EP0093680B1 - Télécabine à deux câbles porteurs-tracteurs - Google Patents

Télécabine à deux câbles porteurs-tracteurs Download PDF

Info

Publication number
EP0093680B1
EP0093680B1 EP83420072A EP83420072A EP0093680B1 EP 0093680 B1 EP0093680 B1 EP 0093680B1 EP 83420072 A EP83420072 A EP 83420072A EP 83420072 A EP83420072 A EP 83420072A EP 0093680 B1 EP0093680 B1 EP 0093680B1
Authority
EP
European Patent Office
Prior art keywords
cables
cable
carriage
fact
grips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83420072A
Other languages
German (de)
English (en)
Other versions
EP0093680A1 (fr
Inventor
Denis Creissels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atto Di Licenza D'uso agudio SpA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9273633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0093680(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to AT83420072T priority Critical patent/ATE17690T1/de
Publication of EP0093680A1 publication Critical patent/EP0093680A1/fr
Application granted granted Critical
Publication of EP0093680B1 publication Critical patent/EP0093680B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/10Cable traction drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/12Cable grippers; Haulage clips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B7/00Rope railway systems with suspended flexible tracks
    • B61B7/04Rope railway systems with suspended flexible tracks with suspended tracks serving as haulage cables
    • B61B7/045Rope railway systems with suspended flexible tracks with suspended tracks serving as haulage cables having in each direction more than one track serving as haulage cables

Definitions

  • the invention relates to an overhead cable transport installation, in particular a gondola lift having vehicles coupled in line to two parallel carrier-tractor cables with continuous travel by a hanger extending in the vertical plane of symmetry of the cables and articulated at a carriage carrying at least one pair of disengageable clamps for securing the carriage to the two cables in line and for uncoupling the vehicle in stations by disengaging the clamps for boarding and / or disembarking at reduced or zero speed of passengers.
  • a gondola of the kind mentioned has many advantages, in particular simplicity, high throughput and ease of embarkation and disembarkation of passengers.
  • the suspension is arranged in the vertical plane of symmetry of the two cables and the support on two cables gives great lateral stability, the lateral forces exerted on the vehicles, in particular by the wind, being transmitted to the cables.
  • a known gondola (FR-A-1,249,949) comprises clamps gripping the cable from below, the jaws of the clamp ensuring the double function of supporting the weight of the cabin and immobilizing the latter on the cable.
  • the reliability of such pliers is not absolute, because the weight tends to open the jaws of the pliers.
  • the size of the clamp in particular the projection below and above the cable, prevents the passage of the clamps on the support rollers and under compression rollers and it is necessary to provide guides separating the cable from the rollers passage of the clamp, which is practically impracticable in large installations with high voltage cable.
  • the object of the present invention is to remedy these drawbacks and to allow the installation of an installation with two carrier-tractor cables retaining the advantages of simplicity of monocab cable cars.
  • each clamp comprises a clamp body bearing in the engaged position of the clamp on the upper face of the cable and having a slight upward projection and a pair of jaws projecting from said body by being open downwards to grip the cable laterally, the end of the jaws flush or slightly protruding from the underside of the cable to facilitate passage over and under the cable support rollers, and that in the guide roller stations deflects said cables to modify their spacing and thus allow passage of the uncoupled cable carriage, from a position higher than the cables to a lower position, or vice versa.
  • cable guide rollers modify the spacing of the latter to allow the carriage to be released and the carriage to circulate on transfer rails independent of the path of the cables.
  • the distance between the cables results from a compromise between the need to keep the dimensions of the support structures within acceptable and manageable limits and on the other hand to have sufficient space between the cables to accommodate the horizontal guide rollers. in stations and to provide lateral stability.
  • the difference is advantageously between 25 and 100 cm, preferably close to 75 cm.
  • the diameter of the cables is within the range of 0.035 to 0.050 m and preferably close to 0.042 m.
  • the vehicle is fixed by its suspension to the carriage with a single degree of freedom corresponding to an oscillation in the vertical plane.
  • the carriage carries two pairs of disengageable clamps, two clamps for each cable, and these clamps can be offset with respect to each other in the direction of movement of the carriage or be arranged face to face in pairs with a certain overlap, for example a coaxial arrangement of the springs.
  • the two clamps coupled to the same cable are arranged symmetrically on either side of the transverse axis of symmetry of the carriage passing through the resulting points of coupling to the cables.
  • the command to open and close the clamps at the entrance and exit of the stations can be common to all the clamps of the trolley, but it is preferable, for safety and standardisatron reasons, to provide a lever individual control to each clamp, coming into the declutching and / or clutch zone in contact with a rail or a fixed cam in the usual manner.
  • the control is then symmetrical with respect to the vertical plane equidistant from the cables so as not to generate efforts to unbalance the carriage during the operation of the levers.
  • Another control method is conceivable.
  • Each clamp is advantageously mounted on the carriage by means of an elastic damping block allowing a slight rotation of one clamp relative to the other on the same cable and of the clamps of one of the cables relative to those of the other cable to avoid warping the carriage.
  • the four clamps constitute a rigid quadrilateral connecting the two cables, which must move in synchronism. They have the same height of material symmetrically to pass under trains of parallel rollers without exerting asymmetrical forces tending to deform or warp the carriage. Similarly, the drive and / or braking systems of vehicles at the entrance, at the exit or at the stations are double and symmetrical.
  • the two cable loops have a perfect symmetry of friction, that is to say that the resistances to the drive of the two cables are identical, this being achieved by symmetrical paths and / or brake regulating devices for one of the cables.
  • each cable passes over an end pulley, the two pulleys being identical and superimposed.
  • the two pulleys are driven by a differential system exerting the same tensile force on the two cables.
  • This differential can be mechanical, hydraulic or electric.
  • the combined action of the differential, the equality of friction and the connection between the two cables by the rigid quadrilaterals formed by the clamps of the vehicles achieves a synchronous drive by avoiding any integration of offsets and obliquing of the vehicles. It is clear that similar precautions are essential during braking of the pulleys and according to another development of the invention, the brake release device necessarily binds the two pulleys.
  • a simple way is to insert the rims of the two coaxial pulleys, and very close to each other, between the brake caliper, the jaws applying the rims against each other during tightening.
  • the use of a single caliper ensures a distribution of the braking force on the two pulleys and at the same time a friction connection between these two pulleys avoiding any offset.
  • a braking band having a certain elasticity can be added to the outer periphery of each pulley.
  • the differential it can advantageously be produced electrically by working at equal power for the two strictly identical motors. If this is the case by construction, the forces to be overcome are the same for the two cable loops, the speed of movement of the cables will be the same, whatever the compared diameters of the two drive pulleys, since the compared power is the product of the effort to be overcome by the speed of movement.
  • a DC power source is provided common to the two motors with identical electrical characteristics.
  • Dials provided with different thresholds with control functions, then make it possible at any time to know the state of a loop with respect to the other and to automatically stop the installation in the event of an adjustment exceeding a predetermined value.
  • This signaling and this control loop therefore constitute a fundamental safety device.
  • each cable passes over a loose return pulley, the two pulleys being mounted on a tension rudder balancing the tension in the two pulleys, mechanical, hydraulic or electric spreader.
  • the return pulleys are advantageously offset laterally with respect to the direction of the cables by a distance corresponding to the spacing of the two cables in the station.
  • the longitudinal spacing of the two pulleys compensates for slight differences in length of the two cable loops.
  • the carriages are uncoupled from the cables and supported by transfer rails passing in front of the landing and boarding platforms.
  • the carriages have four wheels rolling on the rails, either by gravity, or under the action of a motor device, for example a chain with cleats.
  • the wheels are arranged in pairs face to face and roll in the rectilinear parts on two parallel rails. In the curves, only one rail remains, inside the bend, which facilitates switches.
  • the carriage is interposed between the two cables, the clamps projecting laterally from either side towards the outside.
  • the clamps After opening of the clamps and exit of the cables by a relative movement towards the top of the carriage with respect to the cables, the latter are deviated with spacing to release the jig for passage of the clamps and allow the carriage to be disengaged from the bottom. This release takes place at the entrance to the station when the carriage passes over a release section, a symmetrical system at the station exit ensuring the engagement and re-coupling of the carriage to the cables.
  • the capacity of the vehicles makes it possible to limit the number of vehicles in service and it is advantageous to be able to store the vehicles or at least a sufficient number of vehicles in normal service on the transfer rails, departure of a vehicle made on demand.
  • Each carrier-tractor cable passes at the level of a pylon on a pendulum which may include support rollers or compression rollers.
  • the two identical pendulums are perfectly symmetrical and their main axes are rigorously face to face.
  • the inverted U supports of these axes are for example centered face to face in the factory by the same boring machine.
  • the inverted U-shaped support allows the carriage to pass freely between the pendulums.
  • the limited spacing of the cables, in particular 75 cm makes it possible to maintain sufficient rigidity with conventional structures.
  • the elements of the latter are linked together by inverted U's arranged at the entrance to the cha as an element, the input being defined with respect to the direction of travel of the cables.
  • the inventive arrangement without lateral rocking when passing the pylons, allows the use of support rollers whose flanges inside the track are of an enlarged diameter to produce a very effective anti-derailleur device.
  • the clamps are oriented inward, the U-shaped carriage framing the two cables.
  • the size of the carriage is increased, but the support brackets of the pendulums are simplified and are limited to a simple cross member carrying at each of its ends a pendulum. Disengaging the carriage requires pinching the two cables.
  • Figure 27 shows another variant.
  • two carrier cables 10,12 of a gondola extend in a closed circuit between two stations 14,15 passing through the stations on pulleys 16,17; 18, 19 of vertical axis ends 20, 21; 22, 23.
  • the end pulleys 16, 17 of the station 14 are drive pulleys driving the cables 10, 12 continuously at the same speed.
  • the vehicles 24 are coupled to the cables 10, 12 in line, several vehicles 24 being able to follow one another or be staggered along the cables 10, 12. At the entrance to a station 14, 15, the vehicles 24 are uncoupled from the cables 10 , 12 and supported by transfer rails 26 passing in front of landing and loading docks.
  • This operation of cable cars is well known to specialists.
  • the cables 10, 12 carrier-tractors are parallel and at the same level in line, their constant spacing being within the range of 0.25 to 1.00 m, preferably close to 75 cm.
  • Each cable 10, 12 has a diameter included in the range of 0.035: at 0.050 m, preferably close to 0.042 m.
  • the cables 10, 12 are supported by support and support pylons of identical structure, only a support pylon being described below with reference to Figures 1 and 2.
  • a stirrup 32 At each end of a span or bracket 30 is suspended a stirrup 32 an inverted U respectively supporting cables 10, 12 of the uplink and the downlink.
  • At the end of each branch of the stirrup 32 is fixed an axis 38, 40 of articulation of a balance 34, 36 carrying the rollers 42 for supporting the cables 10, 12.
  • the spacing of the balance 34.36 corresponds to that of the cables 10,12 and the caliper assembly 32, pendulums 34,36 is symmetrical with respect to the vertical plane of symmetry of the cables 10,12 of trace XX in FIG. 1.
  • the axes 38, 40 are perfectly aligned, their supports having been centered face to face in the factory on the same boring machine.
