EP0088406B1 - Soupape de réglage pour assemblage de piston et de cylindre à double effet - Google Patents

Soupape de réglage pour assemblage de piston et de cylindre à double effet Download PDF

Info

Publication number
EP0088406B1
EP0088406B1 EP19830102160 EP83102160A EP0088406B1 EP 0088406 B1 EP0088406 B1 EP 0088406B1 EP 19830102160 EP19830102160 EP 19830102160 EP 83102160 A EP83102160 A EP 83102160A EP 0088406 B1 EP0088406 B1 EP 0088406B1
Authority
EP
European Patent Office
Prior art keywords
valve
fluid
plunger
cylinder
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830102160
Other languages
German (de)
English (en)
Other versions
EP0088406A2 (fr
EP0088406A3 (en
Inventor
Charles J. Bowden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPX Technologies Inc
Original Assignee
General Signal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Signal Corp filed Critical General Signal Corp
Publication of EP0088406A2 publication Critical patent/EP0088406A2/fr
Publication of EP0088406A3 publication Critical patent/EP0088406A3/en
Application granted granted Critical
Publication of EP0088406B1 publication Critical patent/EP0088406B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface

Definitions

  • the present invention relates to hydraulic valves in which fluid flow is controlled by a selectively positionable plunger or spool.
  • valves having means for routing fluid from the contracting side of an associated double-acting piston and cylinder assembly directly to the expanding side of the assembly, to prevent cavitation on the expanding side when the capacity of the hydraulic pump in the system is insufficient.
  • Such valves are often referred to as regenerative control valves.
  • hollow plungers have been used in which both load check valves and regeneration valves are located within the plunger, an arrangement which typically requires that one of the load check valves be biased by a rather strong spring to ensure the generation of adequate back pressure to operate the regeneration valve.
  • U.S. Patent 3,459,219 is an example of such a control valve. In such a case the strong spring on the load check valve requires that the associated hydraulic pump operate at higher pressure in order to open the load check valve during normal operation.
  • valve assembly of U.S. Patent 3,459,219 incorporates spring biased poppet valves having biasing springs which are subject to constant use which has the effect of shortening the spring life.
  • U.S. Patent 3,195,559 is an example of such a valve.
  • the presence of such a separate regeneration control valve complicates the overall control system and may lead to increased costs.
  • the valve assembly of U.S. Patent 3,195,559 functions in a different manner from the valve of this invention in that it utilizes, inter alia, a restrictor sleeve and a fixed orifice.
  • the pressure responsive valve comprises a thin-walled cylindrical valve guide which surrounds the plunger and comprises at least one passage positioned to permit flow of fluid from the contracting side of the piston and cylinder assemblies to the outlet chamber.
  • a thin-walled cylindrical valve element is slidably engaged with the valve guide and means are provided which are responsive to the pressure of fluid from the contracting side of the piston and cylinder assembly to move the valve element relative to the passage in the valve guide so that fluid flows to the outlet chamber.
  • the valve element is provided with a radially inwardly projecting annular piston surface against which acts the pressure of fluid from the contracting side of the piston and cylinder assembly.
  • Means such as a coil spring are provided for biasing the valve element into contact with an adjacent annular valve seat.
  • the cylindrical valve element preferably is provided with a chamfer on its outer surface adjacent its seating surface.
  • FIGS 1-4 illustrate a preferred embodiment of the invention in which a valve body 10 is provided in the conventional manner with a Y-core inlet chamber 12 for receiving fluid frbm a source such as an hydraulic pump and a central outlet chamber 14 for delivering fluid to a sump or reservoir.
  • Chambers 12 and 14 both open into a cylindrical bore 16 which extends through body 10 and communicates with a plurality of flow chambers.
  • a first essentially annular cylinder chamber 18 extends around bore 16 to the left of inlet and outlet chambers 12, 14, as illustrated, and a second annular cylinder chamber 20 extends around bore 16 to the right of chambers 12, 14.
  • an annular cylinder outlet chamber 22 extends around bore 16.
  • a second annular cylinder outlet chamber 24 extends around bore 16.
  • Outlet chambers 22, 24 typically are interconnected with central outlet chamber 14 to permit flow to the reservoir, not illustrated.
  • a plunger 26 is mounted for sliding movement.
  • a through bore 28 in plunger 26 is closed at each end by a pair of threaded caps 30, 32.
  • Cap 32 includes a means 34 for attachment of a suitable valve actuator mechanism in the familiar fashion.
  • Cap 30 cooperates with a conventional double-acting return mechanism 36 which repositions the valve in the neutral position illustrated in Figure 1 upon release of the valve from its raise or lower positions.
  • a pair of low-pressure seals 38, 40 are captured within valve body 10 in the familiar manner to prevent leakage past plunger 26 to the exterior of the valve assembly.
  • Plunger 26 comprises a central, circumferential land 42; a left, circumferential land 44; and a right, circumferential land 46, all three of which are closely fitted within bore 16 to provide a more or less leak-free sliding joint.
  • Cylinder chambers 18 and 20 are in communication with a conventional double-acting piston and cylinder assembly 48 which comprises a cylinder 50, piston 52 and piston rod 54 which extends beyond cylinder 50, as illustrated schematically.
  • the rod end of cylinder 50 is in communication via a pressure line 56 with cylinder chamber 18 and the head end of cylinder 50 is in communication via a line 58 with cylinder chamber 20. Because lands 44 and 46 also prevent flow from chambers 18 and 20, the load 60 supported by piston rod 54 is hydraulically locked in position.
  • Figure 2 illustrates the valve of Figure 1 with plunger 26 shifted to the right in order to raise load 60.
  • a left counterbore 62 slidably receives a load check piston 64 which is biased by a spring 66 into contact with an annular valve seat 68 formed at the end of counterbore 62.
  • load check 64 prevents flow of fluid from cylinder chamber 18 into the interior of the plunger through a plurality of radial passages 70 provided through the wall of the plunger 26 in position to communicate with the cylinder chamber.
  • a right counterbore 72 receives a load check piston 74 which is biased by a spring 76 into contact with an annular valve seat 78 formed at the end of counterbore 72.
  • lands 42, 44 and 46 prevent flow of fluid from inlet chamber 12 to outlet chamber 14; however, a plurality of radially extending passages 82 provided through the wall of plunger 26 permit flow from inlet chamber 12 into the interior of plunger 26, past load check 64, through radial passages 70, into annular cylinder chamber 18, through line 56 and into the rod end of cylinder 50 to cause piston 52 and load 60 to move upward, as illustrated in Figure 2.
  • the pressure at which load check 64 opens is dependent upon the spring constant and degree of compression of spring 66, which may be chosen as needed for a given application.
  • fluid leaving cylinder 50 on the contracting side of piston 52 flows through line 58 into annular cylinder chamber 20 and through a plurality of radial passages 84 provided through the wall of plunger 26 in position to communicate with chamber 20 when the plunger is positioned to raise the load. Fluid leaving passages 84 then flows past load check 74, through radial passages 80 and into cylinder outlet chamber 24 from which it returns to the reservoir.
  • the opening pressure of load check 74 also may be varied in the manner previously described for load check 64.
  • Figure 3 illustrates the valve of Figure 1 when plunger 26 has been moved to the left in order to allow load 60 to drop under the influence of gravity or to be lowered under the control of the pump.
  • lands 42, 44 and 46 block flow of fluid from inlet chamber 12 to outlet chamber 14; however, radial passages 84 permit flow from inlet chamber 12 into the interior of plunger 26, past load check 74, through radial passages 80, into annular cylinder chamber 20, through line 58 and into the head end of cylinder 50, the volume of which is expanding as the load moves downward.
  • fluid expelled from the rod end of cylinder 50 passes through line 56, into annular cylinder chamber 18, through radial passages 82, past load check 64 and through radial passages 70 where the fluid encounters a pressure responsive sleeve check valve 86 according to the present invention.
  • FIG. 4 An enlarged, fragmentary sectional view of check valve 86 is shown in Figure 4 as the valve would appear when plunger 26 is in its neutral position.
  • a counterbore 88 is provided in valve body 10 and extends across cylinder outlet chamber 22.
  • a thin-walled cylindrical valve guide 90 is seated on the annular bottom surface 92 of counterbore 88. At its outer end, guide 90 comprises a radially outwardly extending flange 94 which engages the side walls of counterbore 88.
  • guide 90 is staked or otherwise secured within counterbore 88 to prevent its outward movement in counterbore 88 into contact with low pressure seal 38, as might occur in response to high pressure fluid acting on the valve guide.
  • a radially inwardly projecting seal land 96 is included on guide 90 to provide a sliding seal between the guide and plunger 26.
  • a plurality of radially extending passages 98 are provided through the wall of guide 90 between flange 94 and land 96 so that any leakage of fluid past land 96 will return to the reservoir via outlet chamber 22.
  • a plurality of radially extending flow passages 100 are provided which communicate with radial passages 70 in plunger 26 when the plunger is positioned to lower the load as illustrated in Figure 3.
  • a thin-walled cylindrical valve element 102 is slidably mounted on the outer diameter of valve guide 90.
  • valve element 102 is positioned outside of guide 90 in sliding contact with the inside diameter of guide 90.
  • a counterbore 104 is provided at the seat end of valve element 102 so that an annular piston surface 106 is defined on the inside diameter of the valve element.
  • valve element 102 The pressure of the fluid reaching valve element 102 through radial ports 70 acts on annular piston surface 106 to open the valve and permit flow through radial passages 100.
  • a narrow annular seating surface 108 is provided on valve element 102 and bears against surface 92 when the valve is in its illustrated, closed position. The radial width and, therefore, the area of surface 108 is held to a minimum by providing a chamfer 110 on the outside diameter of valve elements 102.
  • a spring 112 is positioned between radial flange 94 and the other end of valve element 102 to bias the valve element into contact with surface 92 and prevent flow through passages 100 until the desired pressure has been generated in passages 70.
  • fluid passing into the interior of plunger 26 via radial passages 82 also acts on a regeneration control valve 114 positioned at the center of the plunger.
  • a counterbore 116 is provided in plunger 26 for slidably receiving a regeneration check piston 118 which is biased by a spring 120 into contact with an annular valve seat 122 defined at the bottom of counterbore 116.
  • a plurality of radial passages 124 are provided in plunger 26 between lands 42 and 44 in position to communicate with inlet chamber 12 when the valve is positioned to lower the load as illustrated in Figure 3.
  • Passages 124 also communicate with internal passages 126 provided in check piston 118 and passages 126 lead to a pressure chamber 128 defined between piston 118 and a further piston 130 also slidably mounted within counter bore 116.
  • Spring 120 not only biases check piston 118 into contact with valve seat 122, but also biases piston 130 into contact with a threaded plug 132 which closes the right-hand end of counterbore 116.
  • a passage 134 extends through the wall of plunger 26 between lands 42 and 46 to communicate with a small pressure chamber on the right side of piston 130 so that this small pressure chamber is maintained at reservoir pressure when the valve is positioned as illustrated in Figure 3 and at pump pressure when the valve is positioned as illustrated in Figure 2.
  • valve of the type illustrated in Figures 1-4 one purpose of a valve of the type illustrated in Figures 1-4 is to prevent cavitation of the fluid in the expanding side of the piston and cylinder assembly.
  • relatively higher pressure fluid is directed from the contracting side of the piston and cylinder assembly to the relatively lower pressure expanding side, as a supplement to the fluid delivered by the pump.
  • downward movement of load 60 raises the pressure acting within plunger 26 via cylinder chamber 18 and radial passages 82 so that check pistons 64 and regeneration check 118 are subjected to an increased pressure.
  • lightly biased check 64 will open so that the fluid acts upon annular piston surface 106 of valve 86 and causes valve element 102 to move to the left from the position as illustrated in Figure 4.
  • valve body 10 includes a central inlet chamber 136 which communicates via a load check valve 138 with a branched inlet chamber 140 having a left arm 142 which communicates with bore 16 and a right arm 144 which also communicates with bore 16.
  • a left outlet chamber 146 and a right outlet chamber 148 are positioned on either side of inlet chamber 136.
  • a plunger or spool 150 is mounted for sliding movement in bore 16.
  • a central land 152 on plunger 150 permits flow from inlet chamber 136 to outlet chambers 146,148 in the neutral position illustrated in Figure 5.
  • central land 152 To the left of central land 152, an outer land 154 prevents flow from cylinder chamber 18 into outlet chamber 22 and an inner land 156 prevents flow from inlet chamber 140 into cylinder chamber 18. To the right of central land 152, an inner land 158 prevents flow of fluid from inlet chamber 140 to cylinder chamber 20 and an outer land 160 prevents flow from cylinder chamber 20 to outlet chamber 24. Thus, the flow from the pump goes directly to reservoir and the piston and cylinder assembly 48 is hydraulically locked.
  • Figure 6 shows the valve of Figure 5 with plunger 150 moved to the right to permit raising load 60.
  • fluid from the pump flows through inlet chamber 136, past check valve 138, into chamber 140, along passage 142, between lands 154 and 156, into cylinder chamber 18, through line 56 and into the rod end of cylinder 50 to raise the load.
  • fluid leaving the head end of cylinder 50 passes through line 58, into cylinder chamber 20, between lands 158 and 160 and into outlet chamber 24.
  • Figure 7 illustrates the embodiment of Figure 5 in which plunger 150 has been moved to the left to permit lowering load 60.
  • a blind bore 162 extends into the left end of plunger 150 and intersects a plurality of radial passages 164 which communicate with passage 142 when the plunger is positioned as illustrated.
  • a counterbore 166 at the left end of bore 162 slidably receives a regeneration check valve piston 168 which is biased by a spring 170 into contact with an annular seating surface 172 defined at the end of counterbore 166 just to the right of radial passages 70.
  • valve piston 168 is hollow and includes a flow passage 174 through its right end which allows fluid flowing through passage 142 to act on both sides of valve piston 168.
  • piston 168 comprises a reduced diameter portion which defines an outwardly extending radial piston surface 176 which is subject to the pressure of fluid flowing from the contracting side of piston and cylinder assembly 48 via line 56, cylinder chamber 18, the space between lands 154 and 156 and radial passages 70.
  • check valve 168 will remain in its illustrated, closed position and the flow of fluid from the contracting side of cylinder 50 will hold check valve 102 in its open position, thereby permitting flow to reservoir.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Multiple-Way Valves (AREA)
  • Safety Valves (AREA)
  • Lift Valve (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Check Valves (AREA)

Claims (9)

1. Agencement de vanne de commande destiné à être utilisé avec un ensemble (48) à cylindre et piston à double action comprenant un corps de vanne (10) muni d'un alésage cylindrique (16), au moins une chambre d'admission (12) dans le corps (10) communiquant avec l'alésage cylindrique pour recevoir du fluide à partir d'une alimentation externe, au moins une chambre d'évacuation (14, 22, 24) dans le corps (10) communiquant avec l'alésage cylindrique (16) pour évacuer le fluide vers un réservoir externe, une première chambre cylindrique (18) dans le corps (10) communiquant avec l'alésage cylindrique (16) pour fournir du fluide et en recevoir d'un côté de l'ensemble externe à cylindre et piston à double action (48), une seconde chambre cylindrique (20) dans le corps (10) communiquant avec l'alésage cylindrique (16) pour fournir le fluide et en recevoir de l'autre côté du même ensemble externe à piston et cylindre à double action (48), un plongeur de vanne (26) disposé pour coulisser dans ledit alésage (16), ce plongeur comprenant, en association opérative avec les chambres d'admission (12) et d'évacuation (22, 24) et avec les première (18) et seconde (20) chambres cylindriques, des premiers moyens (82, 64, 70) comprenant une première soupape anti-retour sollicitée par ressort (64) pour relier la première chambre cylindrique (18) ou bien à ladite chambre d'admission (12) ou bien à ladite chambre d'évacuation (22), et des seconds moyens (84, 74, 80) comprenant une seconde soupape anti-retour sollicitée par ressort (74) pour connecter la seconde chambre cylindrique (20) à la chambre d'évacuation (24) ou à la chambre d'admission (12), une vanne de commande à régénération (114) pour diriger du fluide à partir de l'une des chambres cylindriques (18) recevant le fluide à haute pression à partir du côté en compression de l'ensemble à cylindre et piston à double action (48), vers l'autre des chambres cylindriques (20) fournissant un fluide à relativement basse pression vers le côté en expansion de l'ensemble à cylindre et piston à double action, et une vanne (86) sensible à une pression pour commander la pression du fluide s'écoulant à partir du côté en compression de l'ensemble à cylindre et piston à double action (48), par l'intermédiaire desdits premiers moyens (82, 64, 70) vers la chambre d'évacuation (22), caractérisé en ce que la vanne de commande à régénération (114) est sensible à une différence de pression prédéterminée entre les première (18) et seconde (20) chambres cylindriques et en ce que la vanne sensible à une pression (86) est disposée dans le corps de vanne de commande (10), la vanne sensible à une pression étant disposée à l'extérieur du plongeur (26) et exposée à une pression de fluide seulement à la position inférieure dudit plongeur.
2. Agencement de vanne selon la revendication 1, caractérisé en ce que la vanne sensible à une pression (86) comprend un guide de vanne (90) entourant le plongeur (26) et comprend au moins un passage (100) positionné pour permettre l'écoulement du fluide à partir des premiers moyens (82, 64, 70) vers la chambre d'évacuation (22), un élément de vanne annulaire (102) entrant en engagement à coulissement avec ledit guide de vanne (90), un siège de vanne annulaire (92) pour entrer en engagement avec l'élément de vanne, un moyen de piston (106) sensible à la pression du fluide à partir du côté en compression de l'ensemble à cylindre et piston à double action (48) pour déplacer l'élément de vanne (102) hors d'engagement avec ledit siège de vanne (92) et par rapport audit au moins un passage (100) pour permettre au fluide de circuler à travers ledit passage vers ladite chambre d'évacuation (22).
3. Agencement de vanne selon la revendication 2, caractérisé en ce que le moyen de piston pour déplacer l'élément de vanne (102) comprend une surface de piston annulaire faisant saillie radialement vers l'intérieur (106) sur l'élément de vanne cylindrique (102).
4. Agencement de vanne selon la revendication 2, caractérisé en ce qu'un ressort (112) est disposé pour solliciter l'élément de vanne (102) en contact avec le siège de vanne (92).
5. Agencement de vanne selon la revendication 4, caractérisé en ce qu'un joint (38) entoure le plongeur (26) pour éviter une fuite au delà du plongeur vers l'extérieur et en ce que le guide de vanne (90) entourant le plongeur comprend un guide de vanne cylindrique à paroi mince (90) comprenant une portée faisant saillie radialement vers l'intérieur (96) qui sert d'étanchéité par rapport au plongeur (26) pour éviter une sur- pressurisation dudit joint.
6. Agencement de vanne selon la revendication 5, caractérisé en ce qu'au moins un autre passage (98) s'étend à travers ledit guide de vanne (90) entre la portée faisant saillie vers l'intérieur (96) et ledit joint (38) pour permettre à une fuite derrière la portée de revenir vers le réservoir.
7. Agencement de vanne selon la revendication 5, caractérisé en ce que l'élément de vanne annulaire (102) est monté à coulissemént à l'extérieur dudit guide de vanne (90).
8. Agencement de vanne selon la revendication 2, caractérisé en ce que l'élément de vanne (102) est chanfreiné circonférentiellement (110) à son extrémité (108) qui entre en engagement avec le siège de vanne (92).
9. Agencement de vanne selon la revendication 8, caractérisé en ce que l'élément de vanne (102) est chanfreiné sur sa surface extérieure.
EP19830102160 1982-03-05 1983-03-04 Soupape de réglage pour assemblage de piston et de cylindre à double effet Expired EP0088406B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US355006 1982-03-05
US06/355,006 US4434708A (en) 1982-03-05 1982-03-05 Control valve for double-acting piston and valve assemblies

