EP0082409B1 - Procédé thermique pour faire transiter rapidement une bobine supraconductrice de l'état supraconducteur à l'état normal, et dispositif pour exécuter le procédé - Google Patents

Procédé thermique pour faire transiter rapidement une bobine supraconductrice de l'état supraconducteur à l'état normal, et dispositif pour exécuter le procédé Download PDF

Info

Publication number
EP0082409B1
EP0082409B1 EP82111359A EP82111359A EP0082409B1 EP 0082409 B1 EP0082409 B1 EP 0082409B1 EP 82111359 A EP82111359 A EP 82111359A EP 82111359 A EP82111359 A EP 82111359A EP 0082409 B1 EP0082409 B1 EP 0082409B1
Authority
EP
European Patent Office
Prior art keywords
superconductive
coil
vacuum space
winding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82111359A
Other languages
German (de)
English (en)
Other versions
EP0082409A1 (fr
Inventor
Holger Franksen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0082409A1 publication Critical patent/EP0082409A1/fr
Application granted granted Critical
Publication of EP0082409B1 publication Critical patent/EP0082409B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S336/00Inductor devices
    • Y10S336/01Superconductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/85Protective circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/884Conductor

Definitions

  • the invention relates to a method for rapidly transferring the entire superconducting winding of an electrical device, which is arranged in a vacuum space and cooled by a cryogenic medium, from the superconducting operating state to the normal conducting state by heating the entire winding in the event of normal conduction occurring in the event of a fault becoming at least one to there superconducting winding area.
  • a method for rapidly transferring the entire superconducting winding of an electrical device which is arranged in a vacuum space and cooled by a cryogenic medium, from the superconducting operating state to the normal conducting state by heating the entire winding in the event of normal conduction occurring in the event of a fault becoming at least one to there superconducting winding area.
  • Such a method is known from the journal "Cryogenics", August 1979, pages 467 to 471.
  • the invention further relates to an apparatus for performing this method.
  • the object of the present invention is therefore to simplify the above-mentioned method.
  • This object is achieved in that such a predetermined amount of a gas which is at a higher temperature and freezes out at the superconducting operating temperature is introduced into the vacuum space such that the superconducting parts of the winding are heated above the critical critical temperature which is characteristic of superconductivity.
  • the warm gas supplied when a normal conducting area occurs in the superconducting winding then condenses on the surfaces of the winding cooled by the cryogenic medium and thereby releases its stored energy, i. H. Enthalpy and heat of vaporization. Because of the predetermined amount of warm gas, a sustained deterioration in the insulating vacuum in the vacuum space can be avoided.
  • the cryogenic medium thus heated accordingly heats the entire winding beyond the transition temperature of its superconductors, so that the parts of the winding which have been superconducting up to now also change into the normal conducting state.
  • any superconducting winding even a winding produced with the most complicated winding technology, can be converted very quickly into the normally conductive state.
  • This method can also be used for existing electrical devices with superconducting windings. No special measures are necessary, which should be taken into account when designing the winding. In particular, there are no special electrical supply lines and therefore no problems with insulated cold supply lines, the dielectric strength and continuous heat input during operation.
  • the pressure in the rooms holding the cryogenic medium is increased by such a predetermined value that boiling of the cryogenic medium is suppressed when the superconducting parts are heated up to at least the critical transition temperature becomes.
  • the cryogenic medium remains single-phase at least until the transition temperature is reached. This ensures good heat exchange between the heated cryogenic medium and the superconductors of the winding.
  • the amounts of the warm gas to be supplied and the pressure increase that may have to be carried out in the coolant spaces depend mainly on the spatial extent of the parts of the winding to be heated and on the operating data of the superconductors. If operating values are provided for the superconductors in the normal operating state which are relatively close to the so-called jump point of the superconducting material used, only smaller amounts of heat and a lower pressure increase are required than in the case that the operating values are further away from the jump point.
  • the jump point of the superconducting material is the point defined in an IHT space by the critical current density l e , critical field strength H c and critical jump temperature T c , at which the superconducting material changes from the superconducting to the normal conducting state (cf. e.g. DE-OS 29 01 333).
  • bath cooling is provided for a superconducting magnet.
  • the stabilized superconductors of its magnetic winding 2 are therefore immersed in a vessel 3 in liquid helium as cryogenic medium M, which keeps the superconducting material at a temperature below the critical temperature in the operating state of the winding.
  • the vessel 3 with the magnetic winding 2 located in it is surrounded by a vacuum in a vacuum space 4 of a vacuum vessel 5.
  • a thermal radiation shield 6 is provided in the vacuum space 4, which is held by a further coolant at an intermediate temperature between the room temperature prevailing outside the vacuum vessel 5 and the cryogenic operating temperature in the vessel 3.
  • This coolant can e.g. B.
  • a reservoir 8 which can be connected via a solenoid valve 7 is connected to the vacuum chamber 4.
  • This gas the temperature of which is advantageously at least 100 K higher than the transition temperature of the superconducting material, can be, for example, anhydrous nitrogen gas at room temperature. If a quench, ie. H.
  • the solenoid valve 7 is opened with the aid of the electronics, and the nitrogen supply from the container 8 flows into the vacuum space 4. There it condenses on the helium-cold surfaces of the vessel 3, whereby it releases its enthalpy and heat of vaporization to the helium bath. At the same time, the radiation shield 6 is also heated accordingly. Furthermore, when the warmer gas is introduced into the vessel 3, the pressure p prevailing there is expediently increased by a predetermined value. This can be done, for example, by interrupting or throttling the discharge of the exhaust gas A generated in the vessel 3.
  • a throttle valve 10 is used in a corresponding exhaust gas line 11, which is set via an actuator 12, which is also controlled by the electronics 9.
  • an increase in pressure can also be achieved by supplying helium gas to the pressure space of the helium bath located in the vessel 3 with increased pressure, for example by switching on a pressurized additional volume.
  • a known bath-cooled superconducting magnet is provided (cf., for example, “Eisenbahntechnische Rundschau”, volume 27, number 3, 1978, pages 150 to 153).
  • This magnet must store an energy of 2 MJ at a nominal current of 1000 A and an effective current density in the winding of 86 A / mm 2 .
  • dry nitrogen gas which is about 200 at room temperature and 1 bar, the entire magnetic winding can be converted from superconducting to normal conducting within 600 msec, without causing dangerous overheating of individual parts of the winding.
  • the temperature of the radiation shield there is increased from the original 20 K to about 80 K.
  • the method according to the invention is equally suitable for forced cooled superconducting magnet windings, i. H. the spaces receiving the cryogenic medium M are not a bath cryostat or the vessel 3, as in the case of bath cooling, but rather the cavities in or on the superconductors through which the cryogenic medium is conveyed.
  • Such magnetic windings are also surrounded by a vacuum space into which a predetermined amount of a warm gas can be introduced in order to trigger a general quench at short notice.
  • the pressure in the helium circuit can be increased by or on the individual conductors. This can be achieved, for example, by throttling the helium outlet from the circuit or by feeding helium into the circuit with increased pressure.
  • the method according to the invention is provided for a known superconducting magnet that is forced to be cooled (cf. "Manual Superconducting Technology", VDI educational work BW 41-08-01 (BW 2802), October 1974, entry 12, pages 1 to 9 or "5th International Cryogenic Engineering Conference", May 1974, Kyoto (Japan), Report B 2, pages 28 to 34).
  • This magnet with copper-stabilized NbTi conductors can be loaded with a nominal current of 500 A at 3.5 T and 4.5 K, the effective current density in the winding being 81 A / mm 2 .
  • the magnetic energy stored in the magnetic winding is 120 kJ.
  • the helium that cools the magnetic winding can be warmed up by about 1 K within 600 msec. This increase in temperature is generally sufficient to convert the entire magnetic winding from the superconducting to the normally conducting state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Claims (8)

1. Procédé pour faire passer rapidement l'ensemble d'une bobine supraconductrice (2), disposée dans une chambre à vide (4) et refroidie par un milieu cryogène, d'un dispositif électrique de l'état de fonctionnement supraconducteur à l'état normalement conducteur, au moyen d'un échauffement de l'ensemble de la bobine (2) lors du passage à l'état normalement conducteur, intervenant dans un cas de perturbation, d'au moins une partie de la bobine, située jusqu'alors à l'état supraconducteur, caractérisé par le fait qu'on introduit dans la chambre à vide (4) une quantité prédéterminée telle d'un gaz, situé à une température supérieure et qui est congelé à la température de fonctionnement à l'état supraconducteur, que les parties de la bobine (2), aptes à devenir supraconductrices, sont amenées par chauffage au-dessus de la température critique de changement brusque de conductivité, qui est caractéristique pour la supraconduction.
2. Procédé suivant la revendication 1, caractérisé par le fait qu'on accroît la pression (p) dans les espaces (3) logeant le milieu cryogène (M) d'une valeur prédéterminée telle qu'une ébullition du milieu cryogène (M) est empêchée lors de l'échauffement des parties aptes à devenir supraconductrices, au moins jusqu'à la température critique de changement brusque de conductivité.
3. Procédé suivant la revendication 1 ou 2, caractérisé par le fait qu'on introduit, dans la chambre à vide (4), le gaz à une température qui est supérieure, d'au moins 100° K, à la température critique de changement brusque de conductivité et qui correspond notamment approximativement à la température ambiante.
4. Procédé suivant l'une des revendications 1 à 3, caractérisé par le fait qu'on raccorde à la chambre à vide (4) un réservoir (8) contenant la quantité prédéterminée de gaz chaud.
5. Procédé suivant l'une des revendications 1 à 4, caractérisé par le fait qu'on introduit de l'azote anhydre dans la chambre à vide (4).
6. Procédé suivant l'une des revendications 1 à 5, caractérisé par le fait qu'on raccorde un volume supplémentaire comprimé aux espaces (3) logeant le milieu cryogène (M).
7. Procédé suivant l'une des revendications 1 à 5, caractérisé par le fait qu'on étrangle la sortie du courant de gaz (A) en provenance des espaces (3) logeant le milieu cryogène (M).
8. Dispositif pour la mise en oeuvre du procédé suivant l'une des revendications 1 à 7, caractérisé par un dispositif (9) servant à enregistrer le passage à l'état normalement conducteur de parties de la bobine supraconductrice (2), et par des moyens pour introduire la quantité prédéterminée de gaz plus chaud dans la chambre à vide (4).
EP82111359A 1981-12-23 1982-12-08 Procédé thermique pour faire transiter rapidement une bobine supraconductrice de l'état supraconducteur à l'état normal, et dispositif pour exécuter le procédé Expired EP0082409B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813151119 DE3151119A1 (de) 1981-12-23 1981-12-23 "thermisches verfahren zum schnellen ueberfuehren einer supraleitenden wicklung vom supraleitenden in den normalleitenden zustand und vorrichtung zur durchfuehrung des verfahrens"
DE3151119 1981-12-23

Publications (2)

Publication Number Publication Date
EP0082409A1 EP0082409A1 (fr) 1983-06-29
EP0082409B1 true EP0082409B1 (fr) 1985-09-11

Family

ID=6149577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82111359A Expired EP0082409B1 (fr) 1981-12-23 1982-12-08 Procédé thermique pour faire transiter rapidement une bobine supraconductrice de l'état supraconducteur à l'état normal, et dispositif pour exécuter le procédé

Country Status (3)

Country Link
US (1) US4486800A (fr)
EP (1) EP0082409B1 (fr)
DE (2) DE3151119A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3866409D1 (de) * 1987-03-30 1992-01-09 Siemens Ag Quenchausbreitungseinrichtung fuer einen supraleitenden magneten.
US5065087A (en) * 1988-10-04 1991-11-12 Sharp Kabushiki Kaisha Apparatus for observing a superconductive phenomenon in a superconductor
FR2661775B1 (fr) * 1990-05-04 1994-03-04 Telemecanique Contacteur-disjoncteur.
GB9104513D0 (en) * 1991-03-04 1991-04-17 Boc Group Plc Cryogenic apparatus
US5432666A (en) * 1993-01-22 1995-07-11 Illinois Superconductor Corporation Self-restoring fault current limiter utilizing high temperature superconductor components
US5761017A (en) * 1995-06-15 1998-06-02 Illinois Superconductor Corporation High temperature superconductor element for a fault current limiter
US6174637B1 (en) 2000-01-19 2001-01-16 Xerox Corporation Electrophotographic imaging member and process of making
GB2445591B (en) * 2007-01-10 2009-01-28 Siemens Magnet Technology Ltd Emergency run-down unit for superconducting magnets
EP2939045A1 (fr) * 2012-12-27 2015-11-04 Koninklijke Philips N.V. Système et procédé de protection par étouffement d'un aimant supraconducteur cryo-libre
US10784044B2 (en) * 2018-04-30 2020-09-22 Integrated Device Technology, Inc. Optimization of transmit and transmit/receive (TRX) coils for wireless transfer of power
GB2586821B (en) * 2019-09-04 2022-04-13 Siemens Healthcare Ltd Current leads for superconducting magnets
FR3130466A1 (fr) * 2021-12-10 2023-06-16 Safran Machine électrique à soupape de désexcitation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176473A (en) * 1963-04-09 1965-04-06 Andonian Associates Inc Modular dewar vessel for cryogenic use
US3262279A (en) * 1964-10-09 1966-07-26 Little Inc A Extreme high vacuum apparatus
DE1501283B1 (de) * 1965-01-22 1970-01-15 Max Planck Gesellschaft Vorrichtung zur Kuehlung von Objekten
US3458763A (en) * 1967-04-12 1969-07-29 Bell Telephone Labor Inc Protective circuit for superconducting magnet
DE1814783C3 (de) * 1968-12-14 1975-08-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Kryostat mit einer in einem Behälter für ein tiefsiedendes flüssiges Kühlmittel angeordneten Supraleitungsspule
CH584450A5 (fr) * 1975-04-24 1977-01-31 Bbc Brown Boveri & Cie
US4375659A (en) * 1981-09-21 1983-03-01 General Dynamics Corporation/Convair Div. Electronic circuit for the detection and analysis of normal zones in a superconducting coil