  • the pendulums 34, 36 struggle in parallel vertical planes and include a number of secondary pendulums suitable for the load.
  • stirrups 44 in inverted U imposing a symmetrical pivoting.
  • Each vehicle 24 comprises a suspension 46 articulated at its upper part to a transverse axis 58 of a carriage 48 carrying four clamps 50, 52, 54, 56 for coupling to the cables 10, 12.
  • the width of the body of the carriage 48 is slightly less than the spacing between the cables 10, 12 while the jaws 60, 62 of the clamps 50 to 56 project from the two lateral sides of the carriage to grip the cables 10, 12.
  • FIGS. 5 and 6 schematically represent a clamp bearing on the cable and having a movable jaw 62 disposed respectively inside and outside.
  • each clamp 50 to 56 comprises a control lever 66 cooperating in the stations with a cam or a rail extending along the path of the carriage 48 to control opening and closing of the clamp.
  • the clamps can be of a different type, in particular from those described below.
  • the clamps 50 to 56 can be offset in the longitudinal direction of the carriage for reasons of space, but it is clear that clamps of a different structure can be used and that the clamps 50, 54; 52, 56 facing each other can be aligned and nested.
  • the springs can be coaxial and certain elements, in particular the control lever 66, can be common to several clamps.
  • the control levers 66 are arranged face to face so that the operating forces are balanced and exert no transverse reaction on the carriage 48.
  • the jaws 60, 62 are shaped to pass over and under the rollers 42 without a noticeable jerk and the height of projection of the carriage 48 above the cables 10, 12 is reduced to the maximum to facilitate the release. In addition, in any plane perpendicular to the line, this projection height is equal from one cable to the other, so as to avoid any twisting of the carriage when passing under the compression pendulums.
  • the carriage 48 carries four wheels 68 for moving on the rails 26 of the stations 14, the wheels 68 being arranged face to face. Elastic blocks (not shown) for fixing the clamps 50-56 allow a slight pivoting.
  • FIGS. 7 to 10 Another embodiment of the carriage 48 is illustrated in FIGS. 7 to 10, the four clamps 50, 52, 54, 56 being of the type described in patent application EP-A-56,919 (corresponding to French application FR-A -2,497,750 published July 16, 1982).
  • the movable jaw 62 is carried by the control lever 66 articulated on a clamp body 63 bearing on the cable.
  • the lever 66 carries at the opposite end a control roller.
  • the spring 64 attacks said opposite end to urge the clamp in the cable tightening position 10.
  • the clamps 54, 56 associated with the cable 12 are arranged symmetrically on either side of the transverse axis YY of the carriage 48 while the clamps 50, 52, also symmetrical, surround the clamps 54, 56.
  • the fictitious coupling points of the clamps 54, 56; 50, 52 to the cables 10, 12 are thus located on the YY axis, avoiding an asymmetry in driving the carriage 48.
  • the operation of the clamps is obvious and the reader can refer to the aforementioned patent application for more details .
  • the wheels 68 roll on two parallel rails 26, one of the rails being advantageously removed in the curves, which facilitates the switches.
  • the carriage 48 carries two friction plates 70 capable of cooperating with drive wheels 72 in the stations (fig. 20). This training is perfectly symmetrical.
  • the suspension 46 is straight in the plane of symmetry of the cables 10, 12 and the only authorized movement, relative to the carriage 48, is a pivoting on the axis 58 resulting in a movement in said plane of symmetry. It is understood that the suspension 46 is always perpendicular to the axis 58, that is to say to the level line of the two cables 10, 12. Like the cables 10, 12 are necessarily at the same level in line with the pendulums 34 , 36, the suspension 46 is vertical and the stability of the vehicles 24 when the pylons pass is remarkable.
  • the return torque exerted on the cabin 24 at the entry of the pendulums 34, 36 is proportional to the spacing of the cables 10, 12 and it is advantageous to separate the cables 10, 12 as much as possible.
  • a large gap also allows the carriage 48 to be housed between the cables 10, 12 and the cables 10, 12 to be deflected in the stations 14 by rollers with a vertical axis as described below.
  • the support structures, in particular the stirrups 32, 44 quickly become too large and a spacing distance of 75 cm is a valid compromise.
  • the suspension with two cables 10, 12 of large section provides increased security and the vehicles 24 can be relatively large, for example for transporting several tens of passengers.
  • the cables 10, 12 form two endless loops extending between the drive 14 and tensioning stations 15.
  • the drive pulleys 16, 17 of the station 14 are superimposed and coaxial, the spacing between the two pulleys 16, 17 being very weak.
  • the drive pulleys 16, 17 are advantageously each provided with a braking track 71, 73 extending the inner flange of the pulley and of less inertia than the pulley.
  • a brake caliper 74 encloses the two tracks 71, 73 so that one 76 of the brake pads engages the free face of one of the tracks and the other 78 of the pads engages the free face of the other track.
  • the brake is for example of the hydraulic type imposing a bringing together of the pads 76, 78 which are applied to the tracks 71, 73 with the same force, the caliper 74 being mounted floating. During braking, the tracks 71, 73 are applied one on the other, so as to secure the pulleys 16, 17.
  • the axes 20, 21 of the pulleys 16, 17 are connected by transmissions 80, 82 to the planet gears 84, 86 of a differential mechanism 88 whose pinions 90 are driven by a motor 92.
  • This differential mechanism can be hydraulic or electric, the result being an equal force training of two cables 10, 12 and a permanent rebalancing of these forces.
  • the cables 10, 12 pass over guide rollers 92 at the inlet and at the outlet of the pulleys 16, 17 to define the two strands of each track, the spacing of the cables 10, 12 being slightly increased on sections, before and after the pulleys for the reasons described below.
  • the arrangement of the cables 10,12 is symmetrical, the cable 10 inside the track before the pulley being outside at the outlet and vice versa, the two loops thus passing over the same number of guide rollers 92 and undergoing the same braking or the same running resistance.
  • the cables 10, 12 pass through the tensioning station 15 on idler idler pulleys 18, 19 which are identical, but offset laterally by a distance corresponding to the spacing of the cables.
  • the pulleys 18, 19 are mounted on slides 94, 95 movable in the general direction of the line and biased by jacks 96, 97 in the direction of tensioning of the cables 10, 12.
  • the jacks 96, 97 are strictly identical and supplied by the same pressure source 98, so as to provide equal tensions to the cables 10, 12, while compensating for slight differences in length of the cable loops 10, 12.
  • the jacks 96, 97 constitute a lifting beam which can be mechanical.
  • the cylinders 96, 97 can be replaced by two counterweights or any other similar device.
  • the on-line operation of the cable car speaks for itself and only the passage through station 15 is described below with reference to FIGS. 18 to 23, the passage through station 14 being identical.
  • the lower channel in FIG. 18 constitutes the entry channel, that is to say the uncoupling channel and for clearing the vehicle 24 from the cables 10, 12 and the upper track for the outlet, in this case for engaging and re-coupling the vehicle 24 to the cables 10, 12.
  • the trajectory of the rails 26 is lowered with respect to the cables 10,12, which pass under guide rollers 100 with a horizontal axis to release the carriage 48 downwards (position D, fig. 22 and position C, Fig. 23), the carriage 48 passing under the end pulleys 18,19.
  • the slowdown of the vehicle 24 can be engaged as soon as the clamps 50 to 56 are opened.
  • the outlet from the station 15 is arranged in a symmetrical manner for the coupling of the vehicles 24 to the cables in reverse sequences: passage of the carriage 48 under the pulleys 18, 19, insertion of the carriage between the cables 10, 12, bringing the cables together, forcing the jaws on the cables with synchronization of the speed of the carriage with that of the cables, and closing of the clamps.
  • the symmetry of the two cable loops 10, 12 is preserved.
  • the vehicles 24 disengaged from the cables circulate in the station on the usual transfer and possibly storage channels, allowing disembarkation and embarkation of passengers at a standstill or at reduced speed.
  • the vehicles 24 are re-coupled to the cables 10, 12 in the aforementioned manner.
  • the arrangement of the other end station 14 is identical and need not be described. It can be noted that all of these operations can be easily automated as in conventional gondolas and that they are carried out without stopping the vehicle by requiring only conventional devices whose efficiency and reliability have been proven.
  • the large capacity of the vehicles makes it possible to limit the number of vehicles in line while ensuring a significant throughput and it is possible to store the vehicles 24 on the transfer rails 26 of the stations while ensuring a departure on demand. This avoids empty operation and unnecessary wear
  • FIG. 24 illustrates an alternative embodiment of the invention in which the line 46 of the vehicles 24 is articulated to a carriage 102, the U-shaped frame 104 of which externally frames the two cables 10, 12.
  • the clamps 50-56, carried by the frame 104, are oriented inward towards the cables 10, 12 enclosed by the jaws 62 facing each other.
  • the pylons are arranged accordingly for a fiber passage of the carriage 102, by mounting the pendulums with support rollers 42 at the two ends of a crosspiece 106 extending transversely between the two cables 10,12. This reverse arrangement does not modify the operation of the installation, but requires pinching of the cables 10, 12 in the stations for the release or engagement of the carriage 104.
  • the arrangement of the carriage 104 is more complicated and more bulky, that pylons, on the other hand, are simpler.
  • Fig. 25 shows a preferred embodiment of the cable support pendulums 10, 12.
  • Each pendulum with support rollers 42 is carried by the end of an arm 108,110 articulated at 112,114 to the bracket 30 to allow movement in the transverse plane to the cables 10, 12.
  • a spacer 116 connects the arms 108, 110 to form a deformable quadrilateral keeping the rollers 42 parallel and at constant spacing whatever the deflection of the arms 108, 110.
  • the pulley drive 16, 17 can include a schematic electrical differential ment shown in Figure 26.
  • Each pulley 16, 17 is driven by an electric motor 118,120, perfectly identical.
  • the two motors 118, 120 are connected by supply lines 122, 124 to the same source of electrical power 126.
  • Measuring devices 128 inserted in the lines 122, 124 permanently signal the intensity and the voltage of the supply current of each engine 118,120.
  • the two cable loops being symmetrical, the powers supplied by the motors 118, 120 are identical and the currents and voltages are the same. There is of course always a slight asymmetry which results in a difference in the intensities and / or voltages, but this difference in measurement can be identified or compensated for.
  • the two cables are driven at the same speed and the measurement difference remains constant.
  • An incident, for example an increase in the resistance to advancement of one of the cables, is automatically signaled by a variation of said measurement difference and depending on the magnitude of this variation, the fault is simply signaled or causes the installation stopped.
  • FIG. 27 illustrates an alternative embodiment in which the two clamps 50, 54, respectively 52, 56 are superimposed, the cables 10, 12 being slightly offset in height. This offset may correspond to that of the end pulleys in the stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Communication Cables (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Multi-Conductor Connections (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

  • L'invention est relative à une installation de transport à câble aérien, notamment une télécabine ayant des véhicules accouplés en ligne à deux câbles parallèles porteurs-tracteurs à défilement continu par une suspente s'étendant dans le plan vertical de symétrie des câbles et articulée à un chariot portant au moins une paire de pinces débrayables pour solidariser le chariot aux deux câbles en ligne et pour désaccoupler le véhicule dans les stations par débrayage des pinces pour un embarquement et/ou débarquement à vitesse réduite ou nulle des passagers.
  • Une télécabine du genre mentionné présente de multiples avantages, notamment de simplicité, de débit important et de facilité d'embarquement et de débarquement des passagers.
  • La suspension est disposée dans le plan vertical de symétrie des deux câbles et l'appui sur deux câbles confère une grande stabilité latérale, les efforts latéraux exercés sur les véhicules, notamment par le vent, étant transmis aux câbles.
  • Une télécabine connue (FR-A-1.249.949) comporte des pinces agrippant le câble par le dessous, les mors de la pince assurant la double fonction de support du poids de la cabine et d'immobilisation de cette dernière sur le câble. La fiabilité de telles pinces n'est pas absolue, car le poids tend à ouvrir les mors de la pince. L'encombrement de la pince, notamment la saillie en-dessous et au-dessus du câble, empêche le passage des pinces sur les galets de support et sous des galets de compression et il est nécessaire de prévoir des guides éloignant le câble des galets au passage de la pince, ce qui est pratiquement irréalisable dans les installations importantes à câble sous forte tension.
  • La présente invention a pour but de remédier à ces inconvénients et de permettre la réalisation d'une installation à deux câbles porteurs-tracteurs conservant les avantages de simplicité des télécabines monocâbfe.
  • L'installation selon l'invention est caractérisée en ce que chaque pince comporte un corps de pince prenant appui en position embrayée de la pince sur la face supérieure du câble et présentant une faible saillie vers le haut et une paire de mors faisant saillie dudit corps en étant ouverts vers le bas pour enserrer latéralement le câble, l'extrémité des mors affleurant ou dépassant faiblement la face inférieure du câble pour faciliter le passage sur et sous les galets de support des câbles, et que dans les stations des galets de guidage dévient lesdits câbles pour modifier leur écartement et permettre ainsi un passage du chariot désaccouplé des câbles, d'une position supérieure aux câbles à une position inférieure, ou réciproquement.
  • En conservant les pinces conventionnelles en appui sur la face supérieure des câbles, le problème du passage des galets et la sécurité de fonctionnement sont résolus, mais après ouverture des pinces dans les stations le chariot reste emprisonné entre les câbles. Selon l'invention, des galets de guidage des câbles modifient l'écartement de ces derniers pour permettre le dégagement du chariot et la circulation du chariot sur des rails de transfert indépendants de la trajectoire des câbles.
  • L'écart entre les câbles résulte d'un compromis entre la nécessité de maintenir les dimensions des structures de support dans les limites acceptables et maîtrisables et d'autre part de disposer entre les câbles d'un espace suffisant au logement des galets horizontaux de guidage dans les stations et d'assurer la stabilité latérale. L'écart est avantageusement compris entre 25 et 100 cm, de préférence voisin de 75 cm. Le diamètre des câbles est compris dans la fourchette de 0,035 à 0,050 m et de préférence voisin de 0,042 m.
  • Pour bénéficier totalement de la stabilité latérale conférée par le double appui du chariot, le véhicule est fixé par sa suspension au chariot avec un seul degré de liberté correspondant à une oscillation dans le plan vertical.
  • Selon un développement de l'invention, le chariot porte deux paires de pinces débrayables, deux pinces pour chaque câble, et ces pinces peuvent être décalées les unes par rapport aux autres dans la direction de déplacement du chariot ou être disposées face àface deux par deux avec une certaine imbrication, par exemple une disposition coaxiale des ressorts. Les deux pinces accouplées à un même câble sont disposées symétriquement de part et d'autre de l'axe transversal de symétrie du chariot passant par les points résultants d'accouplement aux câbles. La commande d'ouverture et de fermeture des pinces à l'entrée et à la sortie des stations peut être commune à l'ensemble des pinces du chariot, mais il est préférable, pour des raisons de sécurité et de standardisatron, de prévoir un levier de commande individuel à chaque pince, venant dans la zone de débrayage et/ou d'embrayage au contact d'un rail ou d'une came fixe de la manière usuelle. La commande est alors symétrique par rapport au plan vertical équidistant des câbles pour ne pas engendrer des efforts de déséquilibre du chariot lors du fonctionnement des leviers. Un autre mode de commande est concevable. Chaque pince est avantageusement montée sur l'e chariot par l'intermédiaire d'un bloc amortisseur élastique permettant une légère rotation d'une pince par rapport à l'autre sur un même câble et des pinces de l'un des câbles par rapport à celles de l'autre câble pour éviter tout gauchissement du chariot.
  • Les quatre pinces constituent un quadrilatère rigide de liaison entre les deux câbles, lesquels se déplacent obligatoirement en synchronisme. Elles présentent la même hauteur de matière symétriquement pour passer sous des trains de galets parallèles sans exercer des efforts dissymétriques tendant à déformer ou à gauchir le chariot. De même les systèmes d'entraînement et/ou de freinage des véhicules à l'entrée, à la sortie ou dans les stations sont doubles et symétriques.
  • Selon une caractéristique importante de la présente invention, les deux boucles de câbles présentent une symétrie parfaite de frottement, c'est-à-dire que les résistances à l'entraînement des deux câbles sont identiques, cela étant réalisé par des trajectoires symétriques et/ou des dispositifs régulateurs de freinage de l'un des câbles.
  • Dans la station d'entraînement chaque câble passe sur une poulie d'extrémité, les deux poulies étant identiques et superposées. L'entraînement des deux poulies est réalisé par un système différentiel exerçant le même effort de traction sur les deux câbles. Ce différentiel peut être mécanique, hydraulique ou électrique. L'action combinée du différentiel, de l'égalité des frottements etde la liaison entre les deux câbles par les quadrilatères rigides constitués par les pinces des véhicules réalise un entraînement synchrone en évitant toute intégration de décalages et mise en oblique des véhicules. Il est clair que des précautions analogues sont essentielles lors d'un freinage des poulies et selon un autre développement de l'invention, le dispositif defreinage solidarise obligatoirement les deux poulies. Un moyen simple consiste à insérer les jantes des deux poulies coaxiales, et très proches l'une de l'autre, entre l'étrier du frein, les mâchoires appliquant les jantes l'une contre l'autre lors du serrage. L'emploi d'un étrier unique assure une répartition de la force de freinage sur les deux poulies et en même temps une liaison par friction entre ces deux poulies évitant tout décalage. Une bande de freinage présentant une certaine élasticité peut être rapportée au pourtour externe de chaque poulie.
  • En ce qui concerne le différentiel, il peut être avantageusement réalisé de façon électrique en travaillant à puissance égale pour les deux moteurs rigoureusement identiques. Si tel est le cas par construction, les efforts à vaincre sont les mêmes pour les deux boucles de câbles, la vitesse de déplacement des câbles sera la même, quels que soient les diamètres comparés des deux poulies d'entraînement, puisque la puissance comparée est le produit de l'effort à vaincre par la vitesse de déplacement.
  • Pour réaliser un tel différentiel électrique, il est prévu une source d'alimentation en courant continu commune aux deux moteurs de caractéristiques électriques identiques.
  • Si les deux boucles de câbles ont des efforts égaux à vaincre en ligne, si les rendements mécaniques des machineries sont égaux et si les moteurs sont identiques, quand on alimentera ces derniers avec une même source de courant continu, les tensions et les intensités de courant seront les mêmes dans les deux circuits d'alimentation des moteurs qui travailleront bien à puissance égale.
  • Si, par contre, un élément extérieur change -'et notamment s'il se produit une inégalité d'efforts à vaincre en ligne - les moteurs travailleront de façon dissymétrique, tension et/ou intensité variant.
  • Un des intérêts essentiels de ce système de différentiel électrique est donc de signaler- par rapport à l'état initial qui peut donc être légèrement dissymétrique - toute inégalité de fonctionnement d'une boucle par rapport à l'autre.
  • Des cadrans, munis de différents seuils à fonctions de commande, permettent alors à tout moment de connaître l'étatd 'une boucle par rapport à l'autre et d'arrêter automatiquement l'installation en cas de déréglage dépassant une valeur prédéterminée. Cette signalisation et cette boucle de commande constituent donc un dispositif de sécurité fondamental.
  • Dans la station de mise sous tension, chaque câble passe sur une poulie folle de renvoi, les deux poulies étant montées sur un palonnier de tension équilibrant la tension dans les deux poulies, palonnier mécanique, hydraulique ou électrique.
  • Les poulies de renvoi sont avantageusement décalées latéralement par rapport à la direction des câbles d'une distance correspondant à l'écartement des deux câbles dans la station. L'écartement longitudinal des deux poulies compense de légères inégalités de longueur des deux boucles de câbles.
  • Dans les stations, les chariots sont désaccouplés des câbles et pris en charge par des rails de transfert passant devant les quais de débarquement et d'embarquement. Les chariots ont quatre roues roulant sur les rails, soit par gravité, soit sous l'action d'un dispositif moteur, par exemple une chaîne à taquets. Les roues sont disposées par paire face à face et roulent dans les parties rectilignes sur deux rails parallèles. Dans les courbes subsiste un seul rail, intérieur au virage, ce qui facilite les aiguillages.
