EP0094307B1 - Perfectionnements aux broyeurs à jets - Google Patents

Perfectionnements aux broyeurs à jets Download PDF

Info

Publication number
EP0094307B1
EP0094307B1 EP83400913A EP83400913A EP0094307B1 EP 0094307 B1 EP0094307 B1 EP 0094307B1 EP 83400913 A EP83400913 A EP 83400913A EP 83400913 A EP83400913 A EP 83400913A EP 0094307 B1 EP0094307 B1 EP 0094307B1
Authority
EP
European Patent Office
Prior art keywords
nozzles
fed
fact
crusher
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83400913A
Other languages
German (de)
English (en)
Other versions
EP0094307A2 (fr
EP0094307A3 (en
Inventor
Simon Serge Verney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Broyeurs Poittemill Sa Dite
Original Assignee
Broyeurs Poittemill Sa Dite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broyeurs Poittemill Sa Dite filed Critical Broyeurs Poittemill Sa Dite
Priority to AT83400913T priority Critical patent/ATE29972T1/de
Publication of EP0094307A2 publication Critical patent/EP0094307A2/fr
Publication of EP0094307A3 publication Critical patent/EP0094307A3/fr
Application granted granted Critical
Publication of EP0094307B1 publication Critical patent/EP0094307B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/061Jet mills of the cylindrical type

Definitions

  • the present invention relates to a jet mill in which the granular or pulverulent material is introduced continuously or discontinuously into an enclosure around which are arranged several nozzles distributed at different levels and supplied with pressurized fluid ensuring substantially horizontal centripetal jets at within the material to cause crushing zones by impacts between the grains (attrition) and cause the finest particles to rise, which are then permanently extracted from above, while the larger particles, because they are insufficiently crushed, laterally fall back into the material to be ground, the large particles entrained with the fines are reintroduced into the grinding chamber after classification in the separator.
  • the material to be ground is introduced into an enclosure around which are disposed ejectors driving the material which is around and forming a two-phase jet.
  • the gas or the vapor are injected continuously and the speed of the jet is generally supersonic.
  • This continuous blowing has the disadvantage of creating zones of low material concentration since this material cannot be reintroduced with a suitable flow rate in the jet, in particular in the initial zone where the speed is the greatest.
  • the particles are permanently animated with a movement with relatively high speeds and, consequently, the accelerations which they undergo are moderate when they fall in the zones of jets where there reign higher speeds.
  • the frequency of shocks is relatively low, which decreases the intensity and efficiency of grinding on the one hand and energy efficiency on the other.
  • the low acceleration decreases the relative shock velocities which also decreases the intensity and efficiency of the grinding.
  • the present invention is intended to remedy these drawbacks.
  • the jet mill in which the granular or pulverulent material is introduced continuously or discontinuously into an enclosure around which are arranged several nozzles, distributed at different levels and supplied with pressurized fluid ensuring substantially centripetal jets horizontal within the material to cause crushing zones by impacts between the grains (attrition) and cause the finest particles to rise, which are then continuously extracted from above, while the larger particles, because insufficiently ground, fall laterally into the material to be ground, the large particles entrained with the fines being reintroduced into the grinding chamber after classification in the separator, is characterized by the fact that the nozzles are supplied by gas pulsations controlled by at least a distributor supplying the different nozzles alternately.
  • a rotary distributor with gradually reducing passage section. This is obtained by modulating the rotation of the distributor, or again by an appropriate passage section of the conduit in the rotary distributor.
  • This section can be in a drop of water, for example, and reduce the flow rate at the end of closing.
  • the nozzles are distributed in several series, each series being supplied by the same ramp external to the enclosure and each ramp receiving its separate, pulsed and alternating supply from the distributor.
  • either the nozzles can be supplied simultaneously of the same level, either the nozzles of the same vertical, or in an oblique (helical) distribution of a part of the nozzles.
  • the nozzles When the nozzles are supplied individually by the distributor, they can be supplied successively in a circular permutation. Said nozzles can also be arranged and supplied so as to act in a helical permutation.
  • the shape of the enclosure is varied. It can be cylindrical, prismatic, conical, pyramidal, barrel-shaped or any other form deemed appropriate. However, in some of these forms, and depending on the distribution of the nozzles, there may be areas where the material is insufficiently agitated. To remedy this, at least one secondary nozzle is supplied continuously.
  • the distributor As for the distributor supplying the different nozzles according to an established program but which can be varied, its operation is then controlled from a microprocessor device which thus manages the supply of the nozzles according to different criteria chosen by an operator .
  • Pulsed blowing allows materials to be reintroduced into the high speed areas of the jet while the blowing stops. Thus, upon resumption of blowing, the material is strongly accelerated; in this way, the blowing takes place every period in an area of high concentration of materials and its efficiency is improved.
  • the distribution of the nozzles and the pulses given to their supply are determined by the material, the fineness. initial, final finesse and production to be achieved. In any case, it has been found that production is improved with a reduction in energy consumption.
  • the crusher of the invention is located in the center of an installation of which there is a general view in FIG. 7.
  • the grinding chamber (1) which here has the shape of a vertical cylinder but can have any other prismatic, conical, pyramidal or other shape which improves attrition and reduces the speed of the material at the walls .
  • This grinding enclosure is surrounded by two ramps, one of the first level (4) and the other of the second level (5) which surround, like rings, the middle part of the enclosure (1).
  • the ramps (4) and (5) feed nozzles, respectively (2) and (3).
  • Each of the ramps (4) and (5) is supplied in turn by means of valves (6) and (7) which control the supply by all or nothing of each of the ramps (4) and (5) and by therefore nozzles (2) and (3).
  • the valves (6) and (7) are supplied, according to the arrows (20), (21) by pressurized gas or dry steam.
  • the ground material finely enough inside the grinding chamber (1) rises to the top and ends up in a separator (8) from which the finest particles are sent into a second separator (9) of finished products while the largest particles are returned to the screw conveyor (14) which feeds the grinding chamber (1) via the return line (11) and the lock (12).
  • the gases having conveyed the products are sent from the separator (9) to the filter (10) which returns them to the atmosphere according to the arrow (22).
  • the ground products are collected in (23) and (24).
  • the products to be ground are poured into the feed hopper (13) which is closed by a lock (25) and which opens into the screw conveyor (14) to feed the grinding chamber (1).
  • the conveyor (14) has a sealing device (15) between the hopper (13) and the grinding chamber (1).
  • the sealing device is advantageously constituted by an interruption of the screw inside the conveyor (14).
  • the product to be ground introduced into the grinding chamber (1) by the conveyor (14) falls on a porous bottom (17) under which there is an air chamber (18) to fluidize said product, in particular with a view to evacuating the unmilled material accumulated at the bottom of the enclosure (1) by the combination of the inclination of the bottom (17) with blowing air into said chamber (18). Uncrushed products are discharged through the lock (19). However, to avoid any accumulation of new products introduced by the transporter (14), an auxiliary nozzle (16) is provided which blows gas continuously while releasing the outlet from the conveyor (14).
  • a line (26) is provided between the top of the enclosure (1) and the top of the hopper (13) to balance the pressures and facilitate feeding.
  • the essential characteristic of the device of the invention resides in the grinding chamber (1) - where nozzles (2) and (3) are provided distributed at different levels and where the supply of said nozzles (2) and (3), by two separate ramps (4) and (5), is controlled by valves (6) and (7) whose operation depends on a distribution device which determines their alternating pulsating opening. Different variations in the supply of the various nozzles and in their distribution will be explained below.
  • Figure 5 shows a longitudinal section of nozzles (2) which consist of a convergent (27), a divergent (28) connected by a neck (29) which is a narrow orifice.
  • nozzles (2) which consist of a convergent (27), a divergent (28) connected by a neck (29) which is a narrow orifice.
  • a rotary distributor (48) (FIG. 8) is used, the distributor channel (49) of which has a drop-shaped section as shown in FIG. 9.
  • FIG. 1 there is shown a grinding chamber (1) with nozzles (2) and (3) distributed on two different levels.
  • the nozzles (3) of the upper level are supplied separately by conduits (31), (32), (33) themselves successively supplied by a solenoid valve (34) threaded from an electronic switch with adjustable frequency ( 35) to which it is connected by line (36).
  • the nozzles (2) are supplied in successive pulses by the conduits (37), (38), (39) from a solenoid valve (40) whose operation is controlled by the electronic frequency switch adjustable (35) to which it is connected by the line (41).
  • the compressed supply gas generally air, arrives via the supply pipe (42), which can be isolated by the valve (43) and which supplies the two solenoid valves (34), (40).
  • the adjustable frequency electronic switch (35) is advantageously accompanied by a microprocessor computer which makes it possible to adjust the blowing time of each nozzle and the moment when this blowing will take place. All these times are adjustable so that we can manage at will the operation of each of the nozzles to create the maximum number of turbulence zones and move them at will in order to obtain the greatest possible efficiency in grinding.
  • FIG. 4 there is shown the same grinding chamber (1) with nozzles (3) supplied by a ramp (5) receiving compressed gas through the pipe (44). Also shown are nozzles (201) and (202) which are supplied either by ramps similar to the ramp (5), or individually as has been explained above and illustrated in FIG. 1.
  • solenoid valves similar to the solenoid valves (34), (40) which are controlled by a switch similar to the switch (35).
  • a grinding chamber (1) with its feed screw conveyor (14) and on the walls of which are distributed nozzles (203), (204), (205) and (206) along vertical lines.
  • the nozzles (203) can be supplied by the same ramp. It is the same for each of the nozzle groups (204), (205) and (206). Each of these ramps is then connected to a solenoid valve which distinguishes the air in the form of cyclic pulses according to the control of an electronic switch with adjustable frequency.
  • each of the nozzles (203) to (206) can receive a supply by a separate pipe which also ends in a solenoid valve piloted to obtain the maximum of possibilities of adjustment in the pulsations carried out.
  • nozzles (207) distributed helically at the periphery of the grinding chamber (1).
  • the nozzles (207) can be supplied by one or more helical ramps which receive a supply of pulsed gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

    Domaine technique.
  • La présente invention concerne un broyeur à jets dans lequel la matière granuleuse ou pulvérulente est introduite de façon continue ou discontinue dans une enceinte autour de laquelle sont disposées plusieurs buses réparties à des niveaux différents et alimentées en fluide sous pression assurant des jets centripètes sensiblement horizontaux au sein de la matière pour provoquer des zones de broyage par des chocs entre les grains (attrition) et faire monter les particules les plus fines qui sont ensuite extraites en permanence par le haut, tandis que les particules plus grosses, parce qu'insuffisamment broyées, retombent latéralement dans la matière à broyer, les grosses particules entraînées avec les fines sont réintroduites dans l'enceinte de broyage après classement dans le séparateur.
  • Etat de la technique antérieure et inconvénients.
  • L'état de la technique en la matière est clairement établi par les deux brevets américains 1.935.344 du 16.06.1931 et 1.948.609 du 18.01.1932.
  • Dans le premier brevet, la matière à broyer est introduite dans une enceinte autour de laquelle sont disposés des éjecteurs entraînant la matière qui se trouve autour et en formant un jet biphasique.
  • Dans le second brevet, le fluide de travail gaz ou vapeur est introduit directement dans la matière. Cette modification supprime l'éjecteur qui dans les conditions de fonctionnement décrites dans le brevet est soumis à une usure très importante par le mélange biphasique fluide- matériau circulant à grande vitesse.
  • En outre, dans le deuxième brevet, il est prévu une version où les buses sont disposées annulai- rement de façon à concentrer leur effet dans le centre de l'enceinte.
  • Par ailleurs, il est également connu le brevet français ALPINE 2.104.091. Ce document reprend l'essentiel du brevet américain 1.948.609 précité.
  • Dans ces broyeurs et dans tous les broyeurs de ce type, le gaz ou la vapeur sont injectés de façon continue et la vitesse du jet est généralement supersonique. Ce soufflage continu a l'inconvénient de créer des zones de faible concentration en matériau puisque ce matériau ne peut pas se réintroduire avec un débit convenable dans le jet, notamment dans la zone initiale où la vitesse est la plus grande. Par ailleurs, les particules sont animées en permanence d'un mouvement avec des vitesses relativement grandes et, par conséquent, les accélérations qu'elles subissent sont modérées quand elles tombent dans les zones de jets où il règne des vitesses plus grandes.
  • Dans les zones de faible concentration, la fréquence des chocs est relativement faible, ce qui diminue l'intensité et l'efficacité du broyage d'une part et le rendement énergétique d'autre part. La faible accélération diminue les vitesses relatives des chocs ce qui diminue également l'intensité et l'efficacité du broyage.
  • Le rendement de. l'appareil est donc affaibli :
    • 1. par la mauvaise utilisation du jet, notamment dans sa zone initiale,
    • 2. par la vitesse élevée des mêmes particules _ qui ne sont pas accélérées.
    Problème posé.
  • La présente invention est destinée à remédier à ces inconvénients.
  • Exposé de l'invention.
  • Selon l'invention, le broyeur à jet dans lequel la matière granuleuse ou pulvérulente est introduite de façon continue ou discontinue dans une enceinte autour de laquelle sont disposées plusieurs buses, réparties à des niveaux différents et alimentées en fluide sous pression assurant des jets centripètes sensiblement horizontaux au sein de la matière pour provoquer des zones de broyage par des chocs entre les grains (attrition) et faire monter les particules les plus fines qui sont ensuite extraites en permanence par le haut, tandis que les ·particules plus grosses, parce qu'insuffisamment broyées, retombent latéralement dans la matière à broyer, les grosses particules entraînées avec les fines étant réintroduites dans l'enceinte de broyage après classement dans le séparateur, est caractérisé par le fait que les buses sont alimentées par pulsations contrôlées de gaz par au moins un distributeur alimentant les différentes buses de façon alternée.
  • Afin d'éviter la remontée du matériau au moment de l'arrêt du soufflage à l'amont de la buse, ce qui peut entraîner l'obturation et l'usure de la buse, on prévoit un soufflage secondaire continu, à débit réduit. Celui-ci peut se faire par by-pass.
  • En outre, la fermeture du débit de fluide aux buses peut être obtenue progressivement.
  • Par exemple, elle se fait par un distributeur rotatif avec section de passage se réduisant progressivement. Ceci est obtenu par le modulage de la rotation du distributeur, soit encore par une section de passage appropriée du conduit dans le distributeur tournant. Cette section peut être en goutte d'eau, par exemple, et réduire le débit en fin de fermeture.
  • Suivant une forme préférée de réalisation, les buses sont réparties en plusieurs séries, chaque série étant alimentée par une même rampe extérieure à l'enceinte et chaque rampe recevant son alimentation séparée, pulsée et alternée à partir du distributeur. Avec cette dernière disposition, on peut alimenter simultanément soit les buses d'un même niveau, soit les buses d'une même verticale, soit suivant une répartition oblique (hélicoïdale) d'une partie des buses.
  • Quand les buses sont alimentées individuellement par le distributeur, on peut les alimenter successivement suivant une permutation circulaire. On peut aussi disposer lesdites buses et les alimenter de façon à agir suivant une permutation hélicoïdale.
  • La forme de l'enceinte est variée. Elle peut être cylindrique, prismatique, conique, pyramidale, en tonneau ou toute autre forme jugée appropriée. Cependant, dans certaines de ces formes, et suivant la répartition des buses, il peut exister des zones où la matière est insuffisamment agitée. Pour remédier à cela, on prévoit au moins une buse secondaire alimentée de façon continue.
  • Quant au distributeur alimentant les différentes buses suivant un programme établi mais que l'on peut faire varier, son fonctionnement est alors piloté à partir d'un dispositif à microprocesseur qui gère ainsi l'alimentation des buses en fonction de différents critères choisis par un opérateur.
  • Solution au problème, avantages et résultat industriel.
  • Le soufflage pulsé permet aux matériaux d'être réintroduits dans les zones à grande vitesse du jet pendant l'arrêt du soufflage. Ainsi, à la reprise du soufflage, le matériau est-il fortement accéléré ; de cette façon, le soufflage s'effectue à chaque période dans une zone de grande concentration de matériaux et son efficacité est améliorée.
  • La répartition des buses et les pulsations données à leur alimentation sont déterminées par le matériau, la finesse. initiale, la finesse finale et la production à réaliser. De toute façon, on a constaté que la production était améliorée avec une réduction de la consommation d'énergie.
  • L'invention sera mieux comprise à l'aide de la description suivante qui en donne quelques exemples non limitatifs de réalisation pratique et qui sont illustrés par les dessins joints.
  • Brève description des figures.
  • Dans ces dessins,
    • La figure 1 est une vue schématique en perspective d'une première réalisation de l'enceinte avec des buses disposées suivant deux niveaux.
    • La figure 2 est une vue schématique d'une autre enceinte avec les buses disposées suivant des génératrices verticales.
    • La figure 3 est une vue d'une autre enceinte avec des buses disposées hélicoïdalement.
    • La figure 4 est une vue en perspective d'une enceinte avec des buses disposées suivant trois niveaux, chacun des niveaux étant alimenté par une rampe extérieure.
    • La figure 5 est une coupe longitudinale axiale d'une réalisation de buses.
    • La figure 6 est une vue schématique d'un by-pass d'une vanne d'alimentation pulsée d'une série de buses.
    • La figure 7 est une vue schématique de l'ensemble d'une installation de broyage réalisée avec une enceinte de l'invention.
    • La figure 8 est une coupe d'une valve à interruption de débit progressive.
    • La figure 9 est une section droite du canal de distribution de la valve.
    Description de quelques modes de réalisation.
  • Le broyeur de l'invention est situé au centre d'une installation dont on a une vue générale à la figure 7.
  • On y reconnaît l'enceinte de broyage (1), qui a ici la forme d'un cylindre vertical mais peut avoir toute autre forme prismatique, conique, pyramidale ou autre qui améliore l'attrition et diminue la vitesse du matériau au niveau des parois. Cette enceinte de broyage est entourée de deux rampes, l'une de premier niveau (4) et l'autre de deuxième niveau (5) qui entourent, à la façon d'anneaux, la partie médiane de l'enceinte (1). Les rampes (4) et (5) alimentent des buses, respectivement (2) et (3). Chacune des rampes (4) et (5) est alimentée à son tour par l'intermédiaire de vannes (6) et (7) qui contrôlent l'alimentation par tout ou rien de chacune des rampes (4) et (5) et par conséquent des buses (2) et (3). L'alimentation des vannes (6) et (7) se fait, suivant les flèches (20), (21) par un gaz sous pression ou de la vapeur sèche.
  • La matière broyée suffisamment finement à l'intérieur de l'enceinte de broyage (1) s'élève à la partie supérieure et aboutit dans un séparateur (8) d'où les particules les plus fines sont envoyées dans un deuxième séparateur (9) de produits finis tandis que les particules les plus grosses sont renvoyées dans le transporteur à vis (14) qui alimente l'enceinte de broyage (1) par la conduite de retour (11) et l'écluse (12). Les gaz ayant véhiculé les produits sont envoyés du séparateur (9) vers le filtre (10) qui les renvoie à l'atmosphère suivant la flèche (22). Les produits broyés sont recueillis en (23) et (24).
  • Les produits à broyer sont déversés dans la trémie d'alimentation (13) qui est fermée par une écluse (25) et qui débouche dans le transporteur à vis (14) pour alimenter l'enceinte de broyage (1). Le transporteur (14) comporte un dispositif d'étanchéité (15) entre la trémie (13) et l'enceinte de broyage (1). Le dispositif d'étanchéité est avantageusement constitué par une interruption de la vis à l'intérieur du transporteur (14).
  • Le produit à broyer introduit dans l'enceinte de broyage (1) par le transporteur (14) tombe sur un fond poreux (17) sous lequel se trouve une chambre à air (18) pour fluidiser ledit produit, notamment en vue d'évacuer la matière non broyée accumulée au fond de l'enceinte (1) par la combinaison de l'inclinaison du fond (17) avec insufflation de l'air dans ladite chambre (18). Les produits non broyés sont évacués par l'écluse (19). Cependant, pour éviter toute accumulation de nouveaux produits introduits par le transporteur (14), on prévoit une buse auxiliaire (16) qui souffle du gaz de manière ininterrompue en dégageant la sortie du transporteur (14).
  • Une conduite (26) est prévue entre le haut de l'enceinte (1) et le haut de la trémie (13) pour équilibrer les pressions et faciliter l'alimentation.
  • La particularité essentielle du dispositif de l'invention réside dans l'enceinte de broyage (1) - où l'on prévoit des buses (2) et (3) réparties à des niveaux différents et où l'alimentation desdites buses (2) et (3), par deux rampes (4) et (5) séparées, est contrôlée par des vannes (6) et (7) dont le fonctionnement dépend d'un dispositif de distribution qui détermine leur ouverture pulsa- toire alternée. Différentes variantes dans l'alimentation des diverses buses et dans leurs répartitions seront expliquées ci-après.
  • La figure 5 représente une coupe longitudinale de buses (2) qui se composent d'un convergent (27), d'un divergent (28) reliés par un col (29) qui est un orifice étroit. Pour éviter que le col (29) ne se bouche par les matières à l'intérieur de l'enceinte (1) lorsque lesdites buses (2) ne sont pas alimentées normalement, on prévoit une alimentation continue à débit réduit des buses (2) à l'aide d'un by-pass (30) dimensionné convenablement.
  • Pour obtenir une progressivité de la fermeture de débit de fluide aux buses (2) , on utilise un distributeur rotatif (48) (figure 8) dont le canal distributeur (49) a une section en goutte d'eau tel que représenté à la figure 9.
  • En se reportant à la figure 1, on a représenté une enceinte de broyage (1) avec des buses (2) et (3) réparties sur deux niveaux différents. Les buses (3) du niveau supérieur sont alimentées séparément par des conduites (31), (32), (33) elles-mêmes alimentées successivement par une électro-vanne (34) filetée à partir d'un commutateur électronique à fréquence réglable (35) auquel elle est reliée par la ligne (36).
  • De même, les buses (2) sont alimentées suivant des pulsations successives par les conduites (37), (38), (39) à partir d'une électro-vanne (40) dont le fonctionnement est piloté par le commutateur électronique à fréquence réglable (35) auquel elle est reliée par la ligne (41). Le gaz comprimé d'alimentation, généralement de l'air, arrive par le tuyau d'alimentation (42), qui peut être isolé par la vanne (43) et qui alimente les deux électrovannes (34), (40). Le commutateur électronique à fréquence réglable (35) est avantageusement accompagné d'un calculateur à microprocesseurs qui permet de régler le temps dé soufflage de chaque buse et le moment où ce soufflage aura lieu. Tous ces temps sont réglables si bien que l'on peut gérer ainsi à volonté le fonctionnement de chacune des buses pour créer le maximum de zones de turbulence et les déplacer à volonté afin d'obtenir la plus grande efficacité possible dans le broyage.
  • A la figure 4, on a représenté la même enceinte de broyage (1) avec des buses (3) alimentées par une rampe (5) recevant du gaz comprimé par la conduite (44). On a représenté aussi des buses (201) et (202) qui sont alimentées soit par des rampes similaires à la rampe (5), soit individuellement comme cela a été expliqué ci-dessus et illustré à la figure 1.
  • La conduite (44) et chaque conduite aboutissant aux buses (201) et (202) aboutissent à des électrovannes (non représentées) similaires aux électrovannes (34), (40) qui sont pilotées par un commutateur similaire au commutateur (35). En agissant sur celui-ci, on peut provoquer des zones de broyage successives, pulsatoires et intermittentes suivant un cycle voulu dans différentes zones de l'enceinte de broyage (1) afin de déterminer le maximum d'accélérations des particules et leur broyage efficace.
  • En se reportant à la figure 2, on a représenté une enceinte de broyage (1) avec son transporteur à vis d'alimentation (14) et sur les parois duquel sont réparties des buses (203), (204), (205) et (206) suivant des verticales. Les buses (203) peuvent être alimentées par une même rampe. Il en est de même de chacun des groupements de buses (204), (205) et (206). Chacune de ces rampes sont alors reliées à une électrovanne qui distingue l'air sous forme de pulsations cycliques d'après le pilotage d'un commutateur électronique à fréquence réglable. De la même façon que précédemment, chacune des buses (203) à (206) peut recevoir une alimentation par une conduite distincte qui aboutit aussi à une électrovanne pilotée pour obtenir le maximum de possibilités de réglage dans les pulsations réalisées.
  • En se reportant à la figure 3, on a représenté des buses (207) réparties de façon hélicoïdale à la périphérie de l'enceinte de broyage (1). Les buses (207) peuvent être alimentées par une ou plusieurs rampes hélicoïdales qui reçoivent une alimentation de gaz pulsé. De la même façon que précédemment, on peut aussi prévoir une alimentation distincte de chacune des buses (207) à l'aide d'une conduite séparée qui aboutit à une électrovanne répartissant des pulsations cycliques de gaz suivant un programme établi par un commutateur électronique à fréquence réglable.
  • Toutes ces variantes permettent de traiter des poudres différentes avec le maximum d'efficacité. La répartition des buses, leur débit, le diamètre de leur venturi (29), la façon dont elles sont alimentées peuvent ainsi varier à volonté pour s'adapter aux matériaux, à la finesse initiale de celui-ci, à la finesse finale que l'on veut obtenir et à la production désirée.

Claims (10)

1. Broyeur à jets dans lequel la matière granuleuse ou pulvérulente est introduite de façon continue ou discontinue dans une enceinte autour de laquelle sont disposées plusieurs buses (2), (3), réparties à des niveaux différents et alimentées en fluide sous pression assurant des jets centripètes sensiblement horizontaux au sein de la matière pour provoquer des zones de broyage par des chocs entre les grains (attrition) et faire monter les particules les plus fines qui sont ensuite extraites en permanence par le haut, tandis que les particules plus grosses, parce qu'insuffisamment broyées, retombent latéralement dans la matière à broyer, les grosses particules entraînées avec les fines étant réintroduites dans l'enceinte de broyage après classement dans le séparateur, caractérisé par le fait que les buses (2), (3) sont alimentées par pulsations contrôlées de gaz par au moins un distributeur (34), (40) alimentant les différentes buses (2), (3) de façon alternée.
2. Broyeur, tel que défini dans la revendication 1, caractérisé par le fait que la valve (6) d'alimentation de chaque buse est encadrée par un by-pass (30) de faible section déterminant une alimentation continue à débit réduit quand ladite valve (6) est fermée.
3. Broyeur, tel que défini dans la revendication 2, caractérisé par le fait que la valve (6) est conçue pour obtenir une interruption du débit de fluide progressive par une section de passage appropriée du conduit du distributeur tournant en forme de goutte d'eau effilée en fin de fermeture.
4. Broyeur, tel que défini dans la revendication 1, caractérisé par le fait que les buses (2), (3) sont réparties en plusieurs séries, chaque série étant alimentée par une même rampe extérieure (4), (5) à l'enceinte (1) et chaque rampe (4), (5) recevant son alimentation séparée, pulsée et alternée à partir du distributeur (34), (40).
5. Broyeur, tel que défini dans l'une quelconque des revendications 1, 2, 3 ou 4, caractérisé par le fait que les buses d'un même niveau (2), (3) sont alimentées simultanément.
6. Broyeur, tel que défini dans l'une ou l'autre des revendications 1, 2, 3 ou 4, caractérisé par le fait que les buses (203), (204), (205), (206) d'une même verticale sont alimentées simultanément.
7. Broyeur, tel que défini dans l'une ou l'autre des revendications 1, 2, 3 ou 4, caractérisé par le fait que les buses (2), (3) sont alimentées successivement suivant une permutation circulaire.
8. Broyeur, tel que défini dans l'une ou l'autre des revendications 1, 2, 3 ou 4, caractérisé par le fait que les buses (207) sont disposées et alimentées de façon à agir suivant une permutation hélicoïdale.
9. Broyeur, tel que défini dans l'une quelconque des revendications précédentes, caractérisé par le fait qu'on prévoit au moins une buse secondaire (16) alimentée de façon continue.
10. Broyeur, tel que défini dans l'une quelconque des revendications précédentes, caractérisé par le fait que le fonctionnement des distributeurs (34), (40) est piloté à partir d'un dispositif (35) à microprocesseurs qui gère ainsi l'alimentation des buses (2), (3) en fonction de différents critères choisis par un opérateur.
EP83400913A 1982-05-12 1983-05-05 Perfectionnements aux broyeurs à jets Expired EP0094307B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83400913T ATE29972T1 (de) 1982-05-12 1983-05-05 Strahlmuehlen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8208532 1982-05-12
FR8208532A FR2526679B1 (fr) 1982-05-12 1982-05-12 Perfectionnements aux broyeurs a jets

Publications (3)

Publication Number Publication Date
EP0094307A2 EP0094307A2 (fr) 1983-11-16
EP0094307A3 EP0094307A3 (en) 1985-10-09
EP0094307B1 true EP0094307B1 (fr) 1987-09-30

Family

ID=9274083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400913A Expired EP0094307B1 (fr) 1982-05-12 1983-05-05 Perfectionnements aux broyeurs à jets

Country Status (5)

Country Link
EP (1) EP0094307B1 (fr)
AT (1) ATE29972T1 (fr)
DE (1) DE3373875D1 (fr)
ES (1) ES522193A0 (fr)
FR (1) FR2526679B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2190016B (en) * 1985-08-01 1989-07-26 Ecc Int Ltd Communition of material
DD276628B5 (de) * 1988-11-07 1993-12-02 Zementanlagen Und Maschinenbau Fliessbett-gegenstrahlmuehle
CN104841536A (zh) * 2014-02-18 2015-08-19 昆山市密友装备制造有限责任公司 气流粉碎机用喷嘴进气改良结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1935344A (en) * 1931-06-16 1933-11-14 American Pulverizing Corp Camd Impact pulverizer
US1948609A (en) * 1932-01-18 1934-02-27 American Pulverizing Corp Method of pulverizing minerals and similar materials
US2628786A (en) * 1948-08-25 1953-02-17 Celanese Corp Moving-fluid-stream pulverizing apparatus with screened discharge
DE2040519C2 (de) * 1970-08-14 1984-04-12 Alpine Ag, 8900 Augsburg Fließbettstrahlmühle

Also Published As

Publication number Publication date
ES8401864A1 (es) 1984-02-01
ES522193A0 (es) 1984-02-01
EP0094307A2 (fr) 1983-11-16
EP0094307A3 (en) 1985-10-09
FR2526679A1 (fr) 1983-11-18
ATE29972T1 (de) 1987-10-15
DE3373875D1 (en) 1987-11-05
FR2526679B1 (fr) 1988-04-08

Similar Documents

Publication Publication Date Title
US5771601A (en) Process for the dewatering of coal and mineral slurries
FR2484280A1 (fr) Reacteur a lit fluidise et procede de combustion de materiaux contenant des substances incombustibles a l'aide de ce reacteur
FR2569576A1 (fr) Perfectionnements apportes aux reacteurs a lit fluidise
CA2670906C (fr) Appareil de selection granulometrique et/ou de sechage de matiere
EP0067085B1 (fr) Procédé et installation d'alimentation en matière combustible d'une chambre de combustion
FR2584175A1 (fr) Procede et refroidisseur fixe pour refroidir une matiere granulaire
EP0094307B1 (fr) Perfectionnements aux broyeurs à jets
WO2016198654A1 (fr) Installation, procédé de dénitration thermique, utilisation d'une telle installation et produit obtenu par un tel procédé
LU84948A1 (fr) Broyeur tubulaire pour le broyage des matieres premieres naturelles et synthetiques,en particulier pour l'industrie du ciment
KR100592922B1 (ko) 건식 나노 분쇄기 및 이를 이용한 건식 나노 분쇄 시스템
FR2656986A1 (fr) Appareil de sechage par atomisation et procede d'agglomeration d'aliment en poudre.
FR2630658A1 (fr) Procede et dispositif pour la separation de produits de densites differentes, notamment des particules en suspension dans un fluide
SU1076141A2 (ru) Струйна мельница
WO1999001222A1 (fr) Dispositif d'alimentation d'installation de traitement de matiere et broyeur vibrant a cone vertical equipe d'un tel dispositif
FR2483265A1 (fr) Procede et dispositif pour revetir la surface interne d'un tuyau, conduite, canalisation ou analogue
EP0366516A1 (fr) Procédé de séchage et de broyage de matières minèrales humides et installation pour la mise en oeuvre de ce procédé
BE480789A (fr)
EP0091353B1 (fr) Procédé et dispositif permettant l'élévation et la réalisation d'échanges thermiques sur un matériau pulvérulent présentant une large distribution granulométrique
RU24652U1 (ru) Вихревая мельница
LU81934A1 (fr) Perfectionnements aux broyeurs
EP1908523A1 (fr) Dispositif de broyage de matériaux minéraux
BE580353A (fr)
BE405082A (fr)
SU921154A1 (ru) Гидроциклон дл классификации зернистых материалов
FR2508155A1 (fr) Procede et appareil pour le refroidissement d'un courant de fabrication chaud charge de particules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19851030

17Q First examination report despatched

Effective date: 19860731

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870930

Ref country code: NL

Effective date: 19870930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19870930

Ref country code: AT

Effective date: 19870930

REF Corresponds to:

Ref document number: 29972

Country of ref document: AT

Date of ref document: 19871015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3373875

Country of ref document: DE

Date of ref document: 19871105

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950527

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950705

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950726

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

Ref country code: BE

Effective date: 19960531

BERE Be: lapsed

Owner name: BROYEURS POITTEMILL

Effective date: 19960531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970201