EP0080922B1 - Einrichtung zur optimalen Ermittlung der Anoden-Ladungsimpedanz an einem Röhrensender - Google Patents

Einrichtung zur optimalen Ermittlung der Anoden-Ladungsimpedanz an einem Röhrensender Download PDF

Info

Publication number
EP0080922B1
EP0080922B1 EP82402115A EP82402115A EP0080922B1 EP 0080922 B1 EP0080922 B1 EP 0080922B1 EP 82402115 A EP82402115 A EP 82402115A EP 82402115 A EP82402115 A EP 82402115A EP 0080922 B1 EP0080922 B1 EP 0080922B1
Authority
EP
European Patent Office
Prior art keywords
phase
output
tube
impedance
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82402115A
Other languages
English (en)
French (fr)
Other versions
EP0080922A1 (de
Inventor
Daniel Gaudin
Philippe Le Gars
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0080922A1 publication Critical patent/EP0080922A1/de
Application granted granted Critical
Publication of EP0080922B1 publication Critical patent/EP0080922B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/28Impedance matching networks
    • H03H11/30Automatic matching of source impedance to load impedance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/16Automatic frequency control where the frequency control is accomplished by mechanical means, e.g. by a motor

Definitions

  • the present invention relates to a device for detecting the optimum anode charge impedance of a tube transmitter in a high frequency transmission chain.
  • a tube transmitter cannot be charged directly by a transmitting antenna whose impedance is much too low; in general, an adaptation cell is used between the anode and the antenna, using variable inductances and capacities which must be tuned according to the working frequency and the antenna impedance.
  • This re-tuning can be controlled in many ways, all of which is to ensure that the load impedance of the tube is optimum, which corresponds to a maximum efficiency of the tube and a maximum of power radiated by the antenna. They are based on different principles that also lead to different technologies.
  • a first method consists in measuring the HF current (I) and the HF voltage (V) at the outlet of the tube. The ratio of these two measurements gives the desired parameter Za directly, but as soon as the power becomes high it is difficult to take the current information by toric coupling.
  • a second method consists in measuring the average current consumed and in making a comparison with the HF power emitted by the transmitter.
  • the technology is simple but the accuracy is poor and the tuning algorithm is complex.
  • a third method consists in substituting for the measurement of the ratio VI the measurements (easier to perform) of the HF voltages existing respectively on the input electrode of the tube (V E ) and on the output electrode (V s ).
  • Za is the sought anode charge impedance
  • S a constant characteristic of the tube called slope.
  • the adaptation therefore consists in detecting, during the adjustment of the anode charge impedance, the precise moment when the phase of the ratio V s / V e becomes equal to 180 ° (cathode to ground) and where the module of this ratio, equal to the product of the slope of the tube by its load resistance, becomes equal to a previously defined value. It is not necessary to work directly on the ratio Vs / V E but it suffices in fact to compare in module and in phase the signals V s and V E.
  • the present invention aims to avoid this drawback.
  • the optimum anode charge impedance detection device makes it possible, compared to known devices, to increase the precision and to simplify the adjustment algorithm, by not looking for extremums ( variable according to the levels) but zeros, which makes it possible to obtain a great dynamic of adjustment according to the power involved, but above all to make the adjustments independent of this power, with immediate determination of the direction of variation of the adjustment elements.
  • the device for detecting the optimum anode charge impedance of a tube transmitter in a high frequency transmission chain comprising, in addition to the tube transmitter, a transmitting antenna and an impedance matching cell, with variable elements, interposed between the tube transmitter and the transmitting antenna, and this detection consisting in identifying , during the variation of the impedance presented to the anode by the impedance matching cell, and from the input and output voltages of the tube, the passage of the anode charge impedance of the tube by a purely resistive value defined beforehand
  • this device comprises means for phase shifting by k 2 " (with odd integer k, positive or negative) the phase difference existing between the input and output voltages of the tube, means for multiplying between them the two voltages thus treated, and means for calculating the average value of the product thus obtained, the cancellation of this average value corresponding to the passage of the anode charge impedance by a purely resistive value, this which makes the detect ion adaptation in phase independent of the module adaptation detection
  • FIG. 1 there is shown very schematically a high frequency transmission chain comprising a transmitter tube 1 and a transmitter antenna 2.
  • the transmitter tube 1 comprises a cathode 3, a control electrode 4 on which an input voltage is applied V E , and an output electrode 5 on which an output voltage V s is collected.
  • an impedance matching device 6 intended to adapt the impedance of the antenna 2 to a correct value for the anode of the tube 1.
  • the antenna 2 typically has a complex impedance of the order of 50 ohms, alos that the tube 1 needs an actual impedance, that is to say purely resistive, of the order of 2000 ohms.
  • the adaptation device 6 includes an impedance adaptation cell 7 with variable elements, and an optimum anode charge impedance detection device 8, intended to detect, during the variation of the elements of the cell 7, the moment when the load impedance of the tube becomes purely resistive and equal to the desired value.
  • the impedance matching cell 7 comprises several variable elements initially prepositioned as a function of the frequency, namely two variable capacitors 9 and 10 and an inductor 11 for example. Inductance 11 is kept constant throughout the adjustment.
  • the tuning is carried out using variable capacitors.
  • the variable capacitor 9 is assigned to obtaining a 180 ° phase shift between V s and V E while the variable capacitor 10 is assigned to obtaining a good amplitude ratio between V s and V E. This is symbolized in Figure 1 by means of two separate commands for these two components.
  • the device 8 for detecting the optimum anode charge impedance in accordance with the invention makes it possible to make the measurements on the phase between V s and V E completely independent of the measurements on the module of the V s / V E ratio and vice versa. vice versa when the desired agreement is obtained.
  • This device 8 is shown in FIG. 2. It comprises means 12 for detecting adaptation in module and means 13 for detecting adaptation in phase.
  • the module adaptation detection means 12 are conventionally produced using two capacitive dividers 14 and 15, one of which receives the input voltage V E and the other the output voltage V s .
  • the ratios of these two capacitive dividers are determined so that the output voltages V S1 and V ⁇ ⁇ of these two dividers are equal when the input voltages V s and V E of these two dividers are in a ratio equal to the product of the slope of the tube by its desired anode load resistance.
  • the module adaptation detection means also comprise a circuit for detecting equality between the voltages V E1 and V S1 , produced for example as follows.
  • the capacitive dividers 14 and 15 are followed respectively by filter rectifiers 16 and 17 which respectively give signals proportional to the peak value of the signals V S1 and V E1 , and opposite signs.
  • Each of the rectifier-filters 16 and 17 is followed by an amplifier (18 and 19) and the outputs of these two amplifiers 18 and 19 are connected to the input of an analog adder 20 which provides detection information at its output. adaptation in module.
  • the means 13 for phase adaptation detection comprise means 21 for phase shifting the phase difference existing between the voltages V S and V E.
  • the means 21 comprise for example a first and a second 90 ° phase shifter, 22 and 23, identical, each provided with an input connected to the output of one of the capacitive dividers 14 and 15.
  • Each phase shifter is provided with two outputs referenced A and B, one of which (A) provides the signal present at the input of the phase shifter, phase shifted by a phase shift ce ( ⁇ possibly being any) and the other (B) provides the signal collected on output A 90 ° out of phase.
  • phase shifters are well known in the art and will not be described in more detail. These are, for example, 90 ° phase shifters of the all-purpose quadrupole type with R-C networks.
  • the phase adaptation detection device also includes an analog multiplier 24 provided with two inputs connected respectively to the output A of the phase shifter 22 and to the output B of the phase shifter 23, or to the output B of the phase shifter 22 and to the output A of the phase shifter 23.
  • the means 13 for phase adaptation detection also comprise a circuit 25 for calculating an average value (in particular by HF filtering), provided with an input connected to the output of the multiplier 24 and with an output which provides the information of phase matching detection through an amplifier 26.
  • a circuit 25 for calculating an average value in particular by HF filtering
  • the device 13 for phase adaptation detection shown in FIG. 2 operates in the manner next.
  • ⁇ E and ⁇ S be the respective phases of the input voltages V E and output V S.
  • phase shifter 22 and 23 between the signals collected on their outputs A and the signals present on their inputs.

Landscapes

  • Plasma Technology (AREA)
  • Transmitters (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Claims (4)

1. Vorrichtung (8) zur Detektion der optimalen Lastimpedanz der Anode einer Senderöhre (1) in einer HF-Sendekette, die außer der Senderöhre (1) eine Sendeantenne (2) und eine Impedanz-Anpassungszelle (7) mit variablen Elementen enthält, die zwischen Senderöhre (1) und Sendeantenne (2) eingefügt ist, wobei die Detektion darin besteht, im Laufe der Veränderung der an der Anode wirksamen Impedanz der Impedanzanpassungszelle (7) anhand der Eingangs- und Ausgangsspannungen der Röhre den Durchgang der Anoden-Lastimpedanz der Röhre durch einen vorbetimmten, rein ohmschen Wert zu ermitteln, dadurch gekennzeichnet, daß sie Mittel (21) zur Phasenverschiebung der Phasendifferenz zwischen der Eingangs- und Ausgangsspannung der Röhre (1) um einen Wert k-,-r12 (wobei k eine ungeradzahlige positive oder negative ganze Zahl ist), Mittel (24) zur multiplikativen Verknüpfung dieser beiden so vorbehandelten Spannungen und Mittel (25) aufweist, um den Mittelwert des so erhaltenen Produkts zu berechnen, wobei die Annullierung dieses Mittelwertes dem Durchgang der Anoden-Lastimpedanz durch einen rein ohmschen Wert entspricht, wodurch es möglich ist, die Ermittlung der Phasenanpassung unabhängig von der Ermittlung der Modulanpassung zu machen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel (21) für die Phasenbehandlung der Eingangs- und Ausgangsspannung der Röhre einen ersten und einen zweiten 90°-Phasenschieber (22 und 23) aufweisen, die einander gleichen und jeweils geeignet sind, ausgehnd von der Eingangsspannung oder der Ausgangsspannung der Röhre (1) auf einem ersten Ausgang (A) eine erste, um einen beliebigen Wert bezüglich der Eingangsspannung des Phasenschiebers verschobene Spannung und an einem zweiten Ausgang (B) eine zweite, um 90° bezüglich der am ersten Ausgang (A) verfügbaren Spannung phasenverschobene Spannung zu liefern.
3. Vorrichtung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Multipliziermittel (24) einen Multiplizierer mit zwei Eingängen aufweisen, von denen der eine an den ersten Ausgang (A) des ersten Phasenschiebers (22) und der andere an den zweiten Ausgang (B) des zweiten Phasenschiebers (23) angeschlossen ist.
4., Vorrichtung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß die Multipliziermittel (24) einen Multiplizierer mit zwei Eingängen aufweisen, von denen der eine an den zweiten Ausgang (B) des ersten Phasenschiebers (22) und der andere an den ersten Ausgang (A) des zweiten Phasenschiebers (23) angeschlossen ist.
EP82402115A 1981-11-27 1982-11-19 Einrichtung zur optimalen Ermittlung der Anoden-Ladungsimpedanz an einem Röhrensender Expired EP0080922B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8122274A FR2517493A1 (fr) 1981-11-27 1981-11-27 Dispositif de detection d'impedance optimum de charge d'anode d'un emetteur a tube dans une chaine d'emission haute frequence
FR8122274 1981-11-27

Publications (2)

Publication Number Publication Date
EP0080922A1 EP0080922A1 (de) 1983-06-08
EP0080922B1 true EP0080922B1 (de) 1985-04-17

Family

ID=9264445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82402115A Expired EP0080922B1 (de) 1981-11-27 1982-11-19 Einrichtung zur optimalen Ermittlung der Anoden-Ladungsimpedanz an einem Röhrensender

Country Status (7)

Country Link
US (1) US4476578A (de)
EP (1) EP0080922B1 (de)
JP (1) JPS5897925A (de)
CA (1) CA1193320A (de)
DE (1) DE3263166D1 (de)
DK (1) DK524682A (de)
FR (1) FR2517493A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028316A (ja) * 1983-07-26 1985-02-13 Kokusai Electric Co Ltd 自動追尾整合装置
FR2590993B1 (fr) * 1985-11-29 1988-04-29 Thomson Cgr Dispositif et procede de reglage d'une antenne radiofrequence d'un appareil de resonance magnetique nucleaire
US4951009A (en) * 1989-08-11 1990-08-21 Applied Materials, Inc. Tuning method and control system for automatic matching network
US5375256A (en) * 1991-09-04 1994-12-20 Nec Corporation Broadband radio transceiver
US5254825A (en) * 1992-01-13 1993-10-19 Npbi Nederlands Produktielaboratorium Voor Bloedtransfusieapparatuur En Infusievloeistoffen B.V. Apparatus for the sealing of medical plastic articles
US5874926A (en) * 1996-03-11 1999-02-23 Murata Mfg Co. Ltd Matching circuit and antenna apparatus
US6348679B1 (en) * 1998-03-17 2002-02-19 Ameritherm, Inc. RF active compositions for use in adhesion, bonding and coating
US6649888B2 (en) 1999-09-23 2003-11-18 Codaco, Inc. Radio frequency (RF) heating system
US8744384B2 (en) 2000-07-20 2014-06-03 Blackberry Limited Tunable microwave devices with auto-adjusting matching circuit
US8064188B2 (en) 2000-07-20 2011-11-22 Paratek Microwave, Inc. Optimized thin film capacitors
US9406444B2 (en) 2005-11-14 2016-08-02 Blackberry Limited Thin film capacitors
US7711337B2 (en) 2006-01-14 2010-05-04 Paratek Microwave, Inc. Adaptive impedance matching module (AIMM) control architectures
US7714676B2 (en) 2006-11-08 2010-05-11 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method
US7535312B2 (en) 2006-11-08 2009-05-19 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method with improved dynamic range
US8299867B2 (en) 2006-11-08 2012-10-30 Research In Motion Rf, Inc. Adaptive impedance matching module
US7917104B2 (en) 2007-04-23 2011-03-29 Paratek Microwave, Inc. Techniques for improved adaptive impedance matching
US8213886B2 (en) 2007-05-07 2012-07-03 Paratek Microwave, Inc. Hybrid techniques for antenna retuning utilizing transmit and receive power information
US7991363B2 (en) 2007-11-14 2011-08-02 Paratek Microwave, Inc. Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics
US8072285B2 (en) 2008-09-24 2011-12-06 Paratek Microwave, Inc. Methods for tuning an adaptive impedance matching network with a look-up table
US8472888B2 (en) 2009-08-25 2013-06-25 Research In Motion Rf, Inc. Method and apparatus for calibrating a communication device
US9026062B2 (en) 2009-10-10 2015-05-05 Blackberry Limited Method and apparatus for managing operations of a communication device
US8803631B2 (en) 2010-03-22 2014-08-12 Blackberry Limited Method and apparatus for adapting a variable impedance network
US8860526B2 (en) 2010-04-20 2014-10-14 Blackberry Limited Method and apparatus for managing interference in a communication device
US9379454B2 (en) 2010-11-08 2016-06-28 Blackberry Limited Method and apparatus for tuning antennas in a communication device
US8712340B2 (en) 2011-02-18 2014-04-29 Blackberry Limited Method and apparatus for radio antenna frequency tuning
US8655286B2 (en) 2011-02-25 2014-02-18 Blackberry Limited Method and apparatus for tuning a communication device
US8594584B2 (en) 2011-05-16 2013-11-26 Blackberry Limited Method and apparatus for tuning a communication device
US8626083B2 (en) 2011-05-16 2014-01-07 Blackberry Limited Method and apparatus for tuning a communication device
WO2013022826A1 (en) 2011-08-05 2013-02-14 Research In Motion Rf, Inc. Method and apparatus for band tuning in a communication device
US8948889B2 (en) 2012-06-01 2015-02-03 Blackberry Limited Methods and apparatus for tuning circuit components of a communication device
US9853363B2 (en) 2012-07-06 2017-12-26 Blackberry Limited Methods and apparatus to control mutual coupling between antennas
US9246223B2 (en) 2012-07-17 2016-01-26 Blackberry Limited Antenna tuning for multiband operation
US9350405B2 (en) 2012-07-19 2016-05-24 Blackberry Limited Method and apparatus for antenna tuning and power consumption management in a communication device
US9413066B2 (en) 2012-07-19 2016-08-09 Blackberry Limited Method and apparatus for beam forming and antenna tuning in a communication device
US9362891B2 (en) 2012-07-26 2016-06-07 Blackberry Limited Methods and apparatus for tuning a communication device
US10404295B2 (en) 2012-12-21 2019-09-03 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US9374113B2 (en) 2012-12-21 2016-06-21 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US9438319B2 (en) 2014-12-16 2016-09-06 Blackberry Limited Method and apparatus for antenna selection
TWI621319B (zh) * 2015-09-19 2018-04-11 立錡科技股份有限公司 諧振式無線電源發送電路及其控制方法
CN112763806A (zh) * 2021-03-03 2021-05-07 贵州电网有限责任公司 考虑移相变压器接入输电线路距离保护测量阻抗计算方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB568053A (en) * 1942-07-10 1945-03-15 Patelhold Patentverwertung An arrangement for automatically influencing the tuning of oscillation circuits
GB955223A (en) * 1961-08-30 1964-04-15 Siemens Ag Automatic control device for a radio transmitter
US3355667A (en) * 1965-12-16 1967-11-28 Collins Radio Co Automatically tuned coupled resonant circuits
US3786355A (en) * 1971-12-28 1974-01-15 Cincinnati Electronics Corp Radio frequency resistance discriminator having dead zone output characteristic
US3794941A (en) * 1972-05-08 1974-02-26 Hughes Aircraft Co Automatic antenna impedance tuner including digital control circuits
DD99071A1 (de) * 1972-09-08 1973-07-12
CH621218A5 (de) * 1977-06-22 1981-01-15 Patelhold Patentverwertung
DE2923277A1 (de) * 1979-06-08 1980-12-11 Rohde & Schwarz Anordnung zum selbsttaetigen abstimmen eines transformationsnetzwerkes

Also Published As

Publication number Publication date
CA1193320A (en) 1985-09-10
FR2517493B1 (de) 1984-03-02
DE3263166D1 (en) 1985-05-23
JPS5897925A (ja) 1983-06-10
FR2517493A1 (fr) 1983-06-03
EP0080922A1 (de) 1983-06-08
DK524682A (da) 1983-05-28
US4476578A (en) 1984-10-09

Similar Documents

Publication Publication Date Title
EP0080922B1 (de) Einrichtung zur optimalen Ermittlung der Anoden-Ladungsimpedanz an einem Röhrensender
EP2037576B1 (de) Verfahren zur automatischen Impedanzanpassung einer Radiofrequenzschaltung und einer Funksender- oder -empfangskette mit automatischer Anpassung
EP2476209B1 (de) Impedanzabgleichsverfahren für eine mehrfrequenzantennne und übertragungs- oder empfangskanal mit automatischem abgleich
EP3021484B1 (de) Verfahren und modul zur automatischen impedanzanpassung, insbesondere für eine funkemissions- und empfangskette
FR2999044A1 (fr) Dispositif radiofrequence avec compensation de dispersion de permittivite du substrat et procede de reglage
EP2357798A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Bildsensors mit hohem Dynamikumfang
EP3539145B1 (de) Schaltung zur impedanzanpassung zwischen einem generator und einer last bei mehreren frequenzen, anordnung mit solch einer schaltung und zugehörige verwendung
EP0463964B1 (de) Anlage zur Erzeugung und zum Empfang von Ultraschall
EP0350363B1 (de) Verfahren und Anordnung zum Bestimmen der Entladungsimpedanz in einem Plasmareaktor
EP2978127B1 (de) Verfahren zur digitalen kompensation von variationen, abhängig von der temperatur, einer elektrischen grösse einer integrierten weltraum-funktelekommunikationsausrüstung
FR2784179A1 (fr) Chaine de mesure capacitive
EP0059138B1 (de) Verfahren zur Radio-Lokalisierung mittels Bestimmung von Phasen elektromagnetischer Wellen und Empfängergerät zum Durchführen des Verfahrens
FR3067475A1 (fr) Procede et dispositif d'estimation d'un angle d'arrivee d'un signal radioelectrique incident
EP0473731B1 (de) Verfahren und anordnung zum vergleich zweier veraenderlicher analogsignale
EP1089427B1 (de) Verfarhen zum Vergleichen der Amplituden von zwei elektrischen Signalen
WO2000025494A1 (fr) Procede et systeme de reglage du niveau des raies parasites du spectre frequentiel de sortie d'un dispositif de transposition de frequence a bande laterale
FR2560998A1 (fr) Procede de mesure d'impedance en haute frequence et installation de mesure d'impedance en haute frequence pour la mise en oeuvre de ce procede
EP0080410A1 (de) Bestimmungs- und Nachlaufanordnung für die Augenblickswerte des Extremums einer Funktion y = f(x), die für ein System mit einem Eingang x und einem Ausgang y charakteristik ist
EP0632589A1 (de) Verfahren zur Berechnung von Wiegekoeffizienten eines analytischen Digitalisiergerätes für Signalverarbeitung und analytisches Digitalisiergerät
EP0298845B1 (de) Verfahren und Gerät zum Schutz gegen einen Störer in einem Rundfunkempfänger mit mehreren umschaltbaren Antennen und deren Verwendung in Funkpeilgeräten
EP3913812A1 (de) Impedanzanpassung
EP0786887A1 (de) Verfahren zur Kompensierung von unterschiedlichen Gruppenlaufzeiten zwischen den analogen Filtern eines Quadratursenders oder -empfängers
EP0016674B1 (de) Frequenzdiskriminator und damit stabilisierter Oszillator
FR2837997A1 (fr) Procede de mesure de puissance d'amplificateur a tubes hyperfrequences et dispositif de mise en oeuvre du procede
EP2009790A1 (de) Abstimmungsmethode der Resonanzfrequenz einer Antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19831110

RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3263166

Country of ref document: DE

Date of ref document: 19850523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881119

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890801