Publications (3)

Publication Number Publication Date
EP0088406A2 EP0088406A2 (fr) 1983-09-14
EP0088406A3 EP0088406A3 (en) 1984-04-18
EP0088406B1 true EP0088406B1 (fr) 1987-11-04

Family

ID=23395865

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830102160 Expired EP0088406B1 (fr) 1982-03-05 1983-03-04 Soupape de réglage pour assemblage de piston et de cylindre à double effet

Country Status (7)

Country Link
US (1) US4434708A (fr)
EP (1) EP0088406B1 (fr)
JP (1) JPS58163802A (fr)
KR (1) KR850000832B1 (fr)
AU (1) AU556403B2 (fr)
CA (1) CA1180637A (fr)
DE (1) DE3374330D1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181519B (en) * 1985-10-04 1989-11-29 Michael David Baxter Spool valve
US4840111A (en) * 1986-01-31 1989-06-20 Moog Inc. Energy-conserving regenerative-flow valves for hydraulic servomotors
GB2199115A (en) * 1986-11-27 1988-06-29 Michael David Baxter Spool valve
KR920006520B1 (ko) * 1988-06-17 1992-08-07 가부시끼가이샤 고오베세이꼬오쇼 파우어 셔블의 유체제어기구
GB9813660D0 (en) 1998-06-24 1998-08-26 British Aerospace Actuator system for aerospace controls and functions
JP2000170707A (ja) * 1998-12-02 2000-06-20 Hitachi Constr Mach Co Ltd 方向切換弁装置
DE10004905C2 (de) * 2000-02-04 2002-10-24 Orenstein & Koppel Ag Verfahren und Vorrichtung zur Steuerung eines Hubzylinders insbesondere von Arbeitsmaschinen
KR100680841B1 (ko) * 2005-12-06 2007-02-08 현대자동차주식회사 자동 변속기 유압 제어시스템의 매뉴얼 밸브
US9273664B2 (en) * 2011-02-18 2016-03-01 Parker Hannifin Corporation Hydraulic control valve for a one-sided operating differential cylinder having five control edges
EP3128216B1 (fr) * 2015-08-07 2019-03-13 Claverham Limited Soupape hydraulique
JP6991752B2 (ja) * 2017-06-30 2022-01-13 ナブテスコ株式会社 アンチキャビテーション油圧回路
US11053958B2 (en) * 2019-03-19 2021-07-06 Caterpillar Inc. Regeneration valve for a hydraulic circuit
CN113738635A (zh) * 2021-09-15 2021-12-03 北京华德液压工业集团有限责任公司 柱塞式液压泵的柱塞结构及包括其的柱塞式液压泵

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195559A (en) * 1959-05-12 1965-07-20 Parker Hannifin Corp Spool valve assembly
US2954011A (en) * 1959-06-25 1960-09-27 Cessna Aircraft Co Pressure fluid control system and valve
US3215160A (en) * 1962-12-28 1965-11-02 New York Air Brake Co Valve
US3459219A (en) * 1967-10-20 1969-08-05 Gen Signal Corp Regenerative valve plunger
US3642027A (en) * 1970-01-09 1972-02-15 Parker Hannifin Corp Directional control valve
JPS5714751Y2 (fr) * 1978-09-20 1982-03-26
JPS56124704A (en) * 1980-03-07 1981-09-30 Ishikawajima Harima Heavy Ind Co Ltd Regenerating circuit in fluidic pressure circuit

Also Published As

Publication number Publication date
CA1180637A (fr) 1985-01-08
KR850000832B1 (ko) 1985-06-15
AU556403B2 (en) 1986-10-30
JPS58163802A (ja) 1983-09-28
EP0088406A2 (fr) 1983-09-14
JPH0243042B2 (fr) 1990-09-27
DE3374330D1 (en) 1987-12-10
EP0088406A3 (en) 1984-04-18
AU1169083A (en) 1983-09-08
KR840004233A (ko) 1984-10-10
US4434708A (en) 1984-03-06

Similar Documents

Publication Publication Date Title
EP0088406B1 (fr) Soupape de réglage pour assemblage de piston et de cylindre à double effet
EP0503188B1 (fr) Soupape en forme de cartouche agissant en deux directions
US4624445A (en) Lockout valve
US6779542B2 (en) Low leak boom control check valve
JPH0459482B2 (fr)
EP0227209B1 (fr) Clapets pilotes pour système hydraulique à deux étages
US4397221A (en) Regenerative valve
US4519419A (en) Hydraulic valves
JPH0583405U (ja) 圧力補償弁を備えた操作弁
EP0411808B1 (fr) Soupape logique
JPH0716943Y2 (ja) 方向制御弁
US3943825A (en) Hydraulic control system for load supporting hydraulic motors
US4909279A (en) Fluid control valve
US4006667A (en) Hydraulic control system for load supporting hydraulic motors
EP0608415B1 (fr) Circuit hydraulique ayant une soupape de compensation de la pression
US6038957A (en) Control valves
US3805678A (en) Hydraulic control system for load supporting hydraulic motors
GB2199115A (en) Spool valve
US6220280B1 (en) Pilot operated relief valve with system isolating pilot valve from process media
US3817276A (en) Self-aligning relief valve
US3500721A (en) Hydraulic control for two hydraulic motors
JP2000035147A (ja) 油圧機器のシール構造とこのシール構造を用いたカウンターバランス弁
EP0361613A1 (fr) Réducteur de pression
US5233909A (en) Integral regenerative fluid system
US4354526A (en) Control valves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT SE

RHK1 Main classification (correction)

Ipc: F15B 13/04

17P Request for examination filed

Effective date: 19840830

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3374330

Country of ref document: DE

Date of ref document: 19871210

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910830

Year of fee payment: 9

Ref country code: SE

Payment date: 19910830

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910906

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910910

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920305

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83102160.5

Effective date: 19921005