Also Published As

Publication number Publication date
EP0082409A1 (fr) 1983-06-29
DE3266241D1 (en) 1985-10-17
DE3151119A1 (de) 1983-07-07
US4486800A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
DE102004061869B4 (de) Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
EP0082409B1 (fr) Procédé thermique pour faire transiter rapidement une bobine supraconductrice de l'état supraconducteur à l'état normal, et dispositif pour exécuter le procédé
DE3633313A1 (de) Supraleiter-spulenvorrichtung
EP1336236A1 (fr) Dispositif supraconducteur muni d'une tete de refroidissement d'une unite de refroidissement, thermiquement couplee a un enroulement supraconducteur rotatif
EP1970921B1 (fr) Alimentation en courant à supraconducteurs haute température pour aimants supraconducteurs dans un cryostat
EP2608223A1 (fr) Procédé de refroidissement d'une installation pour câble supraconducteur
DE1903643A1 (de) Verfahren zum Kuehlen eines Verbrauchers,der aus einem teilweise stabilisierten Supraleitungsmagneten besteht
EP2418747A1 (fr) Agencement de liaisons électriques conductrices de deux unités électriques
DE102004058006B3 (de) Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
WO2007107240A1 (fr) Cryostat muni d'un système de bobines magnétiques qui comprend une section LTS et une section HTS encapsulée
EP2770514A1 (fr) Procédé de refroidissement d'un câble supraconducteur
EP0040734A2 (fr) Dispositif de refroidissement d'un enroulement d'excitation supraconducteur et d'un écran amortisseur du rotor d'une machine électrique
EP4248468A1 (fr) Appareil de transmission d'énergie électrique doté d'un support de courant supraconducteur
EP3749903B1 (fr) Procédé et dispositif de refroidissement d'un porteur de courant supraconducteur
DE10339048A1 (de) Tieftemperaturkühlsystem für Supraleiter
DE2840248A1 (de) Supraleitendes magnetisches system
DE102004057204B4 (de) Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
DE102014224363A1 (de) Vorrichtung der Supraleitungstechnik mitSpuleneinrichtungen und Kühlvorrichtung sowie damitausgestattetes Fahrzeug
DE2451949C3 (de) Stromzufühungsvorrichtung für eine supraleitende Magnetspule
DE2901333C2 (de) Verfahren zum forcierten Kühlen einer supraleitenden Magnetspulenwicklung
DE102018006912A1 (de) Vorrichtung zum Kühlen eines supraleitenden Elements
DE10032368A1 (de) Supraleitungseinrichtung mit einer resistiven Strombegrenzereinheit unter Verwendung von Hoch-T¶c¶-Supraleitermaterial
EP3503329B1 (fr) Procédé de refroidissement d'un système de câblage supraconducteur
EP0849550A1 (fr) Système de réfrigération à gaz liquifié pour le refroidissement à basse température d'une charge
EP3376133B1 (fr) Procédé et dispositif de refroidissement d'un ensemble pourvu d'une amenée de courant ainsi que système doté du dispositif correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19831213

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3266241

Country of ref document: DE

Date of ref document: 19851017

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890323

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891231

Ref country code: CH

Effective date: 19891231

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST