EP0069604A1 - Perfectionnements aux pompes ou moteurs hydrauliques à engrenages hélicoidaux (turbines à vis) - Google Patents

Perfectionnements aux pompes ou moteurs hydrauliques à engrenages hélicoidaux (turbines à vis) Download PDF

Info

Publication number
EP0069604A1
EP0069604A1 EP82400972A EP82400972A EP0069604A1 EP 0069604 A1 EP0069604 A1 EP 0069604A1 EP 82400972 A EP82400972 A EP 82400972A EP 82400972 A EP82400972 A EP 82400972A EP 0069604 A1 EP0069604 A1 EP 0069604A1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
turbine
screw
turbine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82400972A
Other languages
German (de)
English (en)
Inventor
Bernard Girette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0069604A1 publication Critical patent/EP0069604A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • F04C11/003Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle having complementary function

Definitions

  • the rotary piston (s) have the geometry of screws generated by a deformed epicycloid or hypocycloid curve, movable in a stator which itself has the geometry of a screw generated by the curve of the same family as the rotor, but of parameter (n + 1) when the rotor is of parameter n, and of pitch h (n + 1) when the pitch of the rotor is of pitch hn. so that both screw surfaces are always tangent along (n + 1) continuous lines along the screws.
  • the known applications all relate to uses or applications as pumps or high pressure motors, the use of these devices for large flows and low pressures having hardly been implemented.
  • the present invention relates to the application of these devices to the use of low-drop hydraulic power. This is in particular the transformation of hydraulic energy from tides or rivers.
  • low-drop hydraulic energy can be transformed into mechanical energy, heat energy or energy.
  • hydraulic with different characteristics as well as mechanical energy can be transformed into low-drop hydraulic energy,
  • the device is designated by the expression screw turbine, so as not to distinguish a priori the operation in motor and the operation in pump.
  • the turbine according to the invention is for this purpose characterized in that the stator screw comprises, in the zones of change of radius of curvature of the same stage of the elements guides such as idle rollers slightly projecting from the surface of the stator and on which the rotor screw comes into contact, the stator comprising a succession of stages with guide elements placed side by side over its entire length, and the geometries of the rotor and the stator being determined so that there remains a clearance in the contact cloths between rotor and stator, this clearance being substantially equal to the prominence of the guide elements.
  • stage is meant a section perpendicular to the axis of the screw and of sufficient thickness for the housing of the guide element (roller or other).
  • the rotor and the stator are produced by helical stacking of identical sections between them, with cylindrical walls parallel to the axis of the screw and the stages of guide elements coincide with the sections of the screw (stator and rotor).
  • rollers housed in the wall of the stator and with an axis parallel to the axis of the screw, or balls or rollers, or projecting pads or other arrangements known in hydraulic technology under the term of hydraulic wedges.
  • Another arrangement of the invention consists in that the rotor screw is mounted rotating freely around an axis (crank) connected at its ends by crank arms to the turbine shaft, the shape of which thus resembles that of a crankshaft.
  • stator axis and the rotor axis remain strictly parallel, which is obtained by rigidly fixing the crank to the two arms of the crankshaft and by dimensioning it so that the torsional forces to which it is subjected creates parallelism faults less than the expected clearance (total deviations of the ends of the crank from the exact parallelism).
  • the low-drop hydraulic energy can thus be transformed by simple and efficient means into mechanical energy (and vice versa), with very rough construction means.
  • This mechanical energy can be used directly but it can also, according to a provision of the invention be transformed into hydraulic energy by the creation of a secondary current of higher pressure and lower flow rate by means of a positive displacement pump which can also be a screw pump.
  • the invention provides for this application the use of a turbine with two screws, in which the rotor of the first screw serves as a hollow envelope for the second screw, the water inlet being common to the two screws while the outputs are separate.
  • the ratio of the pressure at the outlet of the second turbine to the pressure at the inlet of the first is the inverse of the ratio of the unit volumes of the two turbines (closed volume between stator and rotor over one revolution of screw).
  • the water thus pumped can be stored in a tank placed at a level above the reach in the same relationship to the initial height of fall.
  • the pump driven by the first turbine can also be a positive displacement pump sucking water from a reservoir to discharge it into the same reservoir via a valve and a load breaker, the opening of this valve being controlled by the level of the upstream reach and the hot water intake made on the pump discharge circuit upstream of the valve.
  • the turbine of FIGS. 1 and 2 consists of a hollow casing forming a stator 1 in which a rotor screw 2 moves.
  • the screw 2 is formed from a stack of circular discs 3, the stator 1 being formed from a disc stack 4 each comprising an oblong opening 5.
  • the relative geometric shapes of the discs 3 and the openings 5 are the shapes known and described in the prior art cited above,
  • the turbine according to the invention intended for low falls, is of large diameter relative to its axial length which is generally less than the diameter.
  • the diameter could be of the order of 4m, for a length of 2m,
  • each assembly formed by an internal disk 3 and an external disk 4 constitutes a stage and the internal face of the opening 5 of a stage of the stator 1 comprises, in each zone for changing the radius of curvature of a guide element 6, roller, ball or roller, or hydraulic wedge, slightly projecting from the internal surface of the stator, while the radius of the disc 3 is slightly less than the radius of curvature of the curved parts of the opening 5 .
  • the rotor screw comes to bear successively on the rollers of each stage during a fraction of its orbital movement which depends only on the unit angle which separates the position of a disc 3 from the following around the axis of the turbine.
  • the guidance of the rotor screw is therefore analogous to that of a wheel 7 moving on a succession of rollers 8 as shown in FIG. 3.
  • the invention provides on the one hand to give the rollers an elasticity of suspension (for example elastically repelled rollers) or active or rolling surface (elastomer surface) and on the other hand to produce in flexible and elastic material the surface of at least one of the two screws, for example to produce the discs 3 with a thickness or edge of rubber or other elastomer, preferably cellular.
  • suspension for example elastically repelled rollers
  • active or rolling surface elastomer surface
  • the shaft 8 of the turbine has the form of a crankshaft whose crank 9 constitutes the shaft around which the rotor 2 freely rotates, this crank being connected to the shaft 8 by the arms 10.
  • the disks 3 will be mounted on a hollow sleeve 11 swiveling around the shaft 9 secured to the arms 10 themselves secured to the shaft 8.