  • Selon un mode de mise en oeuvre préféré de l'invention, le chariot est intercalé entre les deux câbles, les pinces faisant saillie latéralement de part et d'autre vers l'extérieur. Après ouverture des pinces et sortie des câbles par un mouvement relatif vers le haut du chariot par rapport aux câbles, ces derniers sont déviés à écartement pour libérer le gabarit de passage des pinces et permettre un dégagement du chariot par le bas. Ce dégagement s'effectue à l'entrée de la station au passage du chariot sur un tronçon de dégagement, un système symétrique à la sortie de la station assurant l'engagement et le réaccouplement du chariot aux câbles.
  • La capacité des véhicules, notamment de 12 à 30 passagers, permet de limiter le nombre de véhicules en service et il est avantageux de pouvoir stocker les véhicules ou tout au moins un nombre suffisant de véhicules au service normal sur les rails de transfert, le départ d'un véhicule s'effectuant à la demande.
  • Chaque câble porteur-tracteur passe au niveau d'un pylône sur un balancier qui peut comporter des galets de support ou des galets de compression. Les deux balanciers identiques sont parfaitement symétriques et leurs axes principaux sont rigoureusement face à face. Les supports en U renversé de ces axes sont par exemple centrés face à face en usine par une même aléseuse. Le support en U renversé laisse le libre passage du chariot entre les balanciers. L'écartement limité des câbles, notamment de 75 cm, permet de conserver une rigidité suffisante avec des structures usuelles. Pour conserver la parfaite symétrie des deux balanciers, les éléments de ces derniers sont reliés entre eux par des U renversés disposés à l'entrée de chaque élément, l'entrée étant définie par rapport au sens de défilement des câbles.
  • La disposition inventive, sans balancement latéral au passage des pylônes, autorise l'emploi de galets de support dont les flasques intérieurs à la voie sont d'un diamètre agrandi pour réaliser un dispositif anti-dérailleur très efficace.
  • Selon une variante de réalisation, les pinces sont orientées vers l'intérieur, le chariot en forme de U encadrant les deux câbles. L'encombrement du chariot est accru, mais les potences de support des balanciers sont simplifiées et se limitent à une simple traverse portant à chacune de ses extrémités un balancier. Le dégagement du chariot nécessite un pinçage des deux câbles.
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de différents modes de mise en oeuvre de l'invention, donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels:
    • - la figure 1 est une vue schématique transversale d'un pylône d'une télécabine selon l'invention;
    • - la fïgure 2 est une vue de côté du pylône selor la figure 1;
    • - la figure 3 est une vue à échelle agrandie du chariot selon la figure 1 ;
    • - la figure 4 est une vue en plan du chariot;
    • - les figures 5 et 6 sont des coupes à échelle agrandie respectivement de la pince gauche et de la pince droite du chariot;
    • - la figure 7 est une vue en plan d'une variante de réalisation du chariot;
    • - la figure 8 est une coupesuivant la ligne brisée VIII-VIII de la figure 7;
    • - les figures 9 et 10 sont des coupes suivant la ligne IX-IX de la figure 7, montrant la pince respectivement en position fermé et ouvert;
    • - les figures 1 et 12 sont des vues à échelle agrandie respectivement en élévation et en plan d'un balancier selon la figure 2 à huit galets de support;
    • - la figure 13est une coupe suivant la ligne XIII-XIII de la figuwe 11;
    • - la figure 14 est une vue en élévation du dispositif d'entraînement des deux câbles;
    • - la figure 15 est une vue schématique en plan de la station d'entraînement;
    • - les figures 16 et 17 montrent respectivement en plan et en élévation le dispositif de mise sous tension des câbFes;
    • - les figures 18 et 19 sont des vues schématiques respectivement en plan et en élévation de la station de mise sous tension;
    • - les figures 20 à 23 montrent le chariot, équipé d'un autre type de pinces, aux différentes positions de la figure 18;
    • - la figure 24 illustre une variante de réalisation du chariot et du support de balancier selon l'invention;
    • - la figure 25 est une vue analogue à celle de la figure 13, illustrant une variante de réalisation à balanciers inclinables;
    • - la figure 26 est une vue analogue à celle de la figure 14, montrant un dispositif d'entraînement à différentiel électrique;
  • la figure 27 montre une autre variante.
  • Sur les figures, deux câbles porteurs-tracteurs 10,12 d'une télécabine s'étendent en circuit fermé entre deux stations 14,15 en passant dans les stations sur des poulies 16,17; 18, 19 d'extrémités à axe vertical 20, 21 ; 22, 23. Les poulies d'extrémités 16, 17 de la station 14 sont des poulies motrices entraînant les câbles 10,12 en continu à une même vitesse. Les véhicules 24 sont accouplés aux câbles 10, 12 en ligne, plusieurs véhicules 24 pouvant se succéder ou être échelonnés le long des câbles 10, 12. A l'entrée d'une station 14, 15, les véhicules 24 sont désaccouplés des câbles 10, 12 et pris en charge par des rails de transfert 26 passant devant des quais de débarquement et d'embarquement. Les passagers montent et descendent des véhicules 24 à l'arrêt ou circulant à faible vitesse et à la sortie de la station les véhicules 24 sont accélérés par tout moyen approprié avant d'être réaccouplés aux câbles 10, 12 sur la voie opposée. Ce fonctionnement des télécabines est bien connu des spécialistes.
  • Les câbles 10, 12 porteurs-tracteurs sont parallèles et à un même niveau en ligne, leur écartement constant étant compris dans la fourchette de 0,25 à 1,00 m, de préférence voisin de 75 cm. Chaque câble 10, 12 a un diamètre compris dans la fourchette dé 0,035: à 0,050 m, de préférence voisin de 0,042 m. Les câbles 10, 12 sont supportés par des pylônes 28 de support et de maintien de structure identique, seul un pylône de support étant décrit ci-dessous en référence aux figures 1 et 2. A chacune des extrémités d'une travée ou potence 30 est suspendu un étrier 32 un U renversé respectivement de support des câbles 10, 12 de la voie montante et de la voie descendante. A l'extrémité de chaque branche de l'étrier 32 est fixé un axe 38, 40 d'articulation d'un balancier 34, 36 portant les galets 42 de support des câbles 10, 12. L'écartement des balanciers 34,36 correspond à celui des câbles 10,12 et l'ensemble étrier 32, balanciers 34,36 est symétrique par rapport au plan vertical de symétrie des câbles 10,12 de trace X-X sur la fig. 1. Les axes 38, 40 sont parfaitement alignés, leurs supports ayant été centrés faceà face en usine sur une même aléseuse. Les balanciers 34, 36 se débattent dans des plans verticaux parallèles et comportent un nombre de balanciers secondaires approprié à la charge. Pour conserver la parfaite symétrie des balanciers 34, 36 il est avantageux de relier les axes secondaires, voire tertiaires, par des étriers 44 en U renversé imposant un pivotement symétrique. Sur les figures 11 à 13, seuls les derniers éléments des balanciers 34, 36 sont reliés entre eux par des étriers 44, disposés à l'entrée, par rapport au sens de défilement du câble 10, 12 de l'élément. Les câbles 10, 12 passent sur les galets 42 des balanciers de support 34, 36, de la manière usuelle, et il estfacile de voir que l'intervalle entre les câbles 10, 12 est entièrement dégagé pour le passage des véhicules 24. Les câbles 10, 12 passent évidemment sous les galets d'un balancier de maintien (non représenté). Les flasques, intérieurs par rapport la voie, des galets 42 sont agrandis pour bien encadrer les câbles 10, 12 et empêcher tout déraillement.
  • Chaque véhicule 24 comprend une suspension 46 articulée à sa partie supérieure à un axe transversal 58 d'un chariot 48 portant quatre pinces 50, 52, 54, 56 d'accouplement aux câbles 10, 12. La largeur du corps du chariot 48 est légèrement inférieure à l'écartement entre les câbles 10, 12 tandis que les mors 60, 62 des pinces 50 à 56 font saillie des deux côtés latéraux du chariot pour enserrer les câbles 10, 12. Les figures 5 et 6 représentent schématiquement une pince prenant appui sur le câble et ayant un mors mobile 62 disposé respectivement à l'intérieur et à l'extérieur. Les mors 60, 62 sont sollicités en position de fermeture par un ressort 64 et chaque pince 50 à 56 comporte un levier de commande 66 coopérant dans les stations avec une came ou un rail s'étendant le long de la trajectoire du chariot 48 pour commander l'ouverture et la fermeture de la pince. Les pinces peuvent être d'un type différent, notamment de ceux décrits ci-dessous.
  • Les pinces 50 à 56 peuvent être décalées dans la direction longitudinale du chariot pour des raisons d'encombrement, mais il est clair que des pinces d'une structure différente peuvent être utilisées et que les pinces 50, 54; 52, 56 se faisant face peuvent être alignées et imbriquées. Les ressorts peuvent être coaxiaux et certains éléments, notamment le levier de commande 66, peuvent être communs à plusieurs pinces. Les leviers de commande 66 sont disposés face à face pour que les forces de manoeuvre s'équilibrent et n'exercent aucune réaction transversale sur le chariot 48.
  • Les mors 60, 62 sont conformés pour passer sur et sous les galets 42 sans à-coup notable et la hauteur de saillie du chariot 48 au-dessus des câbles 10, 12 est réduite au maximum pour faciliter le dégagement. De plus, en tout plan perpendiculaire à la ligne, cette hauteur de saillie est égale d'un câble à l'autre, de façon à éviter toute torsion au chariot lors du passage sous les balanciers compression. Le chariot 48 porte quatre roues 68 pour le déplacement sur les rails 26 des stations 14, les roues 68 étant disposées face à face. Des blocs (non représentés) élastiques de fixation des pinces 50-56 autorisent un léger pivotement.
  • Un autre mode de réalisation du chariot 48 est illustré par les figures 7 à 10, les quatre pinces 50, 52, 54, 56 étant du type décrit dans la demande de brevet EP-A-56.919 (correspondant à la demande française FR-A-2.497.750 publiée le 16 juillet 1982). Le mors mobile 62 est porté par le levier de commande 66 articulé sur un corps de pince 63 prenant appui sur le câble. Le levier 66 porte à l'extrémité opposée un galet de commande. Le ressort 64 attaque ladite extrémité opposée pour solliciter la pince en position de serrage du câble 10. Les pinces 54,56 associées au câble 12 sont disposées symétriquement de part et d'autre de l'axe transversal Y-Y du chariot 48 tandis que les pinces 50, 52, également symétriques, encadrent les pinces 54, 56. Les points fictifs d'accouplement des pinces 54, 56; 50, 52 aux câbles 10, 12 sont ainsi situés sur l'axe Y-Y, évitant une dissymétrie d'entraînement du chariot 48. Le fonctionnement des pinces est évident et le lecteur peut se référer à la demande de brevet précitée pour de plus amples détails. Dans les stations, les roues 68 roulent sur deux rails parallèles 26, l'un des rails étant avantageusement supprimé dans les courbes, ce qui facilite les aiguillages. Le chariot 48 porte deux plaques de friction 70 susceptibles de coopérer avec des roues d'entraînement 72 dans les stations (fig. 20). Cet entraînement est parfaitement symétrique.
  • La suspension 46 est droite dans le plan de symétrie des câbles 10,12 et le seul mouvement autorisé, relatif au chariot 48, est un pivotement sur l'axe 58 se traduisant par un débattement dans ledit plan de symétrie. On comprend que la suspension 46 est toujours perpendiculaire à l'axe 58, c'est-à-dire à la ligne de niveau des deux câbles 10, 12. Comme les câbles 10, 12 sont obligatoirement au même niveau au droit des balanciers 34, 36, la suspension 46 est verticale et la stabilité des véhicules 24 au passage des pylônes est remarquable. Le couple de rappel exercé sur la cabine 24 à l'entrée des balanciers 34, 36 est proportionnel à l'écartement des câbles 10, 12 et on a intérêt à écarter les câbles 10, 12 au maximum. Un grand écart permet d'autre part le logement du chariot 48 entre les câbles 10,12 et la déviation des câbles 10, 12 dans les stations 14 par des galets à axe vertical de la manière décrite ci-dessous. Inversement, les structures de support, notamment les étriers 32, 44, deviennent rapidement trop importantes et une distance d'écartement de 75 cm est un compromis valable. La suspension à deux câbles 10, 12 de forte section assure une sécurité accrue et les véhicules 24 peuvent être relativement grands, par exemple pour le transport de plusieurs dizaines de passagers.
  • Les câbles 10, 12 forment deux boucles sans fin s'étendant entre les stations d'entraînement 14 et de mise sous tension 15. Les poulies d'entraînement 16, 17 de la station 14 sont superposées et coaxiales, l'écartement entre les deux poulies 16, 17 étant très faible. Les poulies d'entraînement 16, 17 sont avantageusement munies chacune d'une piste de freinage 71, 73 prolongeant le flasque intérieur de la poulie et d'inertie moindre que la poulie. Un étrier de freinage 74 enserre les deux pistes 71, 73 de manière que l'un 76 des patins de freinage engage la face libre de l'une des pistes et l'autre 78 des patins engage la face libre de l'autre piste. Le frein est par exemple du type hydraulique imposant un rapprochement des patins 76, 78 qui sont appliqués sur les pistes 71, 73 avec une même force, l'étrier 74 étant monté flottant. Lors d'un freinage, les pistes 71, 73 sont appliquées l'une sur l'autre, de façon à solidariser les poulies 16, 17.
  • Les axes 20, 21 des poulies 16,17 sont reliés par des transmissions 80, 82 aux planétaires 84, 86 d'un mécanisme différentiel 88 dont les pignons 90 sont entraînés par un moteur 92. Ce mécanisme différentiel peut être hydraulique ou électrique, le résultat étant un entraînement à force égale des deux câbles 10, 12 et un rééquilibrage permanent de ces forces.
  • En se référant plus particulièrement à la fig. 15, on voit que les câbles 10,12 passent sur des galets de guidage 92 à l'entrée et à la sortie des poulies 16, 17 pour définir les deux brins de chaque voie, l'écartement des câbles 10, 12 étant légèrement augmenté sur des tronçons, avant et après les poulies pour les raisons décrites ci-dessous. La disposition des câbles 10,12 est symétrique, le câble 10 à l'intérieur de la voie avant la poulie se trouvant à l'extérieur à la sortie et inversement, les deux boucles passant ainsi sur le même nombre de galets de guidage 92 et subissant un même freinage ou une même résistance de défilement.
  • En se référant plus particulièrement aux fig. 16 à 19, on voit que les câbles 10, 12 passent dans la station de mise sous tension 15 sur des poulies folles de renvoi 18, 19 identiques, mais décalées latéralement d'une distance correspondant à l'écartement des câbles. Les poulies 18, 19 sont montées sur des coulisseaux 94, 95 mobiles suivant la direction générale de la ligne et sollicités par des vérins 96, 97 dans le sens de mise sous tension des câbles 10, 12. Les vérins 96, 97 sont strictement identiques et alimentés par fa même source de pression 98, de façon à fournir des tensions égales aux câbles 10, 12, tout en compen- santde faibles différences de longueur des boucles de câbles 10, 12. Les vérins 96, 97 constituent un palonnier pouvant être mécanique. Les vérins 96, 97 peuvent être remplacés par deux contrepoids ou tout autre dispositif analogue. Le fonctionnement en ligne de la télécabine se passe de commentaire et seul le passage dans la station 15 est décrit ci-dessous en référence aux figures 18 à 23, le passage dans la station 14 étant identique. En admettant que les câbles 10, 12 défilent en synchronisme dans lesens indiqué par la flèche sur les figures 18, 19, la voie inférieure sur la figure 18 constitue la voie d'entrée, c'est-à-dire la voie de désaccouptement et de dégagement du véhicule 24 des câbles 10,12 et la voie supérieure celle de sortie, en l'occurrence d'engagement et de réaccouplement du véhicule 24 aux câbles 10, 12.
  • Lorsque le véhicule 24 entre dans la station 15, les roues 68 du chariot 48 roulent sur les rails 26 représentés en traits mixtes, et les leviers 66 commandent l'ouverture de toutes les pinces 50 à 56 de la manière usuelle (position A, fig. 20). Les rails 26 dévient par lasuite légèrement lechariot 48 vers le haut par rapport aux câbles 10,12 pour dégager les pinces 50. à 56 des câbles 10, 12 (position B, fig. 21). En aval de la position B, vu dans le sens de défilement des câbles 10, 12, ces derniers passent sur des galets de guidage 92 à axe vertical pour diverger et atteindre un écartement supérieur à la largeur totale du chariot 48, les mors 60, 62 étant en position ouverte. Dans cette zone, la trajectoire des rails 26 s'abaisse par rapport aux câbles 10,12, qui passent sous des galets de guidage 100 à axe horizontal pour dégager le chariot 48 vers le bas (position D, fig. 22 et position C, fig. 23), le chariot 48 passant sous les poulies d'extrémités 18,19. Le ralentissement du véhicule 24 peut être engagé dès l'ouverture des pinces 50 à 56. La sortie de la station 15 est aménagée d'une manière symétrique pour l'accouplement des véhicules 24 aux câbles suivant les séquences inverses: passage du chariot 48 sous les poulies 18, 19, insertion du chariot entre les câbles 10, 12, rapprochement des câbles, enfourchement des mors sur les câbles avec synchronisation de la vitesse du chariot avec celle des câbles, et fermeture des pinces. La symétrie des deux boucles de câbles 10, 12 est conservée.
  • Les véhicules 24 dégagés des câbles circulent dans la station sur les voies usuelles de transfert et éventuellement de stockage, permettant un débarquement et embarquement des passagers à l'arrêt ou à vitesse réduite de circulation. A la sortie, les véhicules 24 sont réaccouplés aux câbles 10,12 de la manière précitée. L'aménagement de l'autre station d'extrémité 14 est identique et n'a pas besoin d'être décrit. On peut remarquer que toutes ces opérations peuvent être facilement automatisées comme dans les télécabines conventionnelles et qu'elles s'effectuent sans arrêt du véhicule en ne nécessitant que des dispositifs classiques dont l'efficacité et la fiabilité ont été éprouvées.
  • La capacité importante des véhicules permet de limiter le nombre de véhicules en ligne tout en assurant un débit notable et il est possible de stocker les véhicules 24 sur les rails de transfert 26 des stations en assurant un départ à la demande. On évite ainsi un fonctionnement à vide et toute usure inutile
  • La figure 24 illustre une variante de réalisation de l'invention dans laquelle la suspente 46 des véhicules 24 est articulée à un chariot 102, dont le châssis 104 en U encadre extérieurement les deux câbles 10, 12. Les pinces 50-56, portées par le châssis 104, sont orientées vers l'intérieur en direction des câbles 10, 12 enserrés par les mors 62 se faisant face. Les pylônes sont agencés en conséquence pour un fibre passage du chariot 102, en montant les balanciers à galets de support 42 aux deux extrémités d'une traverse 106 s'étendant transversalement entre les deux câbles 10,12. Cette disposition inverse ne modifie pas le fonctionnement de l'installation, mais nécessite un pincement des câbles 10, 12 dans les stations pour le dégagement ou l'engagement du chariot 104. L'agencement du chariot 104 est plus compliqué et plus encombrant, celui des pylônes étant par contre plus simple.
  • Il est clair que l'invention est applicable à des installations ayant un nombre de pinces différent ou des pinces d'une structure différente.
  • La fig. 25 montre un mode de mise en oeuvre préféré des balanciers de support des câbles 10, 12. Chaque balancier à galets de support 42 est porté par l'extrémité d'un bras 108,110 articulé en 112,114 à la potence 30 pour permettre un débattement dans le plan transversal aux câbles 10, 12. Une entretoise 116 relie les bras 108, 110 pour constituer un quadrilatère déformable maintenant les galets 42 parallèles et à écartement constant quel que soit le débattement des bras 108, 110.
  • L'entraînement des poulies 16, 17 peut comprendre un différentiel électrique schématiquement représenté à la figure 26. Chaque poulie 16, 17 est entraînée par un moteur électrique 118,120, parfaitement identique. Les deux moteurs 118, 120 sont reliés par des lignes d'alimentation 122, 124 à une même source de puissance électrique 126. Des appareils de mesure 128 insérés dans les lignes 122,124 signalent en permanence l'intensité et la tension du courant d'alimentation de chaque moteur 118,120. Les deux boucles de câbles étant symétriques, les puissances fournies par les moteurs 118, 120 sont identiques et les intensités et tensions sont les mêmes. Il subsiste bien entendu toujours une légère dissymétrie qui se traduit par une différence des intensités et/ou tensions, mais cette différence de mesure peut être repérée ou compensée. En fonctionnement normal, les deux câbles sont entraînés à la même vitesse et la différence de mesure reste constante. Un incident, par exemple un accroissement de la résistance à l'avancement de l'un des câbles, est automatiquement signalé par une variation de ladite différence de mesure et selon l'importance de cette variation, le défaut est simplement signalé ou provoque l'arrêt de l'installation.
  • La figure 27 illustre une variante de réalisation dans laquelle les deux pinces 50, 54, respectivement 52, 56 sont superposées, les câbles 10, 12 étant légèrement décalés en hauteur. Ce décalage peut correspondre à celui des poulies d'extrémités dans les stations.

Claims (14)

1. Installation de transport à câble aérien, notamment une télécabine, ayant des véhicules (24) accouplés en ligne à deux câbles parallèles porteurs-tracteurs (10, 12) à défilement continu par une suspente (46) s'étendant dans le plan vertical équidistant des deux câbles et articulée à un chariot (48) portant au moins une paire de pinces débrayables (50-56) pour solidariser le chariot (48) aux deux câbles en ligne et pour désaccoupler le véhicule (24) dans les stations par débrayage des pinces (50-56) pour un embarquement et/ou débarquement à vitesse réduite ou nulle des passagers, caractérisée en ce que chaque pince (50-56) comporte un corps de pince (63) prenant appui en position embrayée de la pince sur la face supérieure du câble (10, 12) et présentant une faible saillie vers le haut et une paire de mors (60, 62) faisant saillie dudit corps (63) en étant ouverts vers le bas, pour enserrer latéralement le câble, l'extrémité des mors affleurant ou dépassant faiblement la face inférieure du câble pour faciliter le passage sur et sous les galets (42) de support des câbles et que dans les stations (14, 15) des galets de guidage (92) dévient lesdits câbles pour modifier leur écartement et permettre ainsi un passage du chariot (48) désaccouplé des câbles, d'une position supérieure aux câbles à une position inférieure, ou réciproquement.
2. Installation selon la revendication 1, caractérisée en ce que chaque chariot (48) comporte deux paires de pinces (50-56) pour former en position accouplée un quadrilatère rigide de liaison entre les deux câbles (10, 12) imposant un déplacement synchrone des câbles.
3. Installation selon la revendication 2, caractérisée en ce que lesdites pinces (50-56) sont imbriquées, les deux pinces (50,52; 54, 56) accouplées à un même câble (10,12) étant disposées symétriquement de part et d'autre de l'axe transversal de symétrie du chariot (48) passant par les points résultants d'accouplement aux câbles.
4. Installation selon la revendication 3, caractérisée en ce que ladite faible saillie vers le haut des pinces (50-56) est symétrique pour éviter toute dissymétrie au passage des pinces sous des galets de compression.
5. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que les deux câbles (10, 12) forment deux boucles sans fin présentant une parfaite symétrie de frottement, de tension, de mise en mouvement et donc de trajectoire et de vitesse.
6. Installation selon la revendication 5, caractérisée en ce que chaque câble (10, 12) passe dans la station motrice (14) sur une poulie d'entraînement (16, 17), les deux poulies d'entraînement étant reliées par un système différentiel (88) rééquilibrant à chaque instant les efforts de traction et les vitesses de déplacement des deux câbles.
7. Installation selon la revendication 6, caractérisée en ce que ledit système différentiel comporte une source (126) de courant électrique alimentant deux moteurs électriques (118, 120) identiques, chaque moteur entraînant l'un des câbles (10,12), et des appareils de mesure (128) pour détecter toute différence d'alimentation des deux moteurs et toute variation de cette différence traduisant un incident sur l'un des câbles.
8. Installation selon la revendication 6 ou 7, caractérisée en ce que les deux poulies d'entraînement (16, 17) sont superposées à faible écartement pour permettre une rotation relative libre et qu'un dispositif de freinage (74) coopère avec lesdites deux poulies pour solidariser en rotation ces dernières lors d'un freinage.
9. Installation selon la revendication 5, caractérisée en ce que chaque câble (10, 12) passe dans la station de mise sous tension (15) sur une poulie folle de renvoi (18, 19), les deux poulies folles étant montées sur un palonnier, de manière à ce qu'à tout moment la tension soit la même dans les quatre brins de câble.
10. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que chaque pylône (28) comporte deux balanciers symétriques (34, 36), chacun associé à l'un desdits câbles (10,12) et que des éléments conjugués des deux balanciers sont reliés mécaniquement (44) de façon à assurer un pivotement symétrique desdits éléments, et un écartement constant correspondant à l'écartement des pinces (50-56) des chariots.
11. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que les pinces (50, 56) font saillie latéralement de part et d'autre du chariot (48) intercalé entre les deux câbles (10, 12), lesdits câbles étant supportés en ligne par des balanciers (34, 36) portés par des étriers (32) en U renversé solidaires des pylônes et lesdits câbles étant déviés à écartement dans les stations pour un dégagement vers le bas du chariot désaccouplé préalablement des câbles.
12. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que chaque pylône (28) comporte deux balanciers symétriques (34,36), chacun associé à l'un desdits câbles (10,12) et fixé à l'un des côtés (108,110) d'un parallélogramme articulé permettant un débattement latéral symétrique par rapport à la direction longitudinale des câbles (10, 12).
13. Installation selon la revendication 1, caractérisée en ce que les deux câbles (10, 12) sont portés par des balanciers fixés aux extrémités d'une traverse (106) suspendue à un pylône, les pinces (50-56) portées par le chariot encadrant les deux câbles de l'extérieur.
14. Installation selon l'une quelconque des. revendications précédentes, caractérisée en ce que les pinces (50,52) accouplées à l'un (10) descâb- les sont superposées aux pinces (54, 56) accouplées à l'autre (12) des câbles, les deux câbles (10, 12) étant décalés en hauteur.
EP83420072A 1982-04-28 1983-04-27 Télécabine à deux câbles porteurs-tracteurs Expired EP0093680B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83420072T ATE17690T1 (de) 1982-04-28 1983-04-27 Kabinenbahn mit zwei trage- und zugkabeln.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8207606 1982-04-28
FR8207606A FR2525981B1 (fr) 1982-04-28 1982-04-28 Telecabine a deux cables porteurs tracteurs

Publications (2)

Publication Number Publication Date
EP0093680A1 EP0093680A1 (fr) 1983-11-09
EP0093680B1 true EP0093680B1 (fr) 1986-01-29

Family

ID=9273633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83420072A Expired EP0093680B1 (fr) 1982-04-28 1983-04-27 Télécabine à deux câbles porteurs-tracteurs

Country Status (4)

Country Link
EP (1) EP0093680B1 (fr)
AT (1) ATE17690T1 (fr)
DE (1) DE3361984D1 (fr)
FR (1) FR2525981B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712941A1 (de) * 1986-06-03 1987-12-10 Doppelmayr & Sohn Mehrfachfoerderseil-umlaufbahn

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548613B1 (fr) * 1983-07-06 1985-11-15 Pomagalski Sa Dispositif de degagement d'une traverse d'entrainement par friction d'une pince de telesiege
FR2548614B1 (fr) * 1983-07-08 1985-12-06 Montaz Mautino Ets Pince debrayable pour installation de transport par deux cables porteurs-tracteurs
FR2548615B1 (fr) * 1983-07-08 1985-10-04 Montaz Mautino Ets Pince pour installation de transport par cables comportant une pluralite de cables paralleles porteurs-tracteurs
FR2552726B1 (fr) * 1983-10-03 1985-11-29 Creissels Denis Dispositif d'entrainement des cables d'une installation de transport a cables aeriens
FR2564403B1 (fr) * 1984-05-18 1986-10-10 Montaz Mautino Ets Moyens de suspension et d'accouplement de vehicules pour installation de transport a deux cables aeriens porteurs-tracteurs a brins paralleles
FR2564814B1 (fr) * 1984-05-24 1986-10-10 Montaz Mautino Ets Procede et installation pour le degagement et l'engagement des chariots supports de vehicules, hors et entre les cables, dans une installation de transport par cable aerien comportant deux cables porteurs-tracteurs a brins paralleles
FR2565917B1 (fr) * 1984-06-19 1986-11-28 Montaz Mautino Ets Dispositif de freinage pour installation de transport de vehicules par cables aeriens comportant deux brins paralleles de cables porteurs tracteurs sur toute la longueur de chaque parcours des vehicules
FR2569643B1 (fr) * 1984-08-28 1986-09-26 Montaz Mautino Ets Procede pour l'engagement et le degagement, dans et hors des cables, des moyens de suspension d'un vehicule d'une installation de transport par cables aeriens comportant deux cables porteurs-tracteurs a brins paralleles et moyens pour sa mise en oeuvre
FR2572698B1 (fr) * 1984-11-02 1988-05-13 Creissels Denis Telepherique ou telecabine multicable
JPS61160349A (ja) * 1985-01-04 1986-07-21 ポマガルスキイ ソシエテ アノニム 空中ケ−ブル輸送設備用支柱
JPS61160350A (ja) * 1985-01-04 1986-07-21 ポマガルスキイ ソシエテ アノニム 空中ケ−ブル輸送設備
EP0187552B1 (fr) * 1985-01-04 1990-01-03 Pomagalski S.A. Installation de transport à câbles aériens
FR2575986B1 (fr) * 1985-01-17 1987-01-16 Creissels Denis Telecabine a deux cables porteurs tracteurs
FR2575985B1 (fr) * 1985-01-17 1987-01-16 Creissels Denis Ascenseur horizontal a cables aeriens
ZA862007B (en) * 1985-04-15 1987-03-25 Otis Elevator Co Polyethylene sheaves for rope-drawn transportation system
FR2581015B1 (fr) * 1985-04-25 1988-08-26 Pomagalski Sa Pince de serrage d'un cable pour installation de transport ou de remorquage a cable aerien; procedes pour associer, dissocier une telle pince au cable correspondant et installation de transport a cable aerien comportant une telle pince
FR2591173B1 (fr) * 1985-12-11 1988-10-21 Pomagalski Sa Dispositif de maintien de cables et installation de transport a cables aeriens comportant un tel dispositif
FR2596003B1 (fr) * 1986-03-24 1990-11-30 Pomagalski Sa Installation de transport a cables aeriens a suspente decalee
JP2511035B2 (ja) * 1986-05-12 1996-06-26 ポマガルスキイ ソシエテ アノニム 空中ケ−ブル輸送装置
FR2612144B1 (fr) * 1987-03-11 1991-09-06 Pomagalski Sa Installation de transport aerien a deux cables porteurs-tracteurs a poulies decalees verticalement
US4848241A (en) * 1987-03-30 1989-07-18 Zygmunt Alexander Kunczynski Aerial tramway system and method having parallel haul ropes
FR2695897B1 (fr) * 1992-09-18 1994-11-18 Reel Sa Installation de transport par cables.
ITMI20050800A1 (it) 2005-05-03 2006-11-04 Ferruccio Levi Sistema di movimentazione per impianto funiviario comprendente due funi traenri
CN101941440B (zh) * 2010-09-19 2012-11-14 湖南路桥建设集团公司 一种用于索道运输系统的吊鞍
CN102442317B (zh) * 2011-12-21 2014-07-30 国家电网公司 装配式索道运输装置
CN110217245B (zh) * 2019-05-06 2023-07-18 东莞理工学院 基于受力分析缆车人数重量监测系统及其监测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1249949A (fr) * 1959-11-24 1961-01-06 Const Aero Navales Installation de téléphérage
FR1453517A (fr) * 1965-08-12 1966-06-03 Pomagalski Jean Sa Dispositif d'accouplement de charges suspendues à un câble
FR2497750A1 (fr) * 1981-01-09 1982-07-16 Pomagalski Sa Pince d'un telesiege ou telecabine debrayable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712941A1 (de) * 1986-06-03 1987-12-10 Doppelmayr & Sohn Mehrfachfoerderseil-umlaufbahn

Also Published As

Publication number Publication date
FR2525981A1 (fr) 1983-11-04
ATE17690T1 (de) 1986-02-15
FR2525981B1 (fr) 1985-06-07
DE3361984D1 (en) 1986-03-13
EP0093680A1 (fr) 1983-11-09

Similar Documents

Publication Publication Date Title
EP0093680B1 (fr) Télécabine à deux câbles porteurs-tracteurs
EP0491632B1 (fr) Télécabine ou télésiège débrayable à deux boucles de câble
US4509430A (en) Twin suspension/haulage cable gondola lift
EP0184476B1 (fr) Téléphérique ou télécabine multicable
US4957047A (en) Cable transport installation
CA2960233C (fr) Vehicule ferroviaire et installation de funiculaire
CA2129697A1 (fr) Dispositif de stabilisation des pinces d'un teleporteur
EP0018932B1 (fr) Dispositif de transport funiculaire à double câble, bouclé sur lui-même et à variation de vitesse
EP0187552B1 (fr) Installation de transport à câbles aériens
US5363951A (en) Over and under belt conveyor system
EP0263035B1 (fr) Installation de transport aérien à deux câbles porteurs-tracteurs à poulies décalées
FR2715006A1 (fr) Installation de transport à deux câbles aériens.
EP0282418B1 (fr) Installation de transport aérien à deux cables porteurs-tracteurs à poulies décalées verticalement
EP0051594B1 (fr) Systeme de transport automatique a vehicules passifs tractes par cable
US4608930A (en) Cableway with transport path having one or more lateral inflection points
EP0454596A1 (fr) Station d'extrémité de tension d'un téléporteur
EP0265354B1 (fr) Chariot de sauvetage notamment pour une télécabine ou un télésiège
EP3383718B1 (fr) Installation de transport aerien
EP0192504B1 (fr) Télécabine à deux câbles porteurs tracteurs
FR2933359A1 (fr) Installation de transport a deux boucles de cable raccordees dans un local intermediaire
FR2935945A1 (fr) Installation de telepherique.
EP0573344A1 (fr) Système de transport comprenant des véhicules roulant sur des rails et tractés par un câble
FR2801267A1 (fr) Remontee mecanique comportant un cable sans fin et balancier support/compression pour une telle remontee mecanique
FR2707095A1 (fr) Dispositif de sécurité, notamment pour pylône de soutènement d'un téléphérique.
FR2689846A1 (fr) Télésiège à débrayage simplifié.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR IT LI

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR IT LI

17P Request for examination filed

Effective date: 19840307

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

AK Designated contracting states

Designated state(s): AT CH DE FR IT LI

REF Corresponds to:

Ref document number: 17690

Country of ref document: AT

Date of ref document: 19860215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3361984

Country of ref document: DE

Date of ref document: 19860313

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: POMAGALSKI S.A.

Effective date: 19861027

ITPR It: changes in ownership of a european patent

Owner name: ATTO DI LICENZA D'USO;AGUDIO S.P.A.

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: POMAGALSKI S.A.

Effective date: 19861027

ITTA It: last paid annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19910724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970505

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980415

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990427

REG Reference to a national code

Ref country code: FR

Ref legal event code: JU

Ref country code: FR

Ref legal event code: CL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020430

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030426

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO