem Schleusenkammerauslaß bilden. Da dieser Verschluß jedoch wegen des notwendigen Spieles zwischen dem Zellenrad und der Schleusenkammer nicht völlig gasdicht sein kann, wird das Sperrgas auch entgegen der Förderrichtung des Zellenrades zwischen den Zellenwänden des Zellenrades und der Schleusenkammerwandung in die Schleusenkammer eindringen. Damit auch dieser Sperrgasanteil am Austritt aus der Schleusenkammer gehindert werden kann, kann zwischen dem Schleusenkammereinlaß und dem Schleusenkammerauslaß im Rücklaufbereich des Zellenrades an die Schleusenkammer ebenfalls eine Abgasleitung angeschlossen werden.The necessary pressure reduction in the lock chamber is based on the fact that the cell walls connect to the peripheral wall of the lock chamber and form a seal between the lock chamber inlet and the lock chamber outlet. However, since this closure cannot be completely gas-tight due to the necessary play between the cell wheel and the lock chamber, the sealing gas will also penetrate into the lock chamber against the conveying direction of the cell wheel between the cell walls of the cell wheel and the lock chamber wall. So that this sealing gas component can also be prevented from escaping from the lock chamber, an exhaust line can also be connected to the lock chamber between the lock chamber inlet and the lock chamber outlet in the return area of the cellular wheel.

Da erfindungsgemäß das Zellenrad nicht zu Dosierzwecken, sondern zum möglichst gasdichten Abschließen einer Schleusenkammer verwendet wird, müssen die Zellenwände des Zellenrades nahe an die Schleusenkammerwandung herangeführt werden. Dabei sind die vergleichsweise hohen Temperaturen des die Schleusenkammer durchsetzenden Ofengutes von beispielsweise 750 °C zu berücksichtigen. Wegen dieser hohen Guttemperaturen ist eine Wärmeabstrahlung trotz guter Wärmeisolierungen nicht zu vermeiden, so daß damit gerechnet werden muß, daß die Wände der Schleusenkammer eine niedrigere Temperatur aufweisen werden als das in der Schleusenkammer gelagerte Zellenrad. Die damit verbundenen unterschiedlichen Wärmedehnungen dürfen die Drehbarkeit des Zellenrades nicht in Frage stellen, so daß zwischen dem Zellenrad und der Schleusenkammer ausreichende Dehnungsspiele vorgesehen sein müssen, und zwar vor allem im Hinblick auf das Anfahren aus dem kalten Zustand bis zur vollen Betriebstemperatur. Bei einem solchen Anfahren werden die größten Temperaturunterschiede auftreten, die jedoch bestimmte Werte nicht übersteigen sollen, um nicht zu große Dehnungsspiele in Kauf nehmen zu müssen. Das axiale Dehnungsspiel des Zellenrades gegenüber der Schleusenkammer kann für den gasdichten Abschluß der Schleusenkammer durch das Zellenrad unbeachtlich bleiben, wenn das Zellenrad aus zwei stirnseitigen Scheiben besteht, zwischen denen die Zellenwände eingesetzt sind. Diese stirnseitigen Scheiben schließen die Zellenkammern in axialer Richtung gasdicht ab, so daß auf ein Anschließen der Zellenwände an die Stirnwände der Schleusenkammer keine Rücksicht genommen werden muß. Die stirnseitigen Scheiben des Zellenrades können folglich mit einem die Wärmeausdehnung des Zellenrades gegenüber der Schleusenkammer aufnehmenden Abstand von den Stirnwänden der Schleusenkammer ohne Einbuße an der Dichtheit der Schleuse angeordnet werden. Dieser axiale Abstand zwischen den stirnseitigen Scheiben des Zellenrades und den Stirnwänden der Schleusenkammer ergibt jedoch einen möglichen Strömungskanal für das zwischen den stirnseitigen Scheiben des Zellenrades und der Umfangswand der Schleusenkammer durchtretende Sperrgas, das nicht mehr in den Bereich der Abgasleitungen, sondern in den Bereich des Schleusenkammerauslasses gelangt. Um einen solchen im wesentlichen unbehinderten Gasdurchtritt zum Schleusenkammerauslaß zu verhindern, tragen die stirnseitigen Scheiben des Zellenrades in weiterer Ausbildung der Erfindung wenigstens einen gegen die Stirnwand der Schleusenkammer vorragenden Ringflansch, der einen Gegenflansch an der Stirnwand der Schleusenkammer unter Bildung eines Dichtspaltes außen übergreift. Da der Ringflansch und der Gegenflansch konzentrisch nebeneinander liegen, wird die axiale Dehnungsmöglichkeit des Zellenrades durch diesen Abschluß des stirnseitigen Raumes zwischen dem Zellenrad und der Schleusenkammer nicht eingeschränkt. Wegen der Anordnung des Ringflansches am Zellenrad außerhalb des Gegenflansches der Schleusenkammer bleibt auch die radiale Dehnungsmöglichkeit des Zellenrades voll erhalten, weil auf Grund der höheren Temperatur des Zellenrades sich das Zellenrad stärker als die Schleusenkammer ausdehnen wird. Der sich beim Anfahren der Druckschleuse mit dem Temperaturunterschied zwischen dem Zellenrad und der Schleusenkammer vergrößernde Dichtspalt zwischen den Ringflanschen und den Gegenflanschen verkleinert sich beim Erreichen der Betriebstemperatur wieder auf das gewünschte Maß, wenn die Temperaturdifferenz zwischen dem Zellenrad und der Schleusenkammer kleiner wird. Die beim Anfahren auftretende Vergrößerung des Dichtspaltes zwischen den Ringflanschen und den Gegenflanschen bedingt jedoch keine störende Beeinträchtigung bezüglich der Dichtheit der Schleuse, weil mit dem Größerwerden dieser Dichtspalte auf Grund der stärkeren radialen Ausdehnung des Zellenrades die Radialspalte zwischen den Zellenwänden und den stirnseitigen Scheiben des Zellenrades einerseits und der Umfangswand der Schleusenkammer anderseits kleiner werden, so daß die Dichtwirkung in allen Betriebszuständen als angenähert konstant angesehen werden kann. Die hohe Temperatur des Ofengutes, das möglichst ohne Wärmeverlust durch die Schleusenkammer gefördert werden soll, bedingt eine vergleichsweise hohe Wärmebelastung der Lager für die Welle des Zellenrades. Zur Herabsetzung dieser Wärmebelastung kann zwischen der Schleusenkammer und der Welle des Zellenrades auf der dem Zellenrad zugekehrten Seite der Lager für die Welle des Zellenrades wenigstens ein Ringkanal für ein Kühlmittel vorgesehen sein. Durch diese Maßnahme kann nicht nur die Lagertemperatur herabgesetzt, sondern auch eine zusätzliche Sicherheit gegenüber einem Sperrgasaustritt über die Wellenlager gewonnen werden. Besonders günstige Verhältnisse werden dabei geschaffen, wenn jeweils zwei Ringkanäle axial hintereinander vorgesehen werden, um eine stufenweise Kühlung zunächst mit einem kalten Inertgas und dann mit einer Kühlflüssigkeit, beispielsweise Wasser, durchzuführen.Since, according to the invention, the cellular wheel is not used for metering purposes, but rather for closing a lock chamber as gas-tight as possible, the cell walls of the cellular wheel must be brought close to the lock chamber wall. The comparatively high temperatures of the furnace material passing through the lock chamber, for example 750 ° C., must be taken into account. Because of these high material temperatures, heat radiation cannot be avoided despite good thermal insulation, so that it must be expected that the walls of the lock chamber will have a lower temperature than the cellular wheel stored in the lock chamber. The associated different thermal expansions must not call into question the rotatability of the cellular wheel, so that sufficient expansion play must be provided between the cellular wheel and the lock chamber, especially with regard to starting from the cold state up to the full operating temperature. With such a start-up, the greatest temperature differences will occur, which, however, should not exceed certain values, in order not to have to put up with excessive expansion play. The axial expansion play of the cellular wheel relative to the lock chamber can remain irrelevant for the gas-tight closure of the lock chamber by the cellular wheel if the cellular wheel consists of two end disks between which the cell walls are inserted. These end disks close the cell chambers in a gas-tight manner in the axial direction, so that no consideration has to be taken of connecting the cell walls to the end walls of the lock chamber. The end disks of the cellular wheel can consequently be arranged at a distance from the end walls of the lock chamber that absorbs the thermal expansion of the cellular wheel with respect to the lock chamber, without sacrificing the tightness of the lock. However, this axial distance between the end disks of the cellular wheel and the end walls of the lock chamber results in a possible flow channel for the sealing gas passing between the end disks of the cellular wheel and the peripheral wall of the lock chamber, which is no longer in the area of the exhaust pipes, but in the area of the lock chamber outlet reached. In order to prevent such an essentially unhindered gas passage to the lock chamber outlet, the end disks of the cellular wheel in a further embodiment of the invention carry at least one ring flange projecting against the end wall of the lock chamber, which overlaps a counter flange on the end wall of the lock chamber to form a sealing gap on the outside. Since the ring flange and the counter flange are located concentrically next to one another, the axial expansion possibility of the cellular wheel is not restricted by this closure of the end space between the cellular wheel and the lock chamber. Because of the arrangement of the ring flange on the cell wheel outside the counter flange of the lock chamber, the radial expansion possibility of the cell wheel is also fully retained, because due to the higher temperature of the cell wheel, the cell wheel will expand more than the lock chamber. The sealing gap between the ring flanges and the counter flanges, which increases when the pressure lock is approached with the temperature difference between the cellular wheel and the lock chamber, decreases again when the operating temperature is reached, when the temperature difference between the cellular wheel and the lock chamber becomes smaller. However, the enlargement of the sealing gap between the ring flanges and the counter flanges that occurs during start-up does not cause any disturbing impairment with regard to the tightness of the lock, because with the enlargement of this sealing gap due to the greater radial expansion of the cellular wheel, the radial gaps between the cell walls and the front disks of the cellular wheel on the one hand and the peripheral wall of the lock chamber on the other hand become smaller, so that the sealing effect can be regarded as approximately constant in all operating states. The high temperature of the furnace material, which should be conveyed through the lock chamber without any loss of heat, requires a comparatively high thermal load on the bearings for the shaft of the cellular wheel. To reduce this heat load, at least one ring channel for a coolant can be provided between the lock chamber and the shaft of the cellular wheel on the side of the bearings for the shaft of the cellular wheel facing the cellular wheel. This measure not only allows the bearing temperature to be reduced, but also provides additional security against leakage of gas from the shaft bearings. Particularly favorable conditions are created if two ring channels are provided axially one behind the other in order to carry out step-by-step cooling first with a cold inert gas and then with a cooling liquid, for example water.

Schließt der Ringkanal jeweils an die stirnseitige Scheibe des Zellenrades an, wobei die Schleusenkammer einen gegen die stirnseitige Scheibe axial vorragenden Ringflansch trägt, der einen Gegenflansch an der stirnseitigen Scheibe unter Zwischenlage eines dichtenden Gleitringes außen übergreift, so werden sehr einfache Konstruktionsverhältnisse sichergestellt, ohne durch die notwendige Dehnungsmöglichkeit des Zellenrades gegenüber der Schleusenkammer den dichten Abschluß des Ringkanales gegenüber der Schleusenkammer zu gefährden. Die Dehnung des Zellenrades gegenüber der Schleusenkammer bewirkt bei einer solchen Flanschanordnung ein Zusammendrücken des zwischen den Flanschen eingespannten Gleitringes, der dementsprechend elastisch nachgeben muß. Durch die größere Preßkraft auf den Gleitring wird der dichte Abschluß des Ringkanales sogar vergrößert.If the ring channel connects to the front disk of the cellular wheel, the lock chamber carries an annular flange projecting axially against the front disk, which overlaps a counter flange on the front disk with the interposition of a sealing slide ring on the outside, so very simple constructional relationships are ensured without the necessary expansion possibility of the cellular wheel with respect to the lock chamber jeopardize the tight closure of the ring channel with respect to the lock chamber. With such a flange arrangement, the expansion of the cellular wheel relative to the lock chamber causes the slide ring clamped between the flanges to compress, which accordingly has to yield elastically. Due to the greater pressing force on the slide ring, the tight seal of the ring channel is even increased.

In der Zeichnung ist der Erfindungsgegenstand in einem Ausführungsbeispiel vereinfacht dargestellt. Es zeigen

  • Figur 1 eine ein antreibbares Zellenrad aufnehmende Schleusenkammer einer erfindungsgemäßen Austragungsvorrichtung in einem Querschnitt,
  • Figur 2 diese Schleusenkammer in einem Axialschnitt in einem größeren Maßstab und
  • Figur 3 den stirnseitigen Anschluß des Zellenrades an die Schleusenkammer, ausschnittsweise im Axialschnitt in einem noch größeren Maßstab.
In the drawing, the subject matter of the invention is shown in simplified form in one embodiment. Show it
  • FIG. 1 shows a cross section of a lock chamber of a discharge device according to the invention that holds a drivable cellular wheel,
  • Figure 2 shows this lock chamber in an axial section on a larger scale and
  • Figure 3 shows the front connection of the cellular wheel to the lock chamber, in sections in axial section on an even larger scale.

Um beispielsweise Eisenschwamm aus einem Niederschachtofen kontinuierlich austragen zu können, ohne Gefahr zu laufen, daß mit dem heißen Ofengut auch Ofengas austreten kann, ist die Fördereinrichtung zum Austragen des heißen Ofengutes über eine Förderleitung 1 an eine Schleusenkammer 2 angeschlossen, in der ein Zellenrad 3 antreibbar gelagert ist. Dieses Zellenrad 3 besteht aus zwei auf einer Welle 4 sitzenden, stirnseitigen Scheiben 5, zwischen denen die Zellenwände 6 eingesetzt sind. Die Anordnung ist dabei so getroffen, daß die stirnseitigen Scheiben 5 mit axialem Abstand von den Stirnwänden 7 der Schleusenkammer 2 vorgesehen sind, während der radiale Spalt 8 (siehe insbesondere Fig. 3) zwischen dem Zellenrad 3 und der Umfangswand 9 unter Berücksichtigung der möglichen radialen Ausdehnung des Zellenrades 3 gegenüber der Schleusenkammer 2 klein gehalten ist, um einen weitgehend dichten Anschluß des Zellenrades 3 an die Schleusenkammer 2 sicherzustellen. Der sich zwischen den Stirnwänden 7 der Schleusenkammer 2 und den stirnseitigen Scheiben 5 des Zellenrades 3 ergebende Ringraum 10 wird im Bereich des Außenumfanges des Zellenrades 3 durch eine Spaltdichtung abgeschlossen, die aus zwei mit radialem Abstand voneinander angeordneten Ringflanschen 11 an den stirnseitigen Scheiben 5 des Zellenrades 3 und zwei entsprechenden Gegenflanschen 12 an den Stirnwänden 7 der Schleusenkammer 2 gebildet wird. Da jeweils die gegen die Stirnwände 7 axial vorragenden Ringflansche 11 den zugehörigen Gegenflansch 12 außen übergreifen, kann sich bei einer wärmebedingten Ausdehnung des Zellenrades 3 gegenüber der Schleusenkammer 2 keine die Drehung des Zellenrades 3 behindernde Berührung der Flansche 11 und 12 ergeben. Die axiale Dehnung bewirkt lediglich ein axiales Vorschieben der Ringflansche 11 gegen die Stirnwände 7, wobei für diese Relativbewegung ein ausreichendes Dehnungsspiel vorhanden ist. Ein radiales Ausdehnen des Zellenrades 3 bedingt eine Vergrößerung der Dichtspalte 13 zwischen den Ringflanschen 11 und den zugehörigen Gegenflanschen 12, weil sich der radiale Abstand der Ringflansche 11 von der Welle 4 vergrößert. Gleichzeitig wird der radiale Spalt 8 im Ausmaß der Vergrößerung der Dichtspalte 13 verringert, so daß die Dichtwirkung trotz der zu erwartenden unterschiedlichen Ausdehnungen von Zellenrad 3 und Schleusenkammer 2 erhalten bleibt.In order, for example, to be able to discharge sponge iron continuously from a downhole furnace without running the risk that furnace gas can also escape with the hot furnace material, the conveying device for discharging the hot furnace material is connected via a conveyor line 1 to a lock chamber 2 in which a cellular wheel 3 can be driven is stored. This cellular wheel 3 consists of two end disks 5 seated on a shaft 4, between which the cell walls 6 are inserted. The arrangement is such that the front disks 5 are provided with an axial distance from the end walls 7 of the lock chamber 2, while the radial gap 8 (see in particular Fig. 3) between the cellular wheel 3 and the peripheral wall 9 taking into account the possible radial Expansion of the cellular wheel 3 relative to the lock chamber 2 is kept small in order to ensure a largely tight connection of the cellular wheel 3 to the lock chamber 2. The annular space 10 which results between the end walls 7 of the lock chamber 2 and the front disks 5 of the cellular wheel 3 is closed off in the area of the outer circumference of the cellular wheel 3 by a gap seal which consists of two annular flanges 11 arranged at a radial distance from one another on the front disks 5 of the cellular wheel 3 and two corresponding counter flanges 12 is formed on the end walls 7 of the lock chamber 2. Since in each case the annular flanges 11 projecting axially against the end walls 7 overlap the associated counter flange 12 on the outside, in the event of a thermal expansion of the cellular wheel 3 relative to the lock chamber 2, there is no contact between the flanges 11 and 12 which hinders the rotation of the cellular wheel 3. The axial expansion only brings about an axial advancement of the ring flanges 11 against the end walls 7, whereby there is sufficient expansion play for this relative movement. A radial expansion of the cellular wheel 3 requires an enlargement of the sealing gaps 13 between the ring flanges 11 and the associated counter flanges 12, because the radial distance of the ring flanges 11 from the shaft 4 increases. At the same time, the radial gap 8 is reduced to the extent of the enlargement of the sealing gap 13, so that the sealing effect is retained despite the expected different expansions of the cellular wheel 3 and the lock chamber 2.

Damit die Lager 14 für die Welle 4 des Zellenrades 3 vor einer übermäßigen Temperaturbeanspruchung geschützt werden können, sind auf der dem Zellenrad 3 zugewandten Seite der Lager 14 zwischen der Schleusenkammer 2 und der Welle 4 je zwei Ringkanäle 15 und 16 vorgesehen, in die ein Kühlmittel eingeführt werden kann. Zum dichten Abschluß der Ringkanäle 15 gegenüber der Schleusenkammer bildet die Schleusenkammer 2 jeweils einen gegen die stirnseitige Scheibe 5 axial vorragenden Ringflansch 17, der einen Gegenflansch 18 an der stirnseitigen Scheibe 5 des Zellenrades 3 außen mit radialem Abstand übergreift, wobei zwischen dem Ringflansch 17 und dem Gegenftansch 18 ein Gleitring 19 dichtend eingesetzt ist, der beispielsweise aus einer Grafit-Asbestmischung besteht. Dehnt sich der Gegenflansch 18 des Zellenrades 3 gegenüber dem Ringflansch 17 der Schleusenkammer 2 auf Grund unterschiedlicher Temperaturbelastungen stärker aus, so wird der Gleitring 19 zwischen den Flanschen 17 und 18 stärker zusammengedrückt, was die Dichtheit des Ringkanales 15 gegenüber der Schleusenkammer 2 und dem Ringraum 10 erhöht, ohne die Drehbarkeit des Zellenrades 3 störend zu beeinflussen, weil der Gleitring 19 elastisch nachgeben kann. Das aus einem kalten Inertgas bestehende, über Leitungen 20 in den Ringraum 15 eingeleitete Kühlmittel führt die aufgenommene Wärme über die Leitungen 21 wieder ab. Der Ringkanal 16, der von dem Ringkanal 15 getrennt ist, wird über die Zuleitungen 22 mit Kühlwasser gefüllt, das über eine mit dem Ringkanal 16 durch Radialbohrungen 23 verbundene Axialbohrung 24 der Welle 4 abgeführt wird. Um die axiale Ausdehnung der Welle 4 zu berücksichtigen, ist die Axialbohrung 24 durch ein verschiebbar in ein Anschlußstück 25 eingreifendes Verlängerungsrohr 26 verlängert. Zum Abführen der Wärme steht somit ein abgestuftes Kühlsystem zur Verfügung, das zulässige Betriebstemperaturen für die Lager der Welle 4 des Zellenrades 3 gewährleistet.So that the bearings 14 for the shaft 4 of the cellular wheel 3 can be protected against excessive temperature stress, two ring channels 15 and 16 are provided on the side of the bearing 14 facing the cellular wheel 3 between the lock chamber 2 and the shaft 4, into which a coolant can be introduced. For the tight closure of the ring channels 15 with respect to the lock chamber, the lock chamber 2 in each case forms an annular flange 17 projecting axially against the front disk 5, which overlaps a counter flange 18 on the front disk 5 of the cellular wheel 3 on the outside at a radial distance, between the ring flange 17 and the Counter flange 18 is a sealing ring 19 is used sealingly, which consists for example of a graphite-asbestos mixture. If the counter flange 18 of the cellular wheel 3 expands more than the annular flange 17 of the lock chamber 2 due to different temperature loads, the slide ring 19 between the flanges 17 and 18 is compressed more, which increases the tightness of the annular channel 15 with respect to the lock chamber 2 and the annular space 10 increases without affecting the rotatability of the cellular wheel 3, because the sliding ring 19 can yield elastically. The coolant, which consists of a cold inert gas and is introduced into the annular space 15 via lines 20, dissipates the absorbed heat via the lines 21. The annular channel 16, which is separated from the annular channel 15, is filled via the supply lines 22 with cooling water which is discharged via an axial bore 24 of the shaft 4 connected to the annular channel 16 by radial bores 23. In order to take into account the axial expansion of the shaft 4, the axial bore 24 is extended by an extension tube 26 which slidably engages in a connecting piece 25. A graduated cooling system is thus available for dissipating the heat, which ensures permissible operating temperatures for the bearings of the shaft 4 of the cellular wheel 3.

Um einen Austritt des unter Druck stehenden Ofengases aus dem Ofen über die Förderleitung 1 zu verhindern, wird die Förderleitung 1 mit Hilfe eines Rohranschlusses 27 an eine Sperrgas-Druckquelle angeschlossen, so daß in der Förderleitung 1 ein Sperrgasdruck größer als der Ofengasdruck aufgebaut werden kann. Der Sperrgasdruck muß jedoch innerhalb der Schleusenkammer 2 abgebaut werden, um einen Austritt des Sperrgases aus der Schleusenkammer 2 weitgehend verhindern zu können. Dies wird mit Hilfe des Zellenrades 3 bewirkt, wobei zwischen dem Schleusenkammereinlaß 28 und dem Schleusenkammerauslaß 29 sowohl im Förderbereich des Zellenrades 3 als auch im gegenüberliegenden Rücklaufbereich eine Abgasleitung 30 vorgesehen ist, die das in die Schleusenkammer 2 eindringende Sperrgas in einen bestehenden Gaskreislauf abführt. Da das Sperrgas erhitzt werden muß, um eine Abkühlung des Ofengutes zu vermeiden, ist eine Kreislaufführung des Sperrgases von erheblicher, wirtschaftlicher Bedeutung.In order to prevent the pressurized furnace gas from escaping from the furnace via the delivery line 1, the delivery line 1 is connected to a sealing gas pressure source by means of a pipe connection 27, so that a sealing gas pressure greater than the furnace gas pressure can be built up in the delivery line 1. However, the barrier gas pressure must be reduced within the lock chamber 2 in order to largely prevent the barrier gas from escaping from the lock chamber 2. This is effected with the aid of the cellular wheel 3, an exhaust line 30 being provided between the lock chamber inlet 28 and the lock chamber outlet 29 both in the delivery area of the cellular wheel 3 and in the opposite return area, which leads the sealing gas penetrating into the lock chamber 2 into an existing gas circuit. Since the sealing gas has to be heated in order to avoid cooling of the furnace material, recycling the sealing gas is of considerable economic importance.

Damit in der Förderleitung 1 ein entsprechender Sperrgasdurck mit wirtschaftlichen Mitteln aufgebaut werden kann, sollte keine unmittelbare Verbindung zwischen der Förderleitung 1 und den Abgasleitungen 30 bestehen. Der Strömungsweg zwischen dem Schleusenkammereinlaß 28 und den Abgasleitungen 30 muß daher stets durch mindestens eine Zellenwand 6 unterbrochen sein. Um diese Bedingung erfüllen zu können, ist der Winkelabstand a zwischen zwei aufeinanderfolgenden Zellenwänden 6 des Zellenrades 3 kleiner als die Winkelabstände ß der Abgasleitungen 30 vom Schleusenkammereinlaß 28 zu wählen. Die gleiche Bedingung gilt für den Winkelabstand der Abgasleitungen 30 vom Schleusenkammerauslaß 29, um einen Sperrgasdurchtritt zum Schleusenkammerauslaß 29 zu unterbinden. Befinden sich zwei oder mehrere Zellenwände zwischen den Abgasleitungen 30 und dem Schleusenkammerauslaß 29, so wird die Sicherheit gegenüber einem unerwünschten Sperrgasaustritt erhöht.So that a corresponding sealing gas pressure can be built up economically in the delivery line 1, there should be no direct connection between the delivery line 1 and the exhaust gas lines 30. The flow path between the lock chamber inlet 28 and the exhaust pipes 30 must therefore always be interrupted by at least one cell wall 6. In order to be able to meet this condition, the angular distance a between two successive cell walls 6 of the cellular wheel 3 must be selected to be smaller than the angular distances β of the exhaust pipes 30 from the lock chamber inlet 28. The same condition applies to the angular distance of the exhaust pipes 30 from the lock chamber outlet 29 in order to prevent the passage of sealing gas to the lock chamber outlet 29. If there are two or more cell walls between the exhaust gas lines 30 and the lock chamber outlet 29, the security against an undesired sealing gas outlet is increased.

Das Zellenrad 3, das über ein Kettenrad 31 angetrieben werden kann, fördert das heiße Ofengut durch die Schleusenkammer 2, wobei auf Grund des Abschlusses des freien Durchgangsweges zwischen dem Schleusenkammereinlaß 28 und dem Schleusenkammerauslaß 29 durch das Zellenrad 3 ein bestimmter Sperrdruck im Bereich der Förderleitung aufrecht erhalten werden kann. Die das Zellenrad 3 aufnehmende Schleusenkammer 2 wirkt folglich als Druckschleuse, die das heiße Ofengut durchläßt, so daß ein kontinuierlicher Ofenaustrag gewährleistet werden kann, ohne einen Austrag des Ofengases befürchten zu müssen. Um Wärmeverluste des Ofengutes so gering wie möglich zu halten, weist die Schleusenkammer 2 eine entsprechende Wärmeisolierung 32 auf, die jedoch nicht verhindern kann, daß zwischen dem Zellenrad 3 und der Schleusenkammer 2 ein Temperaturunterschied auftritt, der sich insbesondere beim Anfahren der Druckschleuse aus dem kalten Zustand bemerkbar macht, indem das Zellenrad 3 einer stärkeren Wärmedehnung unterworfen wird. Diese stärkere Wärmedehnung wird durch entsprechende Dehnungsausgleiche konstruktiv aufgefangen, ohne die Schleusenwirkung zu gefährden.The cellular wheel 3, which can be driven via a chain wheel 31, conveys the hot furnace material through the lock chamber 2, whereby due to the completion of the free passage between the lock chamber inlet 28 and the lock chamber outlet 29 through the cellular wheel 3, a certain barrier pressure in the region of the delivery line is maintained can be obtained. The lock chamber 2 receiving the cellular wheel 3 consequently acts as a pressure lock, which allows the hot furnace material to pass through, so that a continuous furnace discharge can be ensured without having to fear discharge of the furnace gas. In order to keep heat loss from the furnace material as low as possible, the lock chamber 2 has a corresponding thermal insulation 32, which, however, cannot prevent a temperature difference between the cell wheel 3 and the lock chamber 2, which occurs in particular when the pressure lock is started from the cold Condition becomes noticeable by subjecting the cellular wheel 3 to greater thermal expansion. This greater thermal expansion is compensated for by appropriate expansion compensation without endangering the lock effect.

Claims (7)

1. Discharge apparatus for a shaft furnace. consisting of a lock chamber (2), which is connected to the shaft furnace by means of a conveyor line (1) and in which a drivable star wheel (3) having cell-defining walls (6) in a star-shaped configuration is rotatably mounted, which receives material from the furnace and seals the inlet (28) from the outlet (29) of the lock chamber, wherein the conveyor line (1) is connected to a source of a compressed sealing gas, characterized in that the lock chamber (2) is provided between its inlet (28) and its outlet (29) with an exhaust gas line (30) adjacent to the advancing portion of the star wheel (3) and the angular spacing (α) of two consecutive cell-defining walls (6) of the star wheel (3) is smaller than the angular spacings (β) of the exhaust gas line (30) from the inlet (28) and from the outlet (29) of the lock chamber.
2. Discharge apparatus according to claim 1, characterized in that the angular spacing of the exhaust gas line (30) from the outlet (29) of the lock chamber is larger than twice the angular spacing of two consecutive cell-defining walls (6).
3. Discharge apparatus according to claim 1 or 2, characterized in that another exhaust gas line (30) is connected to the lock chamber (2) between the inlet (28) and its outlet (29) adjacent to the returning portion of the star wheel (3).
4. Discharge apparatus according to any of claims 1 to 3, characterized in that the star wheel (3) comprises two end discs (5) disposed on opposite sides of the cell-defining walls (6).
5. Discharge apparatus according to claim 4. characterized in that the end discs (5) of the star wheel (3) are axially spaced from the associated end wall (7) of the lock chamber (2) and carry at least one annular flange (11), which protrudes toward the end wall (7) of the lock chamber (2) and extends on the outside of and defines a'. sealing gap (13) with a flange (12) provided on the end wall (7) of the lock chamber (2).
6. Discharge apparatus according to any of claims 1 to 5, characterized in that at least one annular passage (15,16) for a coolant is provided between the lock chamber (2) and the shaft (4) of the star wheel (3) and is disposed between the bearings (14) for the shaft (4) of the star wheel (3) and the star wheel (3).
7. Discharge apparatus according to claims 4 and 6, characterized in that the annular passage (15) adjoins the end disc (5) of the star wheel (3) and the lock chamber (2) carries an annular flange (17), which axially protrudes toward the end disc (5) and overlaps a flange (18) of the end disc (5) with a sealing sliding ring (19) interposed.
EP83890059A 1982-05-18 1983-04-20 Discharging device for a shaft furnace Expired EP0094928B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1958/82 1982-05-18
AT0195882A AT374275B (en) 1982-05-18 1982-05-18 DISCHARGE DEVICE FOR A SHAFT OVEN

Publications (3)

Publication Number Publication Date
EP0094928A2 EP0094928A2 (en) 1983-11-23
EP0094928A3 EP0094928A3 (en) 1984-04-18
EP0094928B1 true EP0094928B1 (en) 1986-07-30

Family

ID=3524722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83890059A Expired EP0094928B1 (en) 1982-05-18 1983-04-20 Discharging device for a shaft furnace

Country Status (6)