  • crankshaft 8, 9, 10 must be very rigid so that the torsional forces to which it is subjected do not reduce the advantages resulting from this play. More precisely, the crank 9 and the arms 10 will be calculated on which it is rigidly fixed so that the distance between its ends with respect to the exact parallelism cannot exceed the chosen value of the clearance under the conditions of service provided.
  • This mode of constitution of the screw turbine allows the production of very bulky machines with very rough means for inexpensive energy recovery despite very low heights of fall, of the order of 1 meter for example.
  • the dimensions to which this adaptation leads can be very large and pose an implementation problem with regard to the lower bearing which must support the weight of the rotor 2 plus the pressing force,
  • this difficulty is overcome by providing a rotor provided with cavities filled with air and such that the density of the rotor is less than that liquid of the fall,
  • the cavities will be of adjustable volume, for example in the form of tight ballasts with controllable filling, making it possible to adjust the density; but we can also use a rotor inside which are arranged volumes of cellular material. Such volumes or ballasts are shown in dotted lines at 12 in FIG. 2.
  • a turbine as shown in FIG. 1, having an external diameter of 108 m, a disc diameter 3 of 40 m, a stator height 1 of 40 m can accept a flow rate of 5000 m 3 / sec. under a drop height of 2 mt, with a clearance between rotor and stator allowing the passage of solid impurities of the order of 10 cm.
  • Such a machine is capable of providing 100 megawatts of raw power. It can be carried out with very crude means such as the means of shipbuilding.
  • the profile to be given to each stage can be that of a simple stair step as shown in Figure 4 (section along a plane passing through the axis of the rotor) . It is also possible to cut the stages along the dotted lines 13 and 14 (FIG. 5), that is to say according to the surface generated by the segment joining two homologous points 15 and 16 of two discs of two successive stages. Such an arrangement is more expensive to make but allows greater play for the same leak rate.
  • the speed of rotation of the shaft 8 can be very low, of the order of a few revolutions per minute, and too irregular, at due to variations in flow, to be used directly as mechanical energy. But it can then be used to drive a similar machine for the production of hydraulic energy which can be used as such or serve for the production of heat, for example for the production of a flow of hot water.
  • Figure 6 illustrates such a hydraulic power transformer.
  • a pump with screw constituted by the helical screw 19 rotating relative to the helical space 20 is a pump with screw constituted by the helical screw 19 rotating relative to the helical space 20.
  • the present invention provides for the use of one of the motor spaces and of the other pump space, the mechanical energy resulting from the motor operation being used to drive the pump, and the spaces volumetric having a ratio corresponding to the pressure ratio to be obtained.
  • the inputs 21 and 22 are common but the outputs 23 and 24 are separated and the liquid entering the external screw turbine 17-18 serves to supply the mechanical compression energy of the pump formed by the assembly 19-20 so that at the outlet of the pump 19-20, a liquid is obtained whose pressure is, relative to the pressure, determined by the height of fall which is available in the turbine 17-18 , in the same proportion as the volumetric ratios of the closed enclosures of screws 17-18 relative to those of screws 19-20,
  • the invention provides for using for the screw 17-18 a geometry of transformed or deformed hypocycloids with at least three vertices while the pump 19-20 has a geometry of transforms of hypocycloids with 1 and 2 vertices,
  • the invention provides for giving the internal screw 19-20 a smaller center distance than that of the screw 17-18, which results in shorter crank arms 10b. that arms 10a,
  • the solution shown in Figures 6 and 7 can be adopted;
  • the external shape (stator 17) can be made of concrete with a flat bottom 42, the surface of which can be coated with a smooth material such as a sheet of stainless steel.
  • the rotor screw 17 is provided with a rubber skirt 43 which slides over this surface and seals between the pressurized water of the cavity 23 and the pressureless water of the cavity 24.
  • This bottom has separate orifices outlet: on the one hand, the three orifices 38 which discharge downstream, via the underground passages 24, the water having passed through the turbine 17-19; on the other hand, the orifice 40, in the center, connected by the underground 23 at the place of use of the water thus pressurized by the screws 19-20.
  • FIG. 8 illustrates the use of such a hydraulic energy transformer as a heat generator.
  • the mechanical energy resulting from the operation of a low-drop turbine 25 such as that of FIG. 1 is used in the drive 26 of a positive displacement pump 27 working in a closed circuit in a tank 28, insulated at 39
  • the pump 27 draws the liquid at 29 to return it to the reservoir at 30 by means of a valve-nozzle 31, that is to say a valve transforming the pressure into speed, and dissipating this speed into turbulence by any circulation in the reservoir 28; the liquid is then taken up in 29 to undergo the same cycle again, Under these conditions the water heats up and it becomes possible to take from the high pressure stage at 32, a flow of hot water corresponding to the production of machine calories: at the low pressure stage, at 33, the same quantity of cold water will be reinjected into the circuit.
  • the invention provides a regulation system consisting in regulating the closing of the valve 31 as a function of the level of the upstream reach 34, by means of the float 36 connected to the valve 31 by the linkage 37.
  • the valve 31 opens.
  • the pressure in the high pressure stage of the pump system 27 reservoir 30 decreases, which allows the speed of the turbine 25 to be increased, which thereby , absorbs more water. This is in contrast to the upstream water rise movement which reduced the pressure on the high pressure stage.
  • a lowering of the upstream level 34 causes the valve 31 to close and the outlet pressure of the pump 27 to rise, which requires the turbine 25 more energy than it can supply.
  • the turbine 25 will slow down its movement, thus absorbing less flow, which is opposed to lowering the upstream level 34.
  • This regulation therefore makes it possible to operate the system in a very wide range of related flows while maintaining the level upstream at the maximum level authorized by the site, the turbine 25 and the entire system operating as an upstream level regulator.
  • the flow of calories available in 32 will vary with the flow of the river. In winter, it may be sufficient for a central heating installation or a substantial supplement, in summer it may be sufficient for the consumption of hot water for toilet or household use.
  • a hydraulic power transformer with a large operating range consisting of a turbine according to the invention operating as a motor, and driving a positive displacement pump 27 whose resistive torque is regulated by a valve 31 as a function of the upstream level, the recovery thus being optimized by maintaining the potential of the fall at its optimum level.
  • the pump 27 can be the compressor. gas from a heat pump type system, that is to say that the energy transformer and the regulation thus described also apply in the case of the drive of a heat pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Hydraulic Motors (AREA)
  • Rotary-Type Compressors (AREA)

Abstract

Turbine à vis du type dans lequel le stator (1) et le rotor (2) ont la géométrie de vis engendrées par des courbes épicycloïdles ou hypocycloïdes déformées. La vis du stator (1) comporte dans les zones de changement de rayon de courbure d'un même étage des éléments de guidage (6) légèrement saillants par rapport à la surface du stator (1) et avec lesquels vient en contact la vis rotor (2) au cours de son mouvement, le stator (1) comportant une succession d'étage à éléments de guidage placés côte à côte sur toute sa longueur, et les géométries du rotor (2) et du stator (1) étant déterminées de telle sorte qu'il subsiste un jeu aux lignes de contact entre rotor et stator, ce jeu étant sensiblement égal à la proéminence des éléments de guidage 6.

Description

  • Dans les pompes ou moteurs à engrenages hélicoîdaux, le ou les pistons rotatifs ont la géométrie de vis engendrées par une courbe épicycloîde ou hypocycloîde déformée, mobiles dans un stator qui a lui-même la géométrie d'une vis engendrée par la courbe de la même famille que le rotor, mais de paramètre (n+1) quand le rotor est de paramètre n, et de pas de vis h(n+1) quand le pas de vis du rotor est de pas h.n.. de telle façon que les deux surfaces des vis soient toujours tangentes le long de (n+1) lignes continues le long des vis.
  • De tels appareils sont décrits notamment dans les brevets français 695.539, 787.711, 2.372.333 et sont généralement dénommés pompes du type MOINEAU.
  • Cependant, ces appareils n'ont pas reçu dans la pratique des applications importantes en dépit de leur intérêt théorique, du fait notamment des problèmes d'étanchéité et de frottements qu'elles posent et qui sont très différents selon les applications envisagées, en particulier selon qu'il s'agit de hautes ou basses pressions, de plages de débits plus ou moins grandes, de vitesses axiales de fluides faibles ou élevées.
  • En particulier, les applications connues se rapportent toutes à des utilisations ou applications comme pompes ou moteurs haute pression, l'emploi de ces appareils pour de gros débits et de faibles pressions n'ayant guère été mis en oeuvre.
  • La présente invention se rapporte à l'application de ces dispositifs à l'utilisation d'énergie hydraulique basse chute. Il s'agit en particulier de la transformation de l'énergie hydraulique des marées ou de cours d'eau, Par les moyens de l'invention, une telle énergie hydraulique basse chute pourra être transformée en énergie mécanique, en énergie calorifique ou en énergie hydraulique de caractéristiques différentes de même qu'une énergie mécanique pourra être transformée en énergie hydraulique basse chute,
  • Dans la description qui suit, le dispositif est désigné par l'expression turbine à vis, afin de ne pas distinguer a priori le fonctionnement en moteur et le fonctionnement en pompe.
  • Dans le cas d'énergie basse chute, il s'agit généralement de gros débits liquides à faible hauteur de chute, Dans de telles applications, l'étanchéité parfaite entre les vis n'est pas nécessaire et des fuites peuvent être tolérées jusqu'à quelquespourcenls du débit total en raison de la faiblesse de l'énergie cinétique du fluide, Par contre, il est très important que la turbine soit apte à fonctionner avec un liquide impur, tel qu'une eau trouble, contenant des corps solides en suspension, à l'exclusion des corps trop importants qui peuvent être éliminés a l'aide d'une simple grille. De ce fait, il est nécessaire que les vis ne se touchent pas et de préférence, que les vis soient établies de façon à admettre des corps solides nettement plus gros que le jeu entre les vis.
  • La turbine selon l'invention est à cette fin caractérisée en ce que la vis stator comporte, dans les zones de changement de rayon de courbure d'un même étage des éléments de guidage tels que des galets fous légèrement saillants par rapport à la surface du stator et sur lesquels vient en contact la vis rotor, le stator comportant une succession d'étages à éléments de guidage placés côte à côte sur toute sa longueur, et les géométries du rotor et du stator étant déterminée de telle sorte qu'il subsiste un jeu aux linges de contact entre rotor et stator, ce jeu étant sensiblement égal à la proéminence des éléments de guidage.
  • Par étage il faut entendre une tranche perpendiculaire à l'axe de la vis et d'épaisseur suffisant pour le logement de l'élément de guidage (galet ou autre). De préférence le rotor et le stator sont réalisés par empilement hélicoïdal de tranches identiques entre elles, à parois cylindriques parallèles à l'axe de la vis et les étages d'éléments de guidage coïncident avec les tranches de la vis (stator et rotor).
  • Comme élément de guidage on utilisera, conformément à l'invention, des galets logés dans la paroi du stator et d'axe parallèle à l'axe de la vis, ou des billes ou des rouleaux, ou des patins saillants ou autres dispositions connues en technologie hydraulique sous le terme de coins hydrauliques.
  • Une autre disposition de l'invention consiste en ce que la vis rotor est montée tournant librement autour d'un axe (manivelle) relié à ses extrémités par des bras de manivelle à l'arbre de la turbine, dont la forme ressemble ainsi à celle d'un vilebrequin.
  • Ainsi est assuré le mouvement orbital de la vis rotor autour de l'axe du stator et le mouvement de rotation de la vis rotor autour de son axe sans que le rotor et le stator se touchent, le rotor étant guidé avec jeu par rapport au stator par le système d'étages de galets portés par ce dernier et entrant en rotation sur son axe par l'effet du mouvement orbital conjugué avec le guidage à galets.
  • Ceci suppose, pour un fonctionnement correct, que l'axe du stator et l'axe du rotor restent strictement parallèles, ce qui est obtenu en fixant la manivelle rigidement aux deux bras du vilebrequin et en la dimensionnant de telle sorte que les efforts de torsion auxquels elle est soumise créent des défauts de parallélisme inférieurs au jeu prévu (écarts totaux des extrémités de la manivelle par rapport au parallélisme exact).
  • L'énergie hydraulique de basse chute peut ainsi être transformée par des moyens simples et efficaces en énergie mécanique (et inversement), avec des moyens constructifs très frustes.
  • Cette énergie mécanique peut être utilisée directement mais elle peut également, selon une disposition de l'invention être transformée en énergie hydraulique par la création d'un courant secondaire de pression plus élevée et de débit plus faible au moyen d'une pompe volumétrique qui peut être également une pompe à vis.
  • L'invention prévoit pour cette application l'utilisation d'une turbine à deux vis, dans laquelle le rotor de la première vis sert d'enveloppe creuse pour la seconde vis, l'entrée d'eau étant commune aux deux vis tandis que les sorties sont distinctes.
  • Avec un tel dispositif, le rapport de la pression à la sortie de la seconde turbine à la pression à l'entrée de la première est l'inverse du rapport des volumes unitaires des deux turbines (volume clos entre stator et rotor sur un tour de vis). L'eau ainsi pompée peut être stockée dans un réservoir placé à un niveau au-dessus du bief aval dans le même rapport avec la hauteur de chute initiale. On peut également utiliser cette énergie à l'entraînement de moteurs hydrauliques fournissant une vitesse de sortie supérieure à la vitesse de la première turbine, Selon l'invention, la pompe entraînée par la première turbine peut également être une pompe volumétrique aspirant l'eau d'un réservoir pour la refouler dans le même réservoir par l'intermédiaire d'une vanne et d'un brise charge, l'ouverture de cette vanne étant commandée par le niveau du bief amont et la prise d'eau chaude effectuée sur le circuit de refoulement de la pompe en amont de la vanne.
  • Ces dispositions, ainsi que d'autres, seront décrites plus amplement ci-après avec référence au dessin joint, sur lequel :
    • La figure 1 est une vue perspective d'une turbine selon l'invention ;
    • La figure 2 est l'épure d'un étage de la turbine de la figure 1 ;
    • La figure 3 illustre schématiquemnt le guidage obtenu ;
    • La figure 4 illustre un détail constructif ;
    • La figure 5 illustre une variante de construction ;
    • La figure 6 est l'épure d'un étage d'un transformateur de pression hydraulique selon l'invention ;
    • La figure 7 est une coupe axiale du dispositif de la figure 6, selon A-A ;
    • La figure 8 illustre schématiquement l'utilisation de l'appareil en générateur de chaleur.
  • La turbine des figures 1 et 2 est constituée d'une enveloppe creuse formant stator 1 dans laquelle se déplace une vis rotor 2. Comme connu, la vis 2 est formée d'un empilage de disques circulaires 3, le stator 1 étant formé d'un empilage de disque 4 comportant chacun une ouverture oblongue 5. Les formes géométriques relatives des disques 3 et des ouvertures 5 sont les formes connues et décrites dans l'art antérieur cité plus haut,
  • Comme on peut le voir sur la figure 1, la turbine selon l'invention, destinée aux basses chutes, est de grand diamètre par rapport à sa longueur axiale qui est généralement inférieure au diamètre. Pour des débits élevés à faible hauteur, par exemple 3m3/sec, à 2 m de chute, le diamètre pourra être de l'ordre de 4 m, pour une longueur de 2 m,
  • Dans l'exemple représenté chaque ensemble formé d'un disque interne 3 et d'un disque externe 4 constitue un étage et la face interne de l'ouverture 5 d'un étage du stator 1 comporte, dans chaque zone de changement de rayon de courbure un élément 6 de guidage, galet, bille ou rouleau, ou coin hydraulique, légèrement saillant par rapport à la surface interne du stator, tandis que le rayon du disque 3 est légèrement inférieur au rayon de courbure des parties incurvées de l'ouverture 5.
  • La vis rotor vient s'appuyer successivement sur les galets de chaque étage pendant une fraction de son mouvement orbital qui ne dépend que de l'angle unitaire qui sépare la position d'un disque 3 du suivant autour de l'axe de la turbine. Le guidage de la vis rotor est donc analogue à celui d'une roue 7 se déplaçant sur une succession de galets 8 comme représenté figure 3.
  • On obtient donc ainsi un guidage aussi parfait que l'on veut de la vis rotor 2 dans le stator 1 sans que ces pièces se touchent, de sorte qu'il reste constamment un jeu qui d'une part supprime pratiquement les pertes par frottements mécaniques, d'autre part permet l'utilisation de liquides chargés d'impuretés solides,
  • Pour parfaire cette caractéristique, l'invention prévoit d'une part de donner aux galets une élasticité de suspension (par exemple galets repoussés élastiquement) ou de surface active ou roulante (surface en élastomère) et d'autre part de réaliser en matière souple et élastique la surface de l'une au moins des deux vis, par exemple de réaliser les disques 3 avec une épaisseur ou bord en caoutchouc ou autre élastomère, de préférence alvéolaire.
  • Par ailleurs, l'arbre 8 de la turbine a la forme d'un vilebrequin dont la manivelle 9 constitue l'arbre autour duquel tourne librement le rotor 2, cette manivelle étant reliée à l'arbre 8 par les bras 10. Par exemple les disques 3 seront montés sur un manchon creux 11 tourillonnant autour de l'arbre 9 solidaire des bras 10 eux-mêmes solidaires de l'arbre 8.
  • On obtient ainsi une grande rigueur de déplacement orbital de l'arbre 9 sans contact entre la vis 2 et le stator 1 autre que les contacts des galets ou équivalents 6. Le jeu entre vis rotor 2 et le stator 1 au niveau des lignes de contact entre vis pourra être de l'ordre de plusieurs millimètres pour un diamètre moyen de vis rotor de l'ordre de 1 mètre. Pour assurer un tel fonctionnement correctement, le vilebrequin 8, 9, 10 doit être très rigide afin que les efforts de torsion auxquels il est soumis ne diminuent pas les avantages résultant de ce jeu. Plus précisément, on calculera la manivelle 9 et les bras 10 sur lesquels elle est rigidement fixée de telle sorte que l'écart entre ses extrémités par rapport au parallélisme exact, ne puisse dépasser la valeur choisie du jeu dans les conditions de service prévues.
  • Ce mode de constitution de la turbine à vis, adapté aux basses chutes, permet la réalisation de machines très volumineuses avec des moyens très frustes pour une récupération d'énergie peu coûteuse malgré des hauteurs de chutes très faibles, de l'ordre de 1 mètre par exemple. Les dimensions auxquelles conduisent cette adaptation peuvent être très grandes et poser un problème de réalisation en ce qui concerne le palier inférieur qui doit supporter le poids du rotor 2 additionné de la force de pression, Conformément à l'invention, cette difficulté est surmontée en prévoyant un rotor muni de cavités remplies d'air et telles que la densité du rotor soit inférieure à celle du liquide de la chute, De préférence, les cavités seront de volume réglable, par exemple sous forme de ballasts étanches à remplissage contrôlable, permettant de régler la densité ; mais on pourra également utiliser un rotor à l'intérieur duquel sont disposés des volumes de matériau cellulaire. De tels volumes ou ballasts sont représentés en pointillé en 12 sur la figure 2.
  • A titre d'exemple, une turbine telle que représentée figure 1, ayant un diamètre externe de 108 m, un diamètre de disque 3 de 40 m, une hauteur de stator 1 de 40 m peut admettre un débit de 5000 m3/sec. sous une hauteur de chute de 2 mt, avec un jeu entre rotor et stator permettant le passage d'impuretés solides de l'ordre de 10 cm. Une telle machine est apte à fournir 100 mégawatts de puissance brute. Elle peut être réalisée avec des moyens très frustes tels que les moyens de la construction navale.
  • Puisque le guidage peut être établi avec des jeux importants entre rotor et stator, le profil à donner à chaque étage peut être celui d'une simple marche d'escalier comme représenté figure 4 (coupe selon un plan passant par l'axe du rotor). On peut également tailler les étages selon les pointillés 13 et 14 (figure 5), c'est-à-dire selon la surface engendrée par le segment joignant deux points homologues 15 et 16 de deux disques de deux étages successifs. Une telle disposition est plus coûteuse à réaliser mais autorise un jeu plus grand pour le même débit de fuite.
  • Avec une telle machine, par exemple en raison des débits élevés et de la faible hauteur de chute, la vitesse de rotation de l'arbre 8 peut se trouver très faible, de l'ordre de quelques tours par minute, et trop irrégulière, à raison des variations de débit, pour être utilisée directement comme énergie mécanique. Mais elle peut alors être utilisée à l'entraînement d'une machine similaire pour la production d'énergie hydraulique qui peut être utilisée comme telle ou servir à une production de chaleur, par exemple à la production d'un débit d'eau chaude.
  • La figure 6 illustre un tel transformateur d'énergie hydraulique. Selon cette figure, à l'intérieur de la turbine constituée par l'ensemble de vis stator 17 et rotor 18, réalisée comme exposé ci-dessus avec un jeu entre stator et rotor par le moyen des galets ou équivalents 6, se trouve une pompe à vis constituée par la vis hélicoïdale 19 tournant relativement à l'espace hélicoïdal 20.
  • L'art antérieur connaît déjà l'usage de plusieurs turbines à vis intérieures l'une à l'autre et de même entr'axe, notamment le brevet français 78.7711, mais dans ces applications il s'agit d'additions de débits de fluide pour limiter l'encombrement de la pompe et les espaces volumétriques des dispositifs à vis sont utilisés en parallèle, la vis intermé- daire ayant une faible épaisseur.
  • A l'encontre de cette application, la présente invention prévoit l'utilisation de l'un des espaces en moteur et de l'autre espace en pompe, l'énergie mécanique résultant du fonctionnement moteur étant utilisée à entraîner la pompe, et les espaces volumétriques ayant un rapport correspondant au rapport de pression qu'il s'agit d'obtenir.
  • Dans cette optique, selon l'invention, les entrées 21 et 22 sont communes mais les sorties 23 et 24 sont séparées et le liquide entrant dans la turbine externe à vis 17-18 sert à fournir l'énergie mécanique de compression de la pompe formée par l'ensemble 19-20 de sorte qu'à la sortie de la pompe 19-20 on obtient un liquide dont la pression est, par rapport à la pression,déterminée par la hauteur de chute dont on dispose dans la turbine 17-18, dans la même proportion que les rapports volumétriques des enceintes closes des vis 17-18 par rapport à celles des vis 19-20,
  • Afin de pouvoir augmenter ce rapport de transformation, l'invention prévoit d'utiliser pour la vis 17-18 une géométrie de transformées ou déformées d'hypocycloides à au moins trois sommets tandis que la pompe 19-20 a une géométrie de transformées d'hypocycloîdes à 1 et 2 sommets,
  • D'autre part, dans le même but, l'invention prévoit de donner à la vis interne 19-20 un entr'axe plus petit que celui de la vis 17-18, ce qui se traduit par des bras de manivelle 10b plus courts que les bras 10a,
  • Le fait que les deux turbines à vis utilisent les moyens de l'invention, c'est-à-dire le guidage par galets et le vilebrequin rigide 41, permet de n'avoir aucune autre liaison mécanique entre les vis stator et rotor de chaque turbine.
  • En effet, les efforts reçus ou fournis par la pression de l'eau sur la vis interne 19-20 sont toujours normaux à la manivelle du vilebrequin quelle que soit la position de la vis. Il n'y a donc pas d'énergie à fournir ni à recevoir au niveau du guidage et toute la transmission d'énergie se fait par la résistance à la torsion du vilebrequin sans autre liaison mécanique.
  • La réalisation pratique du dispositif reste donc très simple avec pour principal organe un vilebrequin double, la manivelle de la turbine externe 17-18 constituant l'arbre de la pompe interne 19-20 et les bras de manivelle 10a, 10b (entr'axe des vis) pouvant être de longueurs différentes.
  • Dans le cas où les bras 10a, 10bsont de même longueur, le mouvement de la vis 19 se réduit à un mouvement de rotation autour de l'axe général du dispositif. S'ils sont de longueurs différentes, ce mouvement est plus complexe, mais en raison de l'absence de liaison mécanique, sa réalisation ne pose pas de problème.
  • Pour la séparation étanche des sorties de fluide, on pourra adopter la solution représentée figures 6 et 7 ; la forme extérieure (stator 17) peut être réalisée en béton avec un fond plat 42 dont la surface pourra être revêtue d'un matériau lisse tel qu'une feuille d'acier inoxydable. La vis rotor 17 est pourvue d'une jupe de caoutchouc 43 qui glisse sur cette surface et assure l'étanchéité entre l'eau en pression de la cavité 23 et l'eau sans pression de la cavité 24. Ce fond possède des orifices distincts de sortie: d'une part, les trois orifices 38 qui rejettent en aval, par les souterrains 24, l'eau ayant traversée la turbine 17-19 ; d'autre part,l'orifice 40, au centre, relié par le souterrain 23 au lieu d'utilisation de l'eau ainsi mise en pression par les vis 19-20.
  • La figure 8 illustre l'utilisation d'un tel transformateur d'énergie hydraulique en générateur de chaleur. Dans cette utilisation, l'énergie mécanique résultant du fonctionnement d'une turbine basse chute 25 telle que celle de la figure 1 est utilisée à l'entraînement 26 d'une pompe volumétrique 27 travaillant en circuit fermé dans un réservoir 28, calorifugé en 39. La pompe 27 puise le liquide en 29 pour le retourner au réservoir en 30 par l'intermédiaire d'une vanne-ajutage 31, c'est-à-dire une vanne transformant la pression en vitesse, et dissipant cette vitesse en turbulences par des circulations quelconques dans le réservoir 28 ; le liquide est ensuite repris en 29 pour subir à nouveau le même cycle, Dans ces conditions l'eau s'échauffe et il devient possible de prélever à l'étage haute pression en 32, un débit d'eau chaude correspondant à la production de calories de la machine : à l'étage basse pression, en 33, la même quantité d'eau froide sera réinjectée dans le circuit.
  • Cependant, les débits d'eau du bief amont 34 au bief aval 35 peuvent varier dans de larges limites, par exemple s'il s'agit d'une rivière. Pour tirer le meilleur parti possible de l'énergie ainsi disponible l'invention prévoit un système de régulation consistant à régler la fermeture de la vanne 31 en fonction du niveau du bief amont 34, par le moyen du flotteur 36 relié à la vanne 31 par la tringlerie 37. Lorsque le flotteur 36 monte, la vanne 31 s'ouvre, La pression dans l'étage haute pression du système pompe 27 réservoir 30 diminue, ce qui permet l'augmentation de vitesse de la turbine 25 qui, de ce fait, absorbe davantage d'eau. Cela s'oppose au mouvement de montée d'eau amont qui a diminué la pression à l'étage haute pression. Inversement, un abaissement du niveau amont 34 provoque une fermeture de la vanne 31 et une élévation de la pression de sortie de la pompe 27 ce qui exige de la turbine 25 plus d'énergie qu'elle n'en peut fournir. La turbine 25-ralentira son mouvement, absorbant ainsi moins de débit, ce qui s'oppose à l'abaissement du niveau amont 34. Cette régulation permet donc de faire fonctionner le système dans une très large gamme de débits afférents tout en maintenant le niveau amont à la cote maximale qu'autorise le site, la turbine 25 et l'ensemble du système fonctionnant comme un régulateur du niveau amont. Le débit de calories disponible en 32 variera avec le débit de la rivière. En hiver, il pourra suffire à une installation de chauffage central ou à un appoint substantiel, en été il pourra suffire à la consommation d'eau chaude de toilette ou de ménage.
  • On obtient ainsi un transformateur d'énergie hydraulique à grande plage de fonctionnement constitué par une turbine selon l'invention fonctionnant en moteur, et entraînant une pompe volumétrique 27 dont le couple résistant est réglé par une vanne 31 en fonction du niveau amont, la récupération d'énergie étant ainsi optimisée par maintien du potentiel de la chute à son niveau optimum.
  • De ce fait, en variante la pompe 27 peut être le compresseur de gaz d'un système du type pompe à chaleur, c'est-à-dire que le transformateur d'énergie et la régulation ainsi décrite s'appliquent également dans le cas de l'entraînement d'une pompe à chaleur.

Claims (16)

1. Turbine à vis du type dans lequel le stator (1) et le rotor (2) ont la géométrie de vis engendrées par des courbes épicycloîdes ou hypocycloïdes déformées, caractérisée en ce que la vis du stator 1 comporte, dans les zones de changement de rayon de courbure d'un même étage des éléments de guidage 6 légèrement saillants par rapport à la surface du stator (1) et avec lesquels vient en contact la vis rotor (2) au cours de son mouvement, le stator (1) comportant une succession d'étage à éléments de guidage placés côte à côte sur toute sa longueur, et les géométries du rotor(2)et du stator (1) étant déterminées de telle sorte qu'il subsiste un jeu aux lignes de contact entre rotor et stator, ce jeu étant sensiblement égale à la proéminence des éléments de guidage (6).
2. Turbine selon la revendication 1, caractérisée en ce que chauqe étage est constitué d'une tranche perpendiculaire aux axes des vis et d'épaisseur suffisante pour le logement de l'élément de guidage.
3. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que le rotor (2) et le stator (1) sont réalisés par empilement hélicoîdal de tranches (3, 4) identiques entre elles, à parois cylindriques parallèles aux axes des vis rotor et stator et les étages d'éléments de guidage coïncident avec les tranches de la vis,
4. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que les éléments de guidage sont du type galets, billes, rouleaux, patins, saillants et autres coins hydrauliques.
5. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que les éléments de guidage 6 sont pourvus d'une élasticité de suspension ou de surface active.
6. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que la surface de l'une au moins des deux vis stator (1) et rotor (2) est réalisée avec une épaisseur de matière souple et élastique, de préférence alvéolaire.
7. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que la vis rotor (2) est montée tournant librement autour d'un arbre manivelle (9), relié à ses extrémités par des bras (10) solidaires de l'arbre du stator (8).
8. Turbine selon la revendication 7, caractérisée en ce que l'arbre manivelle (9) autour duquel tourne la vis rotor (2) est lié rigidement aux bras (10) et dimensionné de telle sorte que les effets de torsion auxquels il est soumis créent des défauts de parallélisme inférieurs au jeu prévu,
9. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que le jeu prévu entre rotor et stator le long des lignes de contact est de plusieurs millimètres pour un diamètre moyen de vis rotor (2) de l'ordre de 1 m.
10. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que le profil de chaque étage est celui d'une marche d'escalier.
11. Turbine selon l'une quelconque des revendications 1 à 10, caractérisée en ce que le profil de chaque étage est la surface engendrée par le segment joignant deux points homologues de deux étages successifs.
12. Turbine selon l'une quelconque des revendications précédentes, caractérisée en ce que la vis rotor de la turbine sert d'enveloppe creuse pour une seconde vis du même type, l'entrée d'eau étant commune aux deux turbines à vis ainsi obtenues tandis que les sorties sont distinctes et l'énergie mécanique résultant du fonctionnement moteur de la turbine externe étant utilisée à faire fonctionner en pompe la turbine interne.
13. Turbine selon la revendication 12, caractérisée en ce que la turbine externe formant moteur a une géométrie dérivée d'hypocycloîdes à au moins 3 sommets tandis que la turbine interne formant pompe a une géométrie dérivée d'hypocy- cloîdes à 1 et 2 sommets,
14. Turbine double selon l'une quelconque des revendications 12 et 13, caractérisée en ce que les rotors des deux turbines sont tous deux montés selon la revendication 7, la manivelle de la turbine externe constituant l'arbre de vilebrequin de la turbine interne.
15. Turbine double selon la revendication 14, dans laquelle les bras de manivelle de la turbine interne sont de longueurs différentes de ceux de la turbine externe,
16. Transformateur d'énergie hydraulique constitué par un moteur hydraulique selon l'une quelconque des revendications précédentes, entraînant une pompe volumétrique dont le couple résistant est réglé par une vanne en fonction du niveau amont.
EP82400972A 1981-06-01 1982-05-26 Perfectionnements aux pompes ou moteurs hydrauliques à engrenages hélicoidaux (turbines à vis) Withdrawn EP0069604A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8110781A FR2506861A1 (fr) 1981-06-01 1981-06-01 Perfectionnements aux pompes ou moteurs hydrauliques a engrenages helicoidaux (turbines a vis)
FR8110781 1981-06-01

Publications (1)

Publication Number Publication Date
EP0069604A1 true EP0069604A1 (fr) 1983-01-12

Family

ID=9259051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400972A Withdrawn EP0069604A1 (fr) 1981-06-01 1982-05-26 Perfectionnements aux pompes ou moteurs hydrauliques à engrenages hélicoidaux (turbines à vis)

Country Status (3)

Country Link
EP (1) EP0069604A1 (fr)
JP (1) JPS5813101A (fr)
FR (1) FR2506861A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382853A1 (fr) * 2002-07-17 2004-01-21 Adeleth Investments Inc. Machine rotative à vis et méthode de transformation du mouvement dans une telle machine
WO2005005838A1 (fr) * 2003-07-14 2005-01-20 Elthom Enterprises Limited Compresseur rotatif a vis a etages multiples

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951773B1 (fr) * 2009-10-22 2012-04-27 Thomas Eleaume Unite de production d'energie a rendement eleve
KR102628748B1 (ko) 2015-04-30 2024-01-24 닛산 가가쿠 가부시키가이샤 코팅 조성물 및 광학부재

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR787711A (fr) * 1934-05-02 1935-09-27 Mécanisme à engrenages perfectionné, utilisable comme pompe, compresseur, moteur ou simple dispositif de transmission
FR1373732A (fr) * 1963-07-31 1964-10-02 Machine volumétrique notamment compresseur, moteur à combustion interne ou pompe
DE2715576A1 (de) * 1977-04-07 1978-10-12 Streicher Foerdertech Exzenterschneckenpumpe
FR2384136A1 (fr) * 1977-03-19 1978-10-13 Streicher Foerdertech Pompe a plateaux d'excentriques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR787711A (fr) * 1934-05-02 1935-09-27 Mécanisme à engrenages perfectionné, utilisable comme pompe, compresseur, moteur ou simple dispositif de transmission
FR1373732A (fr) * 1963-07-31 1964-10-02 Machine volumétrique notamment compresseur, moteur à combustion interne ou pompe
FR2384136A1 (fr) * 1977-03-19 1978-10-13 Streicher Foerdertech Pompe a plateaux d'excentriques
DE2715576A1 (de) * 1977-04-07 1978-10-12 Streicher Foerdertech Exzenterschneckenpumpe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382853A1 (fr) * 2002-07-17 2004-01-21 Adeleth Investments Inc. Machine rotative à vis et méthode de transformation du mouvement dans une telle machine
WO2004007963A1 (fr) * 2002-07-17 2004-01-22 Elthom Enterprises Limited Taraudeuse volumetrique de type rotative
WO2004007967A1 (fr) * 2002-07-17 2004-01-22 Elthom Enterprises Limited Machine a vis de type rotatif
WO2004007964A1 (fr) * 2002-07-17 2004-01-22 Elthom Enterprises Limited Taraudeuse rotative et procede de modification d'un mouvement dans cette taraudeuse
US7553138B2 (en) 2002-07-17 2009-06-30 Elthom Enterprises Limited Rotary screw machine of volume type and method of transforming a motion in a volume screw machine
WO2005005838A1 (fr) * 2003-07-14 2005-01-20 Elthom Enterprises Limited Compresseur rotatif a vis a etages multiples

Also Published As

Publication number Publication date
FR2506861A1 (fr) 1982-12-03
FR2506861B1 (fr) 1984-06-15
JPS5813101A (ja) 1983-01-25

Similar Documents

Publication Publication Date Title
FR2754318A1 (fr) Pompe de fluide a moteur electrique, notamment pour carburant
CA2047975C (fr) Dispositif de pompage ou de compression polyphasique et son utilisation
EP1559913A1 (fr) Pompe à cavités progressives
FR2657655A1 (fr) Pompe a vide avec des cylindres filetes helicouidalement.
CA2606306A1 (fr) Machine hydraulique modulaire et microcentrale hydraulique
EP0069604A1 (fr) Perfectionnements aux pompes ou moteurs hydrauliques à engrenages hélicoidaux (turbines à vis)
WO2015159018A1 (fr) Pompe a engrenages a carburant, prevue notamment comme pompe a haute pression
FR2773381A1 (fr) Pompe centrifuge de carburant a roue equilibree
FR2805007A1 (fr) Appareil de deplacement de fluide de type a volutes ayant une portion de debut de spirale s'effilant depuis sa base jusqu'a son extremite
FR2657122A1 (fr) Pompe a essence pour systemes d'injection de moteurs a explosion.
EP3596335B1 (fr) Dispositif pour la production d'énergie hydro-électrique
FR2549908A1 (fr) Machine du type en spirale
EP2334906B1 (fr) Machine rotative a losange deformable multifonctions
FR2510204A1 (fr) Pompe a entrainement magnetique, notamment pour carburants
FR2735531A1 (fr) Pompe de carburant
EP0277861A1 (fr) Perfectionnements aux moteurs hydrauliques hélicoidaux
EP3698044B1 (fr) Pompe a barillet rotatif avec moyens de guidage et de centrage du barillet distincts
WO2008107547A1 (fr) Moteur rotatif a losange deformable
EP2356318B1 (fr) Machine rotative à losange déformable comportant un mecanisme de transmission perfectionné
CA2585300C (fr) Pompe mixte
FR2865506A1 (fr) Procede perfectionne d'entrainement en rotation d'une roue a aubes et roue a aubes permettant de mettre en oeuvre ce procede
WO2001023761A1 (fr) Compresseur ou en pompe a vide a spirales
BE870198A (fr) Elements en volute complementaires, notamment pour pompes a liquides
WO2013098494A1 (fr) Turbine hydraulique destinee notamment a une installation maremotrice
FR2978195A1 (fr) Moteur ou pompe a palettes a "tambour" a segments telescopiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830131

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850109