Country Link
US (1) US4507079A (en)
EP (1) EP0094928B1 (en)
JP (1) JPS58213180A (en)
AT (1) AT374275B (en)
CA (1) CA1212541A (en)
DE (1) DE3364880D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT382712B (en) * 1985-05-10 1987-04-10 Voest Alpine Ag FEEDING DEVICE FOR A SHAFT OVEN FOR BURNING CARBONATE-CONTAINING MINERAL COMBUSTION
IT1262034B (en) * 1993-10-07 1996-06-18 In Tec Italia Int Env Tech Srl DEVICE AND PROCEDURE FOR THE PRE-TREATMENT OF SCRAP OF ELECTRONIC CIRCUITS.
JP3623016B2 (en) * 1995-06-09 2005-02-23 株式会社チサキ Vertical firing furnace
AT14432U1 (en) * 2014-06-05 2015-11-15 Binder Co Ag Process for the expansion of sand grain raw material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE333699C (en) * 1919-07-29 1921-03-03 Fried Krupp Akt Ges Emptying device for pressurized shaft ovens, silos or the like.
DE337622C (en) * 1919-11-05 1921-06-03 Arno Andreas Circulating emptying drum for shaft ovens
DE338413C (en) * 1919-12-13 1921-06-17 Arno Andreas Circulating emptying drum for shaft ovens
DE345027C (en) * 1920-12-24 1921-12-05 Arno Andreas Circulating emptying drum for shaft ovens
US1850009A (en) * 1928-05-23 1932-03-15 Gronwall Eugen Assar Alexis Reduction of metals out of their ores
DE545354C (en) * 1929-04-24 1932-02-29 William Henry Smith Method and device for reducing ores, in particular iron ores
US2072450A (en) * 1932-05-13 1937-03-02 Philadelphia & Reading Coal & Furnace
DE1272945B (en) * 1959-10-20 1968-07-18 Metallurg D Imphy Soc Process for the immediate reduction of crushed iron ore
FR1374753A (en) * 1963-11-13 1964-10-09 Furnace feeder
IL28679A (en) * 1966-09-28 1971-04-28 Anglo Amer Corp South Africa Ore segregation process
US3850616A (en) * 1973-10-29 1974-11-26 Armco Steel Corp Inert gas seal for product discharge from a shaft furnace
US4073629A (en) * 1974-07-30 1978-02-14 Kamyr Inc. Coal gasification process with improved procedure for continuously discharging ash particles and apparatus therefor

Also Published As

Publication number Publication date
CA1212541A (en) 1986-10-14
EP0094928A3 (en) 1984-04-18
ATA195882A (en) 1983-08-15
AT374275B (en) 1984-04-10
JPS58213180A (en) 1983-12-12
DE3364880D1 (en) 1986-09-04
US4507079A (en) 1985-03-26
EP0094928A2 (en) 1983-11-23

Similar Documents

Publication Publication Date Title
DE2633809A1 (en) HIGH TEMPERATURE FITTING
DE2745595C3 (en) Vertical conveyor belt furnace
DE3342572C2 (en)
EP0094928B1 (en) Discharging device for a shaft furnace
DE2840097A1 (en) DEVICE FOR RECOVERY OF HEAT FROM HOT EXHAUST GAS
DE2519968A1 (en) NUCLEAR REACTOR
EP0588185A1 (en) Regenerative heat-exchanger and method of operating the heat-exchanger
DE2414053A1 (en) PROCEDURE FOR OPERATING A GAS DYNAMIC PRESSURE SHAFT MACHINE AND DEVICE FOR CARRYING OUT THE PROCESS
DE3928181A1 (en) COOLING DEVICE FOR A HIGH TEMPERATURE, HIGH PRESSURE VESSEL
WO2018206383A1 (en) Conveying a material to be conveyed
WO2021009171A1 (en) Conveying a material to be conveyed
EP2245405B1 (en) Gate unit and high temperature oven having the same
DE19501422C2 (en) Cooled transition piece between a heat exchanger and a reactor
DE2409818A1 (en) METHOD FOR HEAT TREATMENT OF FERROUS AND NON-FERROUS METALS
EP0070371B1 (en) Heat exchanger
DE931103C (en) Device for connecting a rotary kiln chamber to an inlet and / or outlet line
DE3621814C2 (en) Device for heat and surface treatment of metal parts
EP1403603B1 (en) Connecting element for cooling element of a shaft furnace
DE3339061C2 (en) Rotary valve
DE3440048C1 (en) Reheating furnace for slabs or blocks
DE3153041C2 (en) Device for cooling the furnace wall of a shaft furnace, in particular a blast furnace
DE2232426A1 (en) Multichamber treatment furnace - esp contg vacuum chamber has transfer devices which move in one direction only
DE4126720C2 (en) Gas-tight gate valve for high temperatures
DE2755719B2 (en)
EP1574784B1 (en) roller grate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19840928

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

REF Corresponds to:

Ref document number: 3364880

Country of ref document: DE

Date of ref document: 19860904

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870430

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880421

BERE Be: lapsed

Owner name: VOEST-ALPINE A.G.

Effective date: 19880430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19881101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890430

EUG Se: european patent has lapsed

Ref document number: 83890059.5

Effective date: 